用户名: 密码: 验证码:
不同生活型草原植物环境适应特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过研究不同生活型草原植物对环境变化的反应,不同干扰条件下不同生活型植物种群构件可塑性变化和再生生长,以及在群落(退化或恢复)演替中不同生活型植物种群的替代规律和补偿作用,比较了不同生活型草原植物生长差异,研究结果如下:
     (1)以植物单株干重作为对环境变化反应的指标,在不同的空间尺度上研究了不同生活型草原植物对环境条件变化的反应,结果表明,在大尺度上不同生活型草原植物单株重的变异系数大小依次为匍匐型>根茎型>丛生型>直根型,说明匍匐型植物和根茎型植物对环境变化的反应最敏感;在中尺度上不同生活型草原植物单株重的变异系数依次为根茎型>匍匐型>丛生型>直根型,反应规律与大尺度的变化基本相同;在小尺度上不同生活型草原植物单株重的变异系数依次为扁蓿豆>冷蒿>大针茅>冰草>糙隐子草>羊草,仍然反映出匍匐型植物对环境变化最敏感的规律,但根茎型和丛生型的反应与大尺度和中尺度有差别,这是由于小尺度上环境的空间异质性小,还不足以使各种生活型植物单株重的变异性规律完全表现出来。
     (2)在野外自然放牧梯度上,不同生活型草原植物构件可塑性变化和生物量变化表现出不同的规律。根茎型植物羊草的地上、地下和总生物量随着放牧强度的增加而明显的降低,冰草的生物量虽然随着放牧强度的加剧有增加的趋势,但不显著;丛生型植物大针茅的地上、地下和总生物量随着放牧强度的增加而明显的降低,但分蘖数却随放牧强度的增加而增加;匍匐型植物冷蒿随着放牧强度的增加,枝条密度增加,枝条长度变短,不定根数量增多,而枝条的平均干重降低。这说明分枝密度和个体大小之间存在一定的补偿性。
     (3)在不同的干扰条件下,不同生活型草原植物的构件可塑性变化和生物量的变化有一定的相似性,也存在不同之处。
     在野外模拟放牧影响下,轻度放牧可促进根茎植物的生长,随着放牧强度的增加,株高降低,呈单峰型变化;模拟放牧对丛生型大针茅、匍匐型冷蒿和直根型植物的生长有抑制作用,随着放牧强度的增加,这些植物的植株变矮。
     盆栽牧草的模拟啃食实验表明,啃食干扰下,根茎型植物羊草的节间距变化不明显;丛生型植物大针茅的分蘖数随着啃食强度的增加而显著降低,这些构件变化与野外自然放牧梯度上的研究结果正好相反;匍匐型植物冷蒿的枝条变短、不定根数量增加,这些耐牧特征与野外自然放牧梯度上观测到的植物耐牧机制是一致的。
     (4)模拟放牧干扰下,不同生活型草原植物的再生速度表现出不同的特点。根茎型植物的再生速度均随着模拟放牧强度的增加而增加。在同一干扰强度下,生长盛期羊草的再生速度低于生长初期;丛生型植物大针茅的再生速度随着干扰强度的增加而显著的增高,生长初期的再生速度比生长盛期高;匍匐型植物冷蒿的再生速度随着干扰强度的增加而降低,放牧对冷蒿再生生长的抑制作用在生长盛期比生长初期明显。
     (5)群落演替(退化或恢复)过程中,不同生活型植物的替代规律明显。
     在群落退化过程中,地面芽植物生物量随放牧强度的加剧呈波动下降趋势,在群落中的比例却随着放牧强度的增加而上升,在中牧、重牧阶段均高于其它生活型植物。随着放牧强度的增大,地下芽植物的密度和生物量显著下降,在群落中的比例逐渐下降;地上芽植物密度和生物量却随着强度的加剧而极显著的升高,随之在群落中的作用和地位也随着干扰强度的增加而提高。显然,地下芽植物羊草在群落中的作用随着放牧强度的增加而明显的减弱,在重牧干扰下被地上芽植物替代。因此说,群落的变化主要反映在不同生活型植物种群在群落中作用大小的消长上。
     在群落恢复过程中,地下芽植物密度和生物量逐年增加,在群落中的比例和作用逐年增强,地上芽植物密度和生物量逐年下降,在群落中的比例和作用随之降低,地下芽植物逐渐取代了地上芽植物。说明放牧空间梯度上的群落与恢复演替时间梯度上的群落有类似的变化规律,只是方向相逆。
     (6)不同生活型草原植物种群在群落退化演替中的补偿作用不同。根茎型植物羊草种群在放牧干扰下不具备超补偿能力,仅冰草在轻牧下表现为等补偿,因而,根茎型植物随着放牧强度的增加逐渐被其它种群替代。丛生型植物大针茅在轻牧和中牧干扰下出现超补偿生长,糙隐子草在中牧和重牧下出现超补偿生长。匍匐型植物冷蒿在不同强度干扰下均具有超补偿生长能力,并且随着放牧强度的增加超补偿生长能力增强。因此在重牧阶段,冷蒿种群取代根茎型植物羊草,成为建群种,羊草草原退化为冷蒿小禾草草原。
This dissertation studied on the growth of different life form steppe plants through the analysis of reactions of different life form steppe plants to environmental change, the analysis of growth plasticity and regeneration growth of modules of grass populations, and the analysis of displacement and compensation growth among different life form grass populations.
