用户名: 密码: 验证码:
中应变率下钢纤维混凝土的本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢纤维混凝土(SFRC)是由细骨料、粗骨料、乱向分布的钢纤维和水泥浆所组成的一种混凝土材料。本文首次较系统地从理论与实验两方面研究了中应变率下SFRC的本构关系。论文的主要工作可概述如下:
     1.第一章,给出了SFRC本构模型一个综合性纵览,评述了现今有关SFRC动力性能研究的最重要的成果与存在的问题,介绍了选择本课题的工程背景。
     2.第二章,介绍了基于Instronl342液压伺服材料实验机,经辅助改装的动态测试系统的基本情况,以及实验方案、试件制作及实验步骤。得到SFRC在中应变率范围内的抗拉(四点弯拉、劈拉)全过程应力应变曲线。
     3.第三章与第四章,详细分析了中应变率下SFRC抗拉实验结果,研究表明:中应变率区不同应变率下SFRC的应力应变曲线基本形状是相同的,峰值应力、峰值应力对应的应变与弹性模量(割线模量)随着应变率增加,均有不同程度的提高。当应变速率从1.38×10~(-4)s~(-1)增大到0.532×10~(-1)s~(-1)时,SFRC的抗拉强度提高30%左右,峰值应力对应的应变提高10%左右,动态拉伸弹性模量提高20%左右。中应变率下,当钢纤维掺量从0%增加到4%时,SFRC的抗拉强度提高1.3倍左右。
     4.第五章,系统研究了中应变率下SFRC的本构理论。基于能量原理,推导出水泥基材料的非线性超弹性本构模型的一般形式;通过对实验结果的综合分析,首次研究了用数理统计方法中的典型分布密度曲线表述SFRC的应力-应变关系,阐述了这一新方法的基本原理。通过将数理统计方法与SFRC非线性超弹性本构模型结合,只要知道了材料破坏的局部应力-应变信息,就可以预测SFRC的应力-应变全过程曲线。基于弹塑性力学的有关理论,推导出SFRC弹塑性本构方程的一般形式。并采用分析的方法研究了SFRC的有效弹性模量,这一方法充分考虑了乱向分布的钢纤维的边壁效应与重力效应及混凝土基体孔洞的影响。基于一系列理论与实验分析,建立了一个四相复合材料模型用于计算SFRC的有效弹性模量,应用该方法,得到了一些用于预测SFRC有效弹性模量的简单、明确的理论公式;然后,在此基础上,进一步完善了SFRC弹塑性本构模型。最后,用实验结果校核了文中构建的率相关型SFRC弹塑性本构模型与SFRC非线性超弹性本构模型的正确性。
    
    中南大学博士学位论文中应变率下钢纤维混凝土的本构关系
    5.第六章,为了更好地了解SFRC在荷载(包括动力载荷)作用下的断裂行为,采
     用理论分析方法讨论了SFRC的增强机理与裂纹尖端微裂区的力学行为;基于一
     系列理论分析与实验观察,提出了一个新的SFRC材料断裂破坏的力学模型.同
     时,阐述了基于损伤演变一断裂力学的SFRC破坏理论的基本思想。
    6.第七章,给出了全文的主要结论。
Steel fiber reinforced concrete (SFRC) is concrete made of hydraulic cements containing fine aggregate, coarse aggregate, and with randomly oriented steel fibers. The constitutive relationship of SFRC under intermediate strain rate is studied from different analysis of theory and experiment in mis dissertation. The main work of this dissertation is summarized as following:
    1. In chapter 1, a comprehensive survey of constitutive models of SFRC is presented. Some of the most important aspects of the research on dynamic performances of SFRC are reviewed. Some main issues of which remain to be solved are outlined. The engineering background about the thesis selecting is introduced.
    2. In chapter 2, the basic information of a self-developed SFRC dynamic test system matching with Instron 1342 materials testing machine is given. The scheme of experiment, the specimen fabricating, the processes of both loading and measuring are introduced in detail. The complete process of SFRC under tension (four-point flexure, cleavage ) with different strain rate from 1.0x 10-4 s-1 to 1.0x10-1s-1 has been investigated. By this system, the complete stress strain curve for SFRC under intermediate strain rate is obtained.
    3. In chapter 3 and chapter 4, the experimental results of SFRC under intermediate strain rate are analyzed. The results indicate that the stress strain curves in the process with different strain rate are somewhat similar, with the peak stress and peak strain corresponding to peak stress and elastic modulus (secant modulus) increasing in different degree when the strain rate increases. While the strain rate increases from 1.38 X 10-4s-1 to 0.532 X 10-1s-1, the tensile strength of SFRC increases around 30%, the peak strain of under peak stress increases 10%, the dynamic tensile elastic modulus increases 20%. Under intermediate strain rate (e=1.0x10-4s-1 ~1.0x10-1s-1), while the contents of steel fiber increases from 0% to 4%, the tensile strength of SFRC increases around 130%.
    4. In chapter 5, the constitution theory of SFRC under intermediate strain rate is studied in detail. Based on energy theory, the general form of nonlinear hyper-elastic constitution equations for cement-matrix materials is got. Based on the comprehensive analysis of the experimental data, some statistics curves of
    