     (1) Reactions of different life form steppe plants to environmental change were researched in different spatial scales by dry weight per plant index. The results showed that, in large spatial scale, from large to small the rank of coefficient of variance (cv) of dry weight per plant of life form steppe was that stolon grass > rhizome grass> bunch grass> taproot grass, this proved that stolon grass and rhizome grass were more sensitive to environmental change; In middle spatial scale, the rank from large to small of cv of dry weight per plant of life form steppe was that rhizome grass> stolon grass > bunch grass> taproot grass, the reaction rule in middle spatial scale was similar with the reaction in large scale; In small spatial scale, the rank of cv of dry weight per plant of species was that Melilotoides ruthenica>Artemisia frigida>Stipa grandis>Agropyron michnoi> Cleistogenes squarrosa >Leymus chinensis, this also proved that stolon grass was more sensitive to environmental change than other types, but the reactions of rhizome grass and bunch grass in small spatial scale were some different with the reactions in middle scale and large scale, because the spatial heterogeneity in small spatial scale was not large enough to make the reaction rules of different life form steppe plants clearly.
     (2) There was a significant growth plasticity of modules of plant populations and biomass under natural grazing gradients. Aboveground weight, underground weight, and biomass of Leymus chinensis, as one rhizome grass, significantly decreased with grazing intensity increased. Biomass of Agropyron michnoi increased with grazing intensity increased, but not significant. Aboveground weight, underground weight, and biomass of Stipa grandis, one bunch grass, decreased obviously with grazing intensity increased, but tiller number increased with grazing intensity increased. With grazing intensity increased, Artemisia frigida, one stolon grass, its shoots density and adventitious roots number increased, but dry weight per shoots and shoots length decreased. This proved that there was a complemental relationship between shoots density and shoots weight.
     (3) Under different interferential measures, plasticity of modules and biomass variance of different life form steppe plants were similar, but in some aspects, there were some difference.
     In field artificial grazing measures, the growth was single peak type with grazing intensity, low grazing intensity could improve the growth of rhizome grass, and plant height reduced if artificial grazing intensity increased more. But for bunch grass Stipa grandis, stolon grass Artemisia frigida and taproot grass, the growth restrained by artificial grazing, plant height also decreased with grazing intensity increased.
     The results of artificial grazing experiment in pots showed that, rhizome internode length of rhizome grass Leymus chinensis did not change obviously. Bunch grass Stipa grandis's tiller number decreased with artificial grazing intensity increased. The rules of modules of artificial grazing experiment in pots was reverse with the rules in natural field grazing gradients. But for stolon grass Artemisia frigida, adventitious roots number increased and shoots length decreased with artificial grazing increased, this was same with the results from field grazing.
     (4) Growth speeds of regeneration of different life form steppe plants were not same in artificial grazing experiments. Growth speeds of regeneration of rhizome grass increased with artificial grazing intensity increased. Growth speed of regeneration of Leymus chinensis during initial stage was lower than speed during flourishing stage under same grazing intensity. Regeneration growth speed of bunch grass Stipa grandis significantly increased with grazing intensity increased, and growth speed of regeneration during initial stage was higher than speed during flourishing stage. Regeneration growth speed of stolon grass Artemisia frigida decreased with grazing intensity increased, and graze influenced Artemisia frigida's growth speed of regeneration during flourishing stage more than speed during initial stage.