    
    mathematical statistics method are used to describe the stress-strain relationship of SFRC under intermediate strain rate. The basic theory of the new method is introduced. After combining mathematical statistics method with the nonlinear hyper-elastic constitution model for SFRC, the complete stress-strain curve of SFRC may be prognosticated by using a part of the data of stress- strain. At the same time, based on the theory of elastic-plasticity mechanics, the general form of a rate-dependent's elastic- plasticity constitution equations for SFRC is got. An analytical method has been used to determine the effective elastic modulus of SFRC with randomly distributed steel fibers. The influence of boundary effect and gravitation effect of randomly distributed steel fibers and concrete matrix porosity are taken into account in this method. Based on a series of theoretical and experimental analysis, a four-phase composite model has been proposed to calculate the effective elastic modulus of SFRC. By this approac
    h, some simple, explicit formulae are derived for estimating the effective elastic modulus of SFRC. Based on the analytical results, the rate-dependent's elastic- plasticity constitution model for SFRC is improved. And finally, the rate- dependent's elastic-plasticity constitution model and nonlinear hyper-elastic constitution equations for SFRC are validated by experimental data.
    5. In chapter 6, for a better understanding of the fracture behavior of SFRC composite materials under loading (including dynamic loading), the theoretical analysis method has been used to discuss the reinforcing mechanism and the mechanical behavior of crack in micro-crack zone of SFRC. Based on a series of theoretical anal
引文
[1] Hasan Ahmad, Dimitris C. Lagoudas, Effective elastic properties of fiber reinforced concrete with random fibers, Engineering Mechanics, 1991, 117(12): 2931-2938
    [2] John Forbes Olesen, Fictitious crack propagation in fiber reinforced concrete beams, Engineering Mechanics, 2001, 127(3): 272-279
    [3] 王荣国,武卫莉主编,复合材料概论,哈尔滨:哈尔滨工业大学出版社,1999
    [4] 程庆国,徐蕴贤,卢祖文,钢纤维混凝土本构理论的研究、工程应用及发展,中国铁道科学,1999,20(2):1-9
    [5] 赵国藩,彭少民,黄承逵等著,钢纤维混凝土结构,北京:中国建筑工业出版社,1999
    [6] 段吉祥,陆渝生,丁健等,关于钢纤维混凝土动力性能的试验研究,混凝土与水泥制品,1999,6:38-40
    [7] R. de Boer, H. T. Dresenkamp, Constitutive equations for concrete in failure state, Engineering Mechanics, 1989, 115(8): 1591-1607
    [8] 宋玉普,赵国藩,彭放等,钢纤维混凝土内时损伤本构模型,水利学报,1995,6:1-7
    [9] L. Taerwe, A. Van Gysel, Influence of steel fibers on design stress-strain curve for high-strength concrete, Engineering Mechanics, 1996, 122(8): 695-704
    [10] Norihiko Kurihara, Minoru Kunieda, Toshiro Kamada, et al, Tension softing diagrams and evaluation of properties of steel fiber reinforced concrete, Engineering Fracture Mechanics, 2000, 65: 235-245
    [11] 王哲,林皋,混凝土的一种非相关流塑性本构模型,水利学报,2000,4:8-13
    [12] Jill K. Morrison, Surendra P. Shah, Member, ASCE, Yeou-Shang Jeng, Analysis of fiber debonding and pullout in composites, Engineering Mechanics, 1988, 114(2): 277-293
    [13] J. Zhang and H. Stang, Application of stress of width relationship in predicting the flexural behavior of fiber-reinforced concrete, Cement and Concrete Research, 1998, 28(3): 439-452
    [14] G. Spadea and F. Beneardino, Behavior of Fiber-Reinforced Concrete Beams under Cyclic Loading, Structural Engineering, 1997, 123(5): 660-669
    
    
    [15] Victor C. Li, Member, ASCE, and Christopher K.Y.Liung, Steady-state and multiple cracking of short random fiber composite, Engineering Mechanics, 1992, 118(11): 2246-2263
    [16] Y. T. Zhu, W. R. Blumenthal and T. C. Lowe, Determination of non-symmetric 3-D fiber-orientation distribution and average fiber length in short-fiber composites, Composite materials, 1997, 31(13): 1287-1301
    [17] 易成,沈世钊,谢和平,局部高密度钢纤维混凝土弯曲疲劳损伤演变规律,工程力学,2002,19(5):1-6
    [18] Z. Fawaz and F. Ellyin, Fatigue failure model for fiber-reinforced materials under general loading conditions, Composite Materials, 1994, 28(15): 1432-1451
    [19] Mohamed Maalej, Victor C. Li, Members, ASCE, and Toshiyuki Hashida, Effect of fiber rupture on tensile properties of short fiber composites, Engineering Mechanics, 1995, 121(8): 903-913
    [20] M. Shannag, W. Hansen and P. Tjiptobroto, Interface debonding in fiber reinforced cement matrix composites, Composite Materials, 1999, 33(2): 158-176
    [21] C. Sujivorakul, A. M. Waas, and A. E. Naaman, Pullout response of a smooth fiber with an end anchorage, Engineering Mechanics, 2000, 126(9): 986-993
    [22] Zongjing Li, Bin Mu, and Stanley N. C. Chui, Rheolgy behavior of short fiber-reinforced cement-based extrude, Engineering Mechanics, 1999, 125(5): 530-536
    [23] Gran Tolf, On Dynamical Description of Fiber Reinforced Composites, Composite Materials, 1983, 17: 77-90
    [24] Sanders, David H., Wu, Qiudong, Dynamic response of steel fiber reinforce concrete, Proceeding of the Structures Congress'94 Apr 24-28, ASCE Press, 1994, 833-838
    [25] Katzensteiner, B., Mindess, S., Filiatrault, A., Banthla, N., Dynamic tests of steel fiber reinforced concrete frames, Concrete, American Concrete Inst, 1994, 16(9): 57-60
    [26] 林旭健,郑作樵,沙镇平,钢纤维混凝土板冲切强度及塑性解,厦门大学学报,1997,36(4):558-564
    [27] 严少华,钱七虎,姜锡全,超短钢纤维高强混凝土静力与动力抗压特性对比试验及分析,混凝土与水泥的制品,2001.1:33-35
    