     (5) The displacement among different life form steppe plants were obvious during community succession (degradation succession and restoration succession).
     During community degradation succession, hemicryptophytes biomass fluctuant decreased with grazing intensity increased, component percentage of hemicryptophytes in community increased with grazing increased, the percentage of hemicryptophytes was higher than other life form plants in moderate grazing intensity and heavy grazing intensity. Biomass and density of geophyte decreased obviously with grazing intensity increased, component percentage of geophyte decreased with grazing increased. However, biomass and density of chamaephyte increased very significantly with grazing intensity increased, chamaephyte play a more and more important role in community when grazing intensity increased. So, geophyte Leymus chinensis'?, role in community decreased obviously while grazing intensity increased, and displaced with chamaephyte species in heavy grazing intensity, community transformation was mainly reflected by the change of roles of different life form steppe plants in community.
     During community restoration succession, biomass and density of geophyte increased year by year, and play a more and more important role in community. On the contrary, biomass and density of chamaephyte decreased year by year, play a less and less important role in community, and chamaephyte was displaced by geophyte gradually. The evidences proved that community succession in grazing gradients was similar with that in restoration succession, but the direction was reverse.
     (6) There were different compensation growth of different life form steppe plants in community degradation succession. Rhizome grass Leymus chinensis population did not have the ability of over-compensatory growth under grazing influence, and the ability of compensatory growth of rhizome grass Agropyron michnoi was equal-compensation, so that rhizome grass were displaced by other populations with grazing intensity increased in degradation succession. There were over-compensation growth of bunch grass Stipa grandis under low and moderate grazing intensity, and there were over-compensation growth of Cleistogenes squarrosa under moderate and heavy grazing intensity. Stolon grass Artemisia frigida had the ability of over-compensatory growth under all grazing gradients, and the ability of over-compensatory growth increased with grazing intensity increased, so that Artemisia frigida displaced rhizome grass Leymus chinensis as constructive species in community, and Leymus chinensis steppe was degraded into Artemisia frigida short bunchgrasses steppe.
引文
[1]安尼瓦尔,张立运,买买提等.沙漠边缘三种主要天然植物再生性能的观察[J].干旱区研究,1995,12(4):44-48.
    [2]安渊,李博,杨持等.内蒙古大针茅草原草地生产力及其可持续利用研究Ⅲ——植物补偿性生长研究[J].内蒙古大学学报(自然科学版),2000,31(6):608-612.
    [3]安渊,李博,杨持等.内蒙古大针茅草原草地生产力及其可持续利用研究Ⅰ——放牧系统植物地上现存量动态研究[J].草业学报,200l,10(2):22-27.
    [4]安渊,李博,杨持等.植物补偿生长与草地可持续利用研究[J].中国草地,2001,23(6):1-5.
    [5]安渊.放牧干扰对大针茅草原生态系统的影响及其受损机理的研究.博士论文,内蒙古大学,1998.
    [6]巴雷,王德利.羊草草地主要植物邻体干扰条件下构件形态特性比较[J].东北师范大学学报(自然科学版),2003,35(1):110-116.
    [7]白永飞,陈佐忠.锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响[J].植物生态学报,2000,24(6):641-647.
    [8]白永飞.降水量季节分配对克氏针茅草原群落初级生产力的影响[J].植物生态学报,1999,23(2):155-160.
    [9]宝音陶格涛,李艳梅,杨持.不同牧压梯度下植物群落特性的比较[J].草业科学,2002,19(2):13-15.
    [10]宝音陶格涛,李艳梅等.牧压梯度下冷蒿有性繁殖器官变化特征的观察分析[J].内蒙古大学学报(自然科学版),2000,31(3):311-313.
    [11]宝音陶格涛,米娜,杨持.不同放牧时期绵羊啃食对冷蒿和羊草生长高度的影响[J].内蒙古大学学报(自然科学版),2004,35(3):312-316.
    [12]蔡永立,宋永昌.藤本植物生活型系统的修订及中国亚热带东部藤本植物的生活型分析[J].生态学报,2000(5):808-814.