    
    [28] 蒋昭鏣,陈江瑛,黄德进等,混凝土结构动态安全分析的重要基础——混凝土动态力学性能,宁波大学学报,1997,10(2):50-57
    [29] Yih-Cherng Chiang, On crack-wake debonding in fiber reinforced ceramics, Engineering Fracture Mechanics, 2000, 65: 15-28
    [30] Tungyang Chen, George J. Dvorak, Yakov Benveniste, Mori-Tanaka estimates of the overall elastic modulus of certain composite materials, Applied Mechanics, 1992, 59: 539-546
    [31] 张学峰,夏源明,中应变率材料试验机的研制,实验力学,2001,1:13-18
    [32] 吴绵拔,刘远惠,中等应变速率对岩石力学特性的影响,岩土力学,1980,1:51-58
    [33] 曲福进,刘岩,赵国藩,黄承逵,应变速率对高性能纤维混凝土动态性能的影响,施工技术,1997,5:3-5
    [34] Swang R N, Ali S R., Punching shear behavior of reinforced slab-column connections made steel fiber concrete, Engineering Mechanics, 1982, 79(5): 392-406
    [35] T Tang, L E Malvern, D A Jenkins. Rate effects in uniaxial dynamic compression of concrete, Engineering Mechanics, 1992, 118(1): 108-124
    [36] C A Ross, J W Tedesco, S T Kuennen, Effect of strain rate on concrete strength, Materials, 1995, 92(1): 37-47
    [37] C Albertini, E Cadoni et al. Study of the mechanical properties of plain concrete under dynamic loading, Experimental Mechanics, 1999, 39(2): 137-141
    [38] 胡时胜,王道荣,刘剑飞,混凝土材料动态力学性能的实验研究,工程力学,2001,18(5):115-118
    [39] Mróz Z, Angelillo M., Rate-dependent degradation model for concrete and rock, Proc Int Symp Num Models in Geomechanies, Ed. R. Dungar et al, A. A. Balkema, 1982, 208-217
    [40] Heiland, D., Bausch, S.; Stangenberg, F., Experimental studies on the dynamic behavior of reinforced concrete beams with additional steel fibers, Proceedings of the European Conference on Structural Dynamics, 1990, 1:5-7
    [41] Ansari, Farhad, Navalurkar, et al, Fiber optic sensor for the determination of dynamic fracture parameters in fiber reinforced concrete, Engineering Mechanics, 1993, 119(1): 160-176
    
    
    [42] Ansari, Farhad, Navalurkar, et al, Kinematics of crack formation in cementitious composites by fiber optics, Engineering Mechanics, 1993, 119(5): 1048-1061
    [43] 李胜利,刘煜,李保庆等,中应变率光电检测装置的试验研究,工具技术,2001,35(8):36-39
    [44] M M LeBlance, A hybrid technique for compression testing at intermediate strain rotes, Experimental Techniques, Oct. 1996
    [45] Naaman, Antoine E., Fiber reinforced concrete under dynamic loading, Publication SP-American Concrete Institute, Sponsored by: American Concrete Inst, Detroit, MI, USA American Concrete Institute, 1984, 169-186
    [46] Chiem, C. Y, Sieffert, J. G, Hwaija, B. H, Etude experimentale sur le comportement statique et dynamique a grande vitesse de deformation des microbetons, Materials and Structures/Matedaux et Constructions, 1990, 23(138): 426-435(In French)
    [47] Shah, S. P., Stroven, P., Dolhuisen, D. et al, Complete stress-strain curves for steel fiber reinforced concrete in uniaxial tension and compression, Proceedings, International Symposium, RILEM-ACI=ASCE, Sheffield, 1978, 399-408
    [48] 李兆霞,一个综合模糊裂纹和损伤的混凝土应变软化本构模型,固体力学学报,1995,16(1):22-30
    [49] Faming Li, Zongjin Li, Continuum damage mechanics based modeling of fiber reinforced concrete in tension, Solids and Structures, 2001, 38: 777-793
    [50] Yiu-Wing Mai, Cohesive zone and crack-resistance(R)-curve of cementitious materials and their fibre-reinforced composites, Engineering Fracture Mechanics, 2002, 69: 219-234
    [51] K. Ramesh, D. R. Seshu, M. Prabhakar, Constitutive behaviour of confined fibre reinforced concrete under axial compression, Cement & Concrete Composites, 2003, 25: 343-350
    [52] Harano T. Dynamical compression deformation and failure of concrete under earthquake load, Proceedings of the second world conference on earthquake engineering, 1960, Ⅲ, 245-258
    [53] 鞠杨,樊承谋,循环载荷作用下钢纤维混凝土的损伤及演化行为的定量描述,工程力学,1998,15(1):94-104
    [54] S. K. Dwivedi, H. D. Espinosa, Modeling dynamic crack propagation in fiber
    