    [13]常学礼,杨持.科尔沁沙地降水量波动对草场植被组成和初级生产力影响的研究[J].中国草地,2000,3:7-11,16.
    [14]陈宏伟,李江,孟梦等.云南热带山地三种阔叶人工林群落林下植物生活型谱比较[J].亚热带植物科学,2004,33(4):42-44.
    [15]陈劲松,董鸣,于丹.青藏高原东缘匍匐茎草本野草莓的分株种群特征及沿海拔梯度的变化[J].生态学报,2003,23(3):428-435.
    [16]陈世品.福建青冈林不同恢复阶段植物生活型特征的研究[J].江西农业大学学报,2003,25(2):222-225.
    [17]陈文年,吴宁,罗鹏.岷江上游祁连山圆柏群落结构研究[J].应用生态学报,2005,16(2):197-202.
    [18]陈晓远,高志红,罗远培.干湿变化条件下小麦的补偿效应研究[J].内蒙古农业大学学报,2001,22(2):62-66.
    [19]丁涛,杜凡,王娟等.澜沧江自然保护区中山湿性常绿阔叶林生活型特征研究[J].西南林学院学报,2006,26(2):19-23.
    [20]丁雪梅,王涌鑫,杨允菲.松嫩平原不同土壤基质条件下羊草种群年龄结构研究[J].草业科学, 2004,21(2):45-47.
    [21]丁雪梅,杨允菲.松嫩平原不同土壤基质条件下羊草种群的构件结构[J].草原与草坪(季刊),2003(3):29-32.
    [22]董鸣.资源异质性环境中的植物克隆生长:觅食行为[J].植物学报,1996,38(10):828-835.
    [23]董亚杰,王雪峰,翟树臣等.小兴安岭东北部植被组成的生活型及生活型谱分析[J].沈阳农业大学学报,1996,27(4):294-299.
    [24]范广芝,李海燕,杨允菲.割草场不同演替系列羊草和光稃茅香种群构件结构的研究[J].草业科学,2006,23(2):34-37.
    [25]冯图,黎云祥,杨子松等.不同生境下淫羊藿克隆构型和分株种群特征[J].生态科学,2005,24(4):298-303.
    [26]干友民.多年生黑麦草刈割后再生草碳水化合物及氮素的变化[J].草业学报,1999,8(4):65-70.
    [27]高贤明,陈灵芝.植物生活型分类系统的修订及中国暖温带森林植物生活型谱分析[J].植物学报,1998,40(6):553-559.
    [28]高英志,韩兴国等.放牧对草原土壤的影响[J].生态学报,2004,24(4):790-797.
    [29]关世英,齐沛钦,康师安等.不同牧压强度对草原土壤养分含量的影响初分析[M].草原生态系统研究,第五集,北京:科学出版社,1997:17-22.
    [30]郭柯,郑度,李渤生.喀喇昆仑山-昆仑山地区植物的生活型组成[J].植物生态学报,1998,22(1):51-59.
    [31]郭泉水,江洪,王兵等.中国主要森林群落植物生活型谱的数量分类及空间分布格局的研究[J].生态学报,1999,19(4):573-577.
    [32]韩国栋,李博,卫智军等.短花针茅草原放牧系统植物补偿生长的研究Ⅰ.植物净生长量[J].草地学报,1999,7(1):1-7.
    [33]韩国栋.荒漠草原放牧系统持续利用研究.博士论文,内蒙古大学,1998.
    [34]韩梅,杨利民,王少江.羊草群落植物生活型功能群多样性变化与环境因子关系的研究[J].吉林农业大学学报,2005,27(1):59-63,67.
    [35]韩忠明,韩梅,吴劲松等.不同生境下刺五加种群构件生物量结构与生长规律[J].应用生态学报,2006,17(7):1164-1168.
    [36]胡胜华,于吉涛,张建新等.鄱阳湖砂山地区风沙化过程中物种多样性的变化[J].中国沙漠,2006,26(5):729-733.
    [37]胡甜甜,康绍忠.植物抗旱性中的补偿效应及其在农业节水的应用[J].生态学报,2005,25(4):885-891.
    [38]贾树海等.牧压强度上土壤物理性质的变化[M].草原生态系统研究,第五集,北京:科学出版社,1997:12-16.
    [39]江洪.东灵山植物群落生活型谱的比较研究[J].植物学报,1994,36(11):884-894.
    [40]焦德志,丁雪梅,杨允菲.扎龙自然保护区不同生境条件下羊草种群构件的年龄结构[J].生态学杂志,2006,25(6):617-620.
    [41]郎林杰,杨持,格日乐图雅.遮光和去叶处理对羊草无性系分株间碳物质转移的影响[J].内蒙古大学学报(自然科学版),1997,28(3):430-434.
    [42]雷泞菲,苏智先,宋会兴等.缙云山常绿阔叶林不同演替阶段植物生活型谱比较研究[J].应用生态学报,2002,13(3):267-270.
    [43]黎云祥,刘玉成,钟章成.植物种群生态学中的构件理论[J]_生态学杂志,1995,14(6):35-41.
    [44]李博,杨持,林鹏.生态学[M].北京:高等教育出版社,2000.
    [45]李海燕,杨允菲.松嫩平原水淹恢复演替过程中羊草无性系种群构件的年龄结构[J].生态学报,2004,24(10):2171-2177.
    [46]李红,杨允菲,张成武.松嫩平原碱化草甸野大麦无性构件的定量分析[J].草业学报,2000,9(4):13-19.
    [47]李红,杨允菲.恢复措施对退化草地羊草种群有性生殖数量特征的影响[J].应用生态学报,2004,15(5):819-823.
    [48]李建东,杨允菲.松嫩平原贝加尔针茅草甸草原植物组成的结构分析[J].草地学报,2003,11(1):15-22.
    [49]李建东,杨允菲.松嫩平原贝羊草草甸草原植物的生态及分布区型结构分析[J].草业学报,2002,11(4):10-20.
    [50]李建东,杨允菲.松嫩平原盐生群落植物的组合结构[J].草业学报,2004,13(1):32-38.
    [51]李金花,李镇清,刘振国.不同刈牧强度对冷蒿生长与资源分配的影响[J].应用生态学报,2004,15(3):408-412.
    [52]李俊年.植物对食草动物采食的反应[J].草食家畜,2001,1:4-7.
    [53]李品荣,陈强,常恩福等.滇东南石漠化地区封山育林前后群落生态学特征比较[J].西北林学院学报,2006,21(5):7-10.
    [54]李品荣,曾觉民,毕波等.滇东南岩溶山地3种人工林群落林下植物群落学特征比较[J].热带亚热带植物学报,2006,14(4):287-293.
    [55]李世英,肖运峰.内蒙呼盟莫达木吉地区羊革草原放牧演替阶段的初步划分[J].植物生态学与地植物学丛刊,1964,3(2):200-217.
    [56]李文建.北方草地放牧生态系统持续利用模型研究。博士论文,内蒙古大学,1996.
    [57]李文友,赵凤霞,韩学勇.生活型研究概述[J].林业科技情报,2007,39(3):20-21,24.
    [58]李向林.植物对食草动物采食的补偿反应[J].国外畜牧学.草原与牧草,1997,78(3):9-13.
    [59]李永宏,汪诗平.草原植物的补偿性生长与草原放牧系统持续管理[A].典型草原草地畜牧业优化生产模式研究[C].北京:气象出版社,1998,(5):15-17.
    [60]李永宏,汪诗平.草原植物对家畜放牧的营养繁殖对策初探[M].草原生态系统研究,第五集,北京:科学出版社.1997,23-31.
    [61]李永宏,汪诗平.放牧对草原植物的影响[J].中国草地,1999,(3):11-19.
    [62]李永宏.草原生态系统持续管理原则:生物多样性与生产力的维持[A].李博.现代生态学讲座[C].北京:科学出版社,1995:79-82.
    [63]李永宏.放牧空间梯度上和恢复演替时间梯度上羊草草原的群落特征及其对应性[M].草原生态系统研究,第四集.北京:科学出版社,1992,1-6.
    [64]李永宏.放牧影响下羊草草原和大针茅草原植物多样性的变化[J].植物学报,1993,35(11):877-884.
    [65]李永宏.内蒙古草原草场放牧退化模式研究及退化监测专家系统刍议[J].植物生态学 报,1994,18(1):68-79.