    reinforced composites including frictional effects, Mechanics of Materials, 2003,35:481-509
    [55] 张盛东,混凝土本构理论研究进展与评述,南京建筑工程学院学报,2002,3:44-53
    [56] 匡震邦著,非线性连续介质力学基础,西安:西安交通大学出版社,1989
    [57] W. F. Chen, Plasticity in reinforced concrete, McGraw-Hill Book Company, New York, 1982
    [58] Bischoff P H, Impact behavior of plain concrete at high strain rates, Materials Structure, 1991, 24: 425-438
    [59] 董毓利著,混凝土非线性力学基础,北京:中国建筑工业出版社,1997
    [60] Wang, C. S., Wu, F., Chang, F, K, Structural health monitoring from fiber reinforced composites to steel-reinforced concrete, Smart Materials and Structures, 2001, 10(3): 548-552
    [61] Wei, Sun Jianming, Gao Yun, Yan, Study of the fatigue performance and damage mechanism of steel fiber reinforced concrete, ACI Materials Journal, 1996, 93(3): 206-212
    [62] Fang, L., Meyer, Ch., Biaxial low-cycle fatigue behavior of steel fiber-reinforced concrete, Proceedings of the Materials Engineering Conference, Sponsored by: ASCE, 1996, 436-445
    [63] Bayasi, Ziad, Zhou, Jing, Seismic resistance of steel fiber reinforced concrete beam-column joints, Proceedings of the Symposium on Structural Engineering in Natural Hazards Mitigation, Sponsored by: ASCE, 1993, 1403-1408
    [64] Mizukoshi, Mutsumi, Shimauchi, et al, Properties of flexural fatigue of steel fiber reinforced concrete, Transactions of the Japan Concrete Institute, 1994, 16: 311-316
    [65] Ishikawa, Tetsuya, Ohnuma, et al, Mathematical description of deformational behavior of high strength concrete reinforced with steel fiber under triaxial compression, Transactions of the Japan Concrete Institute, 2000, 22, 221-228
    [66] Patton, Mark E, Whittaker, W.L, Effects of fiber content and damaging load on steel fiber reinforced concrete stiffness, Journal of The American Concrete Institute, 1983., 80(1): 13-16
    [67] Johnston, Colin D., Steel fiber reinforced concrete to pavement EM dash
    
    construction and interim performance report, Publication SP-American Concrete Institute, 1974, 51: 161-173
    [68] 贾乃文编著,塑性力学,重庆:重庆大学出版社,1992
    [69] 黄克智,黄永刚编著,固体本构关系,北京:清华大学出版社,1999
    [70] 李庆斌,混凝土静、动力双剪损伤本构理论,水利学报,1995,2:27-33
    [71] Brooks J. J., Al-Samaraie N. H., Fracture of concrete and rock, S. P. Shah Ed., Elsevier Applied Science, 1989, 397-408
    [72] Gurson, A. L., Continuum theory of ductile rupture by void nucleation and growth: Part 1-Yield criteria and flow rules for porous ductile media, Trans. of ASME, Engineering Materials and Technology, 1977, 99:2-15
    [73] Gurson, A. L., Porous rigid-plastic materials containing rigid inclusions-yield function, plastic potential, and void nucleation, International conference of Fracture, Taplin D. M. R. ed., 1977, 2A: 357-364
    [74] 杜庆华,郑百哲,应用连续介质力学,北京:清华大学出版社,1986
    [75] Li Qinbin, Zhang Chuhan and Wang Guanglun, Dynamic damage constitutive model of concrete of concrete in uniaxial tension, Engineering Fracture Mechanics, 1996, 53(3): 449-455
    [76] 王利民,徐世娘,陈浩然,裂纹端部细短纤维的应力分析,力学学报,2002,34(2):200-207
    [77] T. D. Papathanasiou, M.S.Ingber, L.A. Mondy, A.L.Graham, The effective elastic modulus of fiber reinforced composites, Composite Materials, 1994, 28(4): 288-303
    [78] 高丹盈,刘建秀编著,钢纤维混凝土混凝土基本理论,北京:科学技术文献出版社,1994
    [79] Yih-Cherng Chiang, On crack-wake debonding in fiber reinforced ceramics, Engineering Fracture Mechanics, 2000, 65:15-23
    [80] C. V. S. K. Rao, Effectiveness of random fibers in composites, Cement and Concrete Research, 1979, 9: 557-572
    [81] 侨生儒主编,复合材料细观力学性能,西安:西北工业大学出版社,1997
    [82] P. Stroeven and S. P. Shah, Use of radiograph-image analysis for steel fiber reinforced concrete, RILEM Symposium on testing and test methods of fiber cement composites, Edited by Swamy R.N., 1978
    
    
    [83] Hamoush, S.A., Terro, M.J., Ahmad, S. H., Shear modulus of the intertacial bond between steel fibers and concrete, 1997, 49(181): 277-282
    [84] Najm, Husamuddin S., Naaman, Antoine E., Prediction model for elastic modulus of high-performance fiber reinforced cement-based composites, ACI Materials Journal, 1995, 92(3): 304-314
    [85] 邓宗才,钱在兹,钢纤维混凝土弹塑性本构模型,力学与实践,2000,22(4):34-37
    [86] M. L. Dunn, H. Ledbetter, Elastic moduli of composites reinfomed by multiphase particles, Applied Mechanics Division, 1994, 62: 1023-1028
    [87] Y. H. Zhao, G. J. Weng, Effective elastic moduli of ribbon-reinforced composites, Applied Mechanics Division, 1990, 57:158-167
    [88] Y. P. Qin, G. J. Wang, Elastic moduli of thickly coated particle and fiberreinforced composites, Applied Mechanics Division, 1991, 58: 388-398
    [89] Ramesh, G., Sotelino, E. D., Chen, W. F., Effect of transition zone on elastic moduli of concrete materials, Cement and Concrete Research, 1996, 26(4): 611-622
    [90] Zhao, Xing-Hua, Chen, W. F., Effective elastic moduli of concrete and composite materials, Composites Part B: Engineering, 1998, 29(1): 31-40
    [91] Weng, G. J., Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions, Int. J. Engineering Science, 1984, 22:845-856
    [92] K.Visalvanich and A. E. Naaman, Fracture methods in cement composite, ASCE, 1981, 107(6): 1155-1171
    [93] Zhao, Y. H., Tandon, G. P., and Weng, G. J., Elastic moduli for a class of porous materials, Acta Mechanics, 1989, 76: 105-130
    [94] 范镜泓,高芝晖,非线性连续介质力学基础,重庆:重庆大学出版社,1987
    [95] LeBlance M M, A hybrid technique for compression testing at intermediate strain rates, Experimental Techniques, 1996, 5:843-856
    [96] Lindholmus, Effect of rate on yield strength, tensile strength, and elongation of three aluminum alloys, Materials, 1971, 6(1): 119-133
    [97] Mróz Z, Angelillo M., Rate-dependent degradation model for concrete and rock. Proc Int Symp Num Models in Geomechanics, Ed. R. Dungar et al, 1982, 208-
    
    217
    [98] M.Shannag, R.Brincker and W.Hansen, Interfacial(Fiber-Matrix)Properties of High Strength Mortar(150Mpa)from Fiber Pullout, Materials, 1996, 93(5): 480-486
    [99] Chase, K. W., Mechanical and optical characterization of an anelastic polymer at large strain rates and large strains, Experimental Mechanics, 1974, 14(1): 10-18
    [100] C Albertini, E Cadoni et al, Study of the mechanical properties of plain concrete under dynamic loading, Experimental Mechanics, 1999, 39(2): 137-141
    [101] M.R.Piggoutt, Load-bearing Fiber Comosites, Pergamon Press, Oxford, New York, 1980
    [102] 卢亦焱,肖焕雄,钢纤维混凝土受拉性能实验方法研究,实验力学,1999.14(3):359-366
    [103] Nammur, George G., Naaman, Antoine E, Strain rate effects on tensile properties of fiber reinforced concrete, Materials Research Society Symposia Proceedings, Sponsored by: Materials Research Soc, Pittsburgh, PA, USA Materials Research Soc, 1986, 64, 97-118
    [104] 汪洋,夏源明,不同应变率下Kevlar49纤维束拉伸力学性能的实验研究,复合材料学报,1999,16(1):45-51
    [105] Lin T Y, Paramasiram P, and Lee S L, Analytical model for tensile behavior of steel fibre reinforced concrete, Materials, 1987, 84(4): 286-298
    [106] 关丽秋,赵国藩,钢纤维混凝土在单向拉伸时的增强机理与破坏形态的分析,水利学报,1986,9:34-43
    [107] 西安公路学院,钢纤维混凝土设计分析,钢纤维混凝土译文集(一),1989,5-19
    [108] 姜福田 编著,混凝土力学性能与测定,北京:中国铁道出版社,1989,10
    [109] 董毓利,谢和平,赵鹏,不同应变率下混凝土受压全过程的实验研究,水利学报,1997.7:72-77
    [110] 贾乃文编著,塑性力学,重庆:重庆大学出版社,1992
    [111] 黄承逵,尚仁杰,赵图藩,混凝土动态拉伸试验方法的研究,大连理工大学学报,1997,37(Suppl.1):110-114
    [112] Baguru P, Kendzulak J, Mechanical properties of slurry infiltrated fiber concrete(SIFCON), Fiber Reinforced Concrete Properties and Applications, 1987, 247-
    