    [66]李永宏.内蒙古锡林河流域羊草草原和大针茅草原在放牧影响下的分异和趋同[J].植物生态学与地植物学学报,1988,12(3):189-196.
    [67]李政海.人为干扰对草原的影响及其调控途径的研究.博士论文,内蒙古大学,1998.
    [68]林鹏.植物群落学[M].上海:上海科技出版社,1983.
    [69]林勇明,吴承祯,洪伟等.珍稀濒危植物长苞铁杉群落的植物生活型及叶特征分析[J].植物资源与环境学报,2004,13(4):35-38.
    [70]刘金平,张新全,游明鸿等.野生扁穗牛鞭草无性系构件组成及生物量结构变异性[J].生态学报,2006,26(11):3656-3660.
    [71]刘美玲,杨持.不同干扰强度对冷蒿再生生长的影响[J].内蒙古大学学报(自然科学版),2002,33(4):446-451.
    [72]刘佩勇,张庆灵,杨允菲.松嫩平原朝鲜碱茅无性系种群构件生物量结构及相关模型分析[J].应用生态学报,2004,15(4):543-548.
    [73]刘庆,黎云祥,周立华.青海湖北岸植被特征研究[J].东北师大学报自然科学版,1995,1:93-99.
    [74]刘庆,钟章成.无性系植物种群生态学研究进展及有关概念[J].生态学杂志,1995,14(3):40-45.
    [75]刘守江,苏智先,张憬霞等.陆地植物群落生活型研究进展[J].西华师范大学学报(自然科学版),2003,24(2):155-159.
    [76]刘守江,苏智先.九顶山东坡植物群落生活型谱聚类研究[J].绵阳师范学院学报,2006,25(5):62-65.
    [77]刘守江.九顶山西坡植物群落生活型谱聚类研究[J].宜春学院学报(自然科学),2006,28(2):4-6.
    [78]鲁彩艳,刘颖茹.不同年龄冷蒿种群再生生长速率的比较研究[J].中国草地,2001,23(2):76-78.
    [79]曲仲湘等.植物生态学[M].北京:高等教育出版社,1983.
    [80]任丽昀,袁志友,王洪义等.中国北部半干旱区乔木、灌木和草本3种不同生活型植物的氮素回收特征[J].西北植物学报,2005,25(3):497-502.
    [81]戎郁萍,韩建国,王培等.刈割强度对新麦草产草量和储藏碳水化合物及含氮化合物影响的研究[J].中国草地,2000,(2):28-34.
    [82]沈有信,刘文耀,李玉辉等.滇中喀斯特山地半湿润常绿阔叶林的群落生态学研究[J].广西植物,2005,25(4):321-326.
    [83]苏智先等.慈竹克隆种群能量动态研究[J].生态学报,1994,14(2):142-148.
    [84]汤清川,李军乔.干旱胁迫对蕨麻克隆构件的可塑性反应[J].中国农学通报,2005,21(11):205-207.
    [85]唐海萍,蒋高明.植物功能型及其生态学意义[J].应用生态学报,2000,11(3):461-464.
    [86]田迅,杨允菲.西辽河平原不同利用条件下羊草无性系种群结构的研究[J].应用生态学报,2003,14(3):465-466.
    [87]万五星,王德艺,蔡万波等.雾灵山亚高山草甸植物群落生活型谱分析[J].河北林果研究,2002,17(4):307-309.
    [88]汪诗平,陈佐忠,王艳芬等.内蒙古冷蒿草原适宜放牧率及可持续发展的研究[J].中国草地,1999,(4):67-75.
    [89]汪诗平,李永宏.内蒙古典型草原退化机理的研究[J].应用生态学报,1999,10(4):437-441.
    [90]汪诗平.草原植物的放牧抗性[J].应用生态学报,2004,15(3):517-522.
    [91]汪正祥,雷耘,Kazue Fujiwara等.亚热带山地亮叶水青冈林的群落分类及物种组成与更新[J].生物多样性,2006,14(1):29-40.
    [92]王伯荪.植物群落学[M].北京:高等教育出版社,1987:67-68.
    [93]王德利,吕新民,罗卫生.不同放牧密度对草原退化群落恢复演替的研究Ⅰ.退化草原的基本特性和恢复常规演替动力[J].植物生态学报,1996,20(5):449-460.
    [94]王德利.吉林西部草原牧草资源的生物多样性研究[J].东北师大学报自然科学版,1996,3:103-107.
    [95]王德利.植物与草食动物之间的协同适应及进化[J].生态学报,2004,24(11):2641-2648.
    [96]王国宏,周广胜.甘肃木本植物区系生活型和果实类型构成式样与水热因子的相关分析[J].植物研究,2001,21(3):448-455.
    [97]王静,宝音陶格涛.内蒙古羊草草原退化系列上群落生物量组成特征的研究[J].内蒙古大学学报(自然科学版),2005,36(3):155-160.
    [98]王静,杨持,王铁娟.冷蒿(Atemisiafrigida)种群在放牧干扰下构件的变化[J].生态学报,2006,26(3):960-965.
    [99]王仁忠,李建东.松嫩平原碱化羊草草地放牧空间演替规律的研究[J].应用生态学报,1995,6(3):277-281.
    [100]王仁忠,祖元刚,聂绍荃.羊草种群生物量生殖分配的初步研究[J].应用生态学报,1999,10(5):553-555.
    [101]王仁忠.放牧影响下羊草种群生物量形成动态的研究[J].应用生态学报,1997,8(5):505-509.
    [102]王炜,梁存柱,刘钟龄等.内蒙古草原退化群落恢复演替的研究[J].干旱区资源与环境,1999,13(4):44-55.
    [103]王炜,梁存柱,刘钟龄等.羊草+大针茅草原群落退化演替机理的研究[J].植物生态学报,2000,24(4):468-472.
    [104]王炜,刘钟龄,郝敦元等.内蒙古典型草原退化群落恢复演替的研究Ⅰ.退化草原的基本特征与恢复演替规律[J].植物生态学报,1996,20(5):449-459.
    [105]王炜,刘钟龄,郝敦元等.内蒙古典型草原退化群落恢复演替的研究Ⅱ.恢复演替时间进程的分析[J].植物生态学报,1996,20(5):460-471.
    [106]王晓鹏,张晓虹,李孝良等.安徽皇甫山黄檀天然林群落特征研究[J].安徽技术师范学院学报,2005,19(6):32-34.
    [107]王昱生.羊草(leymus chinensis)种群无性系种群动态的初步研究[J].生态学报,1993,13(4):291-299.
    [108]王昱生等.羊草种群无性系生长格局的研究[J].植物生态学与地植物学学报,1992,16(3):234-242.
    [109]王云龙,许振柱,周广胜.水分胁迫对羊草光合产物分配及其气体交换特征的影响[J]植物生态学报,2004,28(6):803-809.
    [110]邢韶华,袁秀,林大影等.北京雾灵山自然保护区胡桃楸群落结构[J].浙江林学院学报,2006,23(3):290-296.
    [111]许志信,巴图朝鲁,卫智军等.牧草再生与储藏碳水化合物含量变化关系的研究.草业学报,1993,2(4):13-18.
    [112]闫巧玲,刘志民,李荣平等.科尔沁沙地75种植物结种量种子形态和植物生活型关系研究[J].草业学报,2005,14(4):21-28.
    [113]颜忠诚.生态型与生活型[J].生物学通报,2001,36(5):4-5.
    [114]杨持,宝音陶格涛,李良.冷蒿种群在不同放牧强度胁迫下构件的变化规律[J].生态学报,2001,3:405-408.
    [115]杨持,杨理.羊草无性系构件在不同环境下的可塑性变化[J].应用生态学报,1998,9(3):265-268.
    [116]杨持,叶波,张慧荣.不同生境条件下羊草构件及羊草种群无性系分化[J].内蒙古大学学报,1996,27(3):422-426.
    [117]杨理,杨持.光强对羊草生长及无性系分化的影响[J].应用生态学报,1997,8(1):83-87.
    [118]杨理,杨持.水分梯度对羊草生长及无性系分化的影响[J].内蒙古大学学报(自然科学版),1996,27(4):577-584.
    [119]杨理,杨持.温度对羊草生长及无性系分化的影响[J].内蒙古大学学报(自然科学版),1996,27(6):830-834.
    [120]杨利民,韩梅,李建东.松嫩平原主要草地群落放牧退化演替阶段的划分[J].草地学报,1996,4(4):281-287.