    268
    [113] Nman A E, Homrich JR, Tensile stress-strain properties of SIFCON, Materials, ACI, 1989, 86(3): 244-251
    [114] Rinhardt H N, Fritz C, Optimization of SIFCON mix, Fiber Reinforced Cements and Concretes-Recent Developments, Elsevier, 1989, 11-20
    [115] Zdeněk P. Baant, Size effect in blunt fracture: concrete, rock, metal, Engineering Mechanics, 1984, 110(4): 518-535
    [116] Zdeněk P. Baant, Rodrigue Desmorat, Size effect in fiber or bar pullout with interface softening slip, Engineering Mechanics, 1994, 120(9): 1945-1961
    [117] 于骁中,周群力,诉常谯编,岩石和混凝土断裂力学,长沙:中南工业大学出版社,1991
    [118] Peter H. Bischoff, Simon H. Perry, Impact behavior of plain concrete loading in uniaxial compression, Engineering Mechanics, 1995, 121(6): 685-693
    [119] Kwaz, F. Ellyin, Fatiue failure model for fibre-reinforced materials under general loading conditions, Composite Materials, 1994, 28(15): 1432-1451
    [120] 赵亚溥,断裂力学中的相似方法,力学进展,1998,28(3):323-338.
    [121] 茆诗松,王静龙,濮晓龙编著,高等数理统计,北京:高等教育出版社&施普林格出版社,1998
    [122] 汪荣鑫著,数理统计,西安:西安交通大学出版社,1986
    [123] Banthia, N., Mindess, S., Bentur, A, & Pigeou, M., Impact testing of concrete using a drop weight impact machine, Experimental Meachics, 1989,29(2): 63-69
    [124] Hillerborg A., Modeer, M. and Petersson, P.E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, 1976, 6: 773-782
    [125] Hillerborg, A., Analysis of fracture by means of the fictitious crack model, particularly for fiber-reinforced concrete, Cement Composite, 1980, 2(4): 177-184
    [126] Barros, J. A. O., Figueiras, J. A., Model for the analysis of steel fiber reinforced concrete slabs on grade, Computers and structures, 2001, 79(1): 97-106
    [127] Agarwal B D, Broutman L T. Analysis and Performance of fiber Composites, 2nd, John Wiley and Sons Inc, New York: Wiley, 1980
    [128] 杨卫著,宏微观断裂力学,北京:国防工业出版社,1995
    
    
    [129] Darwin, D., Steel, F. O., Effect of paste-aggregate bond strength on behavior of concrete, Materials, JMLSA, 1970, S, 1:86-98
    [130] 罗章,李夕兵,凌同华,钢纤维混凝土的增强机理与断裂力学模型研究,矿业研究与开发,2003,23(4):18-22
    [131] P.Stroeven, S. P. Shah, Use Of radiograph-image analysis for steel fiber reinforced concrete, RILEM Symposium on testing and test methods of fiber cement composites, Edited by Swamy R.N., 1978
    [132] Mohamed Maalej, Victor C.Li, Members, ASCE, and Toshiyaki Hasihida, Effect of fiber rupture on tension properties of short fiber composites, 1995,121(8): 903-913
    [133] Irwin G R, Fracture, In: Fllugge S Edited, Encyclopedia of physics, New York: Springer-Verlag, 1958, VI, 551-590
    [134] Needleman A and Tvergaard V., An analysis of ductile rupture modes at a crack tip, Mechanics Physics and Solids, 1987, 35(2), 151-183
    [135] Jacquot P., Rastogi P. K., Speckle metrology and holographic interferometry applied to the study of crack in concrete, Fracture Mechanics of Concrete, edited by Wittmann F. H., 1983
    [136] Ansari, Farhad, Navalurkar, Rahendra K., Kinematics of crack formation in cementitious composites by fiber optics, Engineering Mechanics, 1993, 119(5): 1048-1061
    [137] 余寿文,冯西桥编著,损伤力学,北京:清华大学出版社,1997
    [138] 王军著,损伤力学的理论与应用,北京:科学出版社,1997
    [139] C.K.Y.Leung and V.C.Li, Application of a two-way debonding Theory to short fiber composites, Composites, 1990, 21(4): 305-316
    [140] F. H.Wittmann, P.Schwesinger(Germany), High Performance Concrete Material Properties and Design, 北京:中国铁道出版社,林乃谦等译,1998
    [141] M.C.Colling, P.Adebar, P.T.Seabrook, et al, External Repair of Cracked Grain Silos, Concrete International Design and Construction, 1997, 19(11): 22-28
    [142] M. Shannag, W. Hansen and P. Tjiptobroto Interface Debonding in Fiber Reinforced Cement-Matrix Composites, Composite Materials, 1999, 33(2): 158-176
    [143] Amen Aybossou, Anne Bergeret, Modelling and experimental analysis of
    
    multi-coating effect on thermal expansion and thermal stress of polymer fiber-reinforced composites, composite materials, 1999, 33(15): 1410-1430
    [144] H.Okamura, I. H. Kim, Seismic Performance Check and Size Effect FEM Analysis of reinforced concrete, Engineering Fracture Mechanics, 2000, 65, 369-389
    [145] Samul D. Bogan, Mark K. Hinders, Dynamic Stress Concentrations in Fiber-Reinforced Composites with Interface Layers, Composite Materials, 1993, 27(13): 1272-1311
    [146] Y. T. Zhu, W. R. Blumenthal and T. C. Lowe, Determination of Non-Symmetric 3-D Fiber-Orientation Distribution and Average Fiber Liber Length in Short-Fiber Composites, Composite Materials, 1997, 31(13): 1287-1301
    [147] Z.Fawaz and F.Ellyin, Fatigue Failure Model for Fibre-Reinforced Materials under General Loading Conditions, Composite Materials, 1994, 28(15): 1342-1451
    [148] 美国材料试验协会,钢纤维混凝土的钢纤维标准规范,水利水电快报,1994,24,19-22
    [149] CECS13:89,中国工程建设标准化协会标准,钢纤维混凝土试验方法,北京:中国计划出版社,1996
    [150] J. Eibl and B.Schmidt-Hurtienne, Strain-Rate-Sensitive Constitutive Law for Concrete, Engineerring Mechanics, 1999, 125(12): 1411-1420
    [151] S. Zhang, U.Haussler-Combe, and J. Eibl, New Approach to Strain Rate Sensitivity of Concrete in Compression, Engineering Mechanics, 1999, 125(12): 1403-1410
    [152] Monsen A. Issa and A. B. Shaflq, Fatigue Characteristics of Aligned Fiber Reinforced Mortar, Engineering Mechanics, 1999, 125(2): 156-164
    [153] Tetsushi Kanda and Victor C. Li, Effect of Fiber Strength and Fiber-Matrix Interface on Crack Bridging in Cement Operations, Engineering Mechanics, 1999, 125(3): 290-297
    [154] A..I. Gulidov, V. M. Fomin and I. I. Shabalin, Mathematical simulation of fracture impact problems with formation of fragmentions, International Journal of Fracture, 1999, 100(2): 183-196
    [155] Prabhakar R. Marur, Hareesh V. Tippur, Dynamic response of biomaterial and
    
    graded interface cracks under impact loading, Intemational Journal of Fracture, 2000, 103(1): 95-109
    [156] Z. P. Bazant, J. -J. H. Kim, I.M. Daniel, et al, Size effect on compression strength of fiber composites failing by kink band propagation, International Journal of Fracture, 1999, 95(4): 103-141
    [157] Xiaohua Zhao, The impact response of a half place crock in a transversely isotropic solid due to 3-D mixed mode loading, International Journal of Fracture, 2000, 106(4): 357-371
    [158] 蔡正咏,王足献,李秀英等编著,数理统计在混凝土试验中的应用,北京:中国铁道出版社,1988
    [159] 施钟毅,林贤熊,陆善后等,钢纤维增强砂浆和混凝土抗裂性能试验研究,建筑材料学报,1998,1(3):239-244
    [160] S. -C. Hang and K. M. Lrechti, Finite Element Analysis of the Arcan Specimen for Fiber Reinforced Composites under Pure Shear and Biaxial Loading, Composite Materials, 1999, 33(14): 1288-1317
    [161] S. W. Park, M. Zhou and D. R. Veazie, Time-resolved impact response and damage of fiber-reinforced composite laminates, Composite Materials, 2000, 34(10): 879-904
    [162] W. A. Cutfin, Tensile Strength of Fiber-Reinforced Composites: Ⅲ. Beyond the Traditional Model for Fiber Strengths, Composite Materials, 2000, 34(15): 1301-1332
    [163] Dai Gil Lee and Seong Sik Chean, Impact Characteristics of Glass Fiber Composites with Respect to Fiber Volume Fraction, Composite Materials, 2000, 35(1): 27-56
    [164] M. Shannag, W. Hansen and P.Tjiptobrotlo, Interface Debonding in Fiber Reinforced Cement-Matrix Composites, Composite Materials, 1999, 33(2): 158-176
    [165] J. Wang, Prediction of Post-Impact Compressive Stength of Composite Laminates Using an Inhomogeneity Model, Composite Materials, 1999, 33(24): 2226-2247
    [166] C. M. Landis, M. A. Mcgiockton, R. M. Mcmeeking, An Improved Shear Lag Model for Broken Fibers in Composites Materials, Composite Materials, 1999,
    
    33(7): 667-680
    [167] G. A. Schoeppner, S.Abrate, Delamination threshold loads for low velocity impact on composite laminates, Composites, Part A: applied science and manfacturing, 2000, 31A(9): 903-905
    [168] 贡金鑫,黄承逵,赵国藩,钢纤维混凝土的抗折疲劳方程,土木工程学报,2001,34(4):72-77
    [169] Tsuyoshi Niihiwaki, Akio Tange, Kazuo Kitagawa and Hiroyuki Hamada, Mechanical Properties of Unidirectional Fiber Reinforced Composite with Flexible Interphase, the Japan Society for Composite Materials, 2000, 26(3): 101-110
    [170] Shinji Ogihara, Youichi Kimura, Nobuo Takea, et al, Fiber Break Behavior in Single Fiber Composites with Different Fiber Surface Treatment, the Japan Society for Composite Materials, 2000, 26(2): 43-50
    [171] Atsushi Wada and Hiroshi Fukuda, Evaluation of Fiber/Matrix Interfacial Shearing Properties by Means of Microbond Test and Finite Element Analysis, the Japan Society for Composite Materials, 2000, 26(2): 58-64
    [172] Hiroshi Suzuki, Probabilistic Study for Image Analysis of Internal Structure in 2-Dimensional Short Fiber Reinforced Composites in View of Overlapping of Fibers, the Japan Society for Composite Materials, 2000, 25(2): 55-62
    [173] Bao, G., and Suo, Z. Crack bridging models for fiber reinforced composites with slip-dependent interfaces, Mechanics Physics of Solids, 1993, 41 (9): 1425-1444
    [174] Goplaratnam, V. S., and Shah, S. P., Tensile fracture of steel fiber reinforced concrete, Engineering Mechanics, 1985, 113(4): 635-653
    [175] 戴建国,黄承逵.钢纤维自应力混凝土力学性能试验研究,建筑材料学报,2001,4(1):70-74
    [176] Marshall, D.B., and Cox, B.N. and Evans, A.G., The mechanics of matrix cracking in brittle-matrix fiber composites, Acta Metallurgiea, 1985, 33(11), 2013-2021
    [177] Naamen, A.E., and Reinahardt, H.W., High performance fiber reinforced cement composites, RILEM, E &FN Spon, London, 1995
    [178] 徐芝纶,弹性力学,北京:高等教育出版社,1988
    [179] Stang, H., Li, V. C., and Krenchel, H., Design and structural applications of
    
    stress-crack width relations in fiber reinforced concrete, Materials and Structure, 1995, 28, 210-219
    [180] Takaku, A., and Arridge, R.G.C., The effect of interfaeial radial and shear on fiber pull-out in composites materials, Physics, D: Appl. Phys., 1973, 6, 2038-2047
    [181] Outwater, J.Q., and Murphy, M.C., Fracture energy of unidirectional laminates, Modern Plastics, 1970, 47(9), 160-169
    [182] J.Aveston, and A. Kelly, Theory of Multiple Fracture of Fibrous Composites, Materials Science, 1973,99(8): 352-362
    [183] Rusch, H., Researches toward a general flexural theory for structural concrete, Journal of the American Concrete Institute, 1960, 57(1): 1-28
    [184] Mchenry, D., Shideler, J. J., Review of data on effect of speed in mechanical testing of concrete, Symposium on Speed of Testing of Nonmetallic Materials, ASTM, Philadelphia, 1955, 72-82
    [185] A.Carpinteri & A.R.Ingraffea Ed.Fracture mechanics of concrete:material characterization and testing,杨煜惠,黄政宇,万良芬等译,长沙:湖南大学出版社,1988
    [186] Shah, S. P., Chandra, J., Critical stress, volume change, and microcracking of concrete, Journal of the Amercian Concrete Institute, 1968, 65, 770-781
    [187] Luoyu Xu, Probabilistic character of the microcrack growth in brittle layered materials, Theoretical and Applied Fracture Mechanics, 1997, 27: 167-174
    [188] Petersson, P. E., Fracture mechanical calculations and tests for fiber reinforced cementitious materials, Advances in Cement-Matrix Composites, Proceedings, Symposium, Materials Research Society, Annual Meeting, Boston, Massachusetts, 1980, 95-106
    [189] Swamy, R. N., Manget, P. J., Roa, C. V. S. V., The mechanics of fiber reinforcement of cement matrices, in fiber reinforced concrete, ACI Publication SP-49, 1974, 1-28
    [190] 陈传淼,黄云清著,有限元法高精度理论,长沙:湖南科学技术出版社,1995
    [191] Koji Otsuka, Hidehumi Date, Fracture process zone in concrete tension specimen, Engineering Fracture Mechanics, 2000, 65: 111-131
    
    
    [192] Cosenza E, Finite element analysis of reinforced concrete elements in a cracked state, Computers and Structures, 1990, 36(1): 71-79
    [193] Jing Liu, Stephen J. Foster, A three-dimensional finite element model for confined concrete structures, Computers and Structures, 2000, 77, 441-451
    [194] Minho Kwon, Enrico Spacone, Three-dimensional finite element analysis of reinforced concrete columns, Computers and Structures, 2002, 80, 199-212
    [195] 田砾,杨明,孙雪飞等,钢纤维混凝土细观结构数值模拟自动生成技术—多边形骨料生成与有限元网格的剖分,青岛建筑工程学院学报,1998,19(4):1-5
    [196] 罗章,李夕兵,赵伏军等,Ⅱ型荷载下混凝土剪切断裂的测试研究,实验力学,2002,17(4):444-451
    [197] 罗章,混凝土滑开型断裂的研究:[中南工业大学硕士学位论文],2000,3
    [198] Wittmann F H, Roelfstra P E, Sadouki H, Simulation and analysis of composite structures, Materials Science and Engineering, 1985, 68, 239-258
    [199] 范天佑编著,断裂力学基础,南京:江苏科学技术出版社,1989
    [200] 王爱勤,秦太验,三维有限体中两平行裂纹干扰问题的有限部积分与边界元法,固体力学学报,1998,19(1):1-8
    [201] T. Y. Qin, W. J. Chen, R. J. Tang, Three-dimensional crack problem analysis using boundary element method with finite-part integrals, International Journal of Fracture, 1997, 84(2): 191-202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700