    [121]杨利民,李建东,杨允菲.草地群落放牧干扰梯度β多样性研究[J].应用生态学报,1999,10(4):442-446.
    [122]杨允菲,李建东.松嫩平原人工草地羊草和野大麦叶种群的趋同生长格局[J].草业学报,2003,12(5):38-43.
    [123]杨允菲,刘庚长,张宝田.羊草种群年龄结构及无性繁殖对策的分析[J].植物学报,1995,37(2):147-153.
    [124]杨允菲,张宝田,李建东.松嫩平原栽培条件下羊草无性系构件的结构[J].应用生态学报,2003,14(11):1847-1850.
    [125]杨允菲,张宝田.松嫩平原赖草无性系生长及其构件的年龄结构[J].应用生态学报,2004,15(11):2109-2112.
    [126]杨允菲,郑慧莹,李建东.不同生态条件下羊草种群分蘖植株年龄结构的比较研究[J].生态学报,1998,18(3):302-308.
    [127]杨允菲,郑慧莹,李建东.放牧干扰对根茎冰草无性系种群年龄结构的影响[J].植物生态学报,2001,25(1):71-75.
    [128]杨允菲,郑慧莹,李建东.根茎禾草无性系种群年龄结构的研究方法[J].东北师大学报自然科学版,1998.1:49-53.
    [129]于顺利,陈灵芝,马克平.东北地区蒙古栎群落生活型谱比较[J].林业科学,2000,36(3):118-121.
    [130]原保忠,王静,张荣等.春小麦对刈割伤害的补偿作用[J].生态学报,2000,20(2):343-348.
    [131]原保忠,王静,赵松岭.植物补偿作用机制探讨[J].生态学杂志,1998,17(5):45-49.
    [132]原保忠,王静,赵松岭.植物受动物采食后的补偿作用——影响补偿作用的因素[J].生态学杂志,1997,16(6):41-45.
    [133]臧润国,董大方,康正果.刺五加种群构件的数量统计:(Ⅱ)刺五加种群地下茎数量统计[J].吉林林学院学报,1995,11(2):65-68.
    [134]臧润国,董大方,李淑兰.刺五加种群构件的数量统计:(Ⅰ)刺五加种群地上部分构件的数量统计[J].吉林林学院学报,1995,11(1):6-10.
    [135]张彩琴,杨持.几种不同生活型草原植物生长动态的比较研究[J].内蒙古大学学报(自然科学版),2007,38(5):557-564.
    [136]张彩琴,杨持.内蒙古典型草原几种不同植物的生长动态比较[J].生态学杂志,2007,26(11):1712-1718.
    [137]张彩琴,杨持.内蒙古典型草原生长季内不同植物生长动态的模拟[J].生态学报,2007,27(9):3618-3629.
    [138]张荣,杜国祯.放牧草地群落的冗余与补偿[J].草业学报,1998,7(4):13-19.
    [139]张学勇,杨允菲,邵奎龙.辽东半岛不同生境结缕草无性系种群构件生物量结构[J].草业科学,2006,23(4):78-81.
    [140]昭和斯图,祁永.内蒙古短花针茅草原放牧退化序列的研究[J].中国草地,1987,11(1):29-35.
    [141]赵丽英,邓西平,山仑.水分亏缺下作物补偿效应类型及机制研究概述[J].应用生态学报,2004,15(3):523-526.
    [142]赵萌莉,云锦凤,珊丹等.不同放牧压力下冰草种群可塑性变化的初步研究[J].中国草地学报,2006,28(1):13-17.
    [143]郑慧莹,李建东.松嫩平原的草地植被及其利用保护[M].北京:科学出版社,1993:51-54.
    [144]中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985.
    [145]钟章成,曾波.植物种群生态研究进展[J].西南师范大学学报,2001,26(2):230-236.
    [146]周国英,陈桂琛,赵以莲等.青海湖地区芨芨草群落特征及其物种多样性研究[J].西北植物学报,2003,23(11):1956-1962.
    [147]周华坤,赵新全,周立等.不同放牧强度对鹅绒委陵菜克隆生长特征的影响[J].西北植物学报,2006,26(5):1021-1229.
    [148]周兴民,王启基,张堰青等.不同放牧强度下高寒草甸植被演替规律的数量分析[J].植物生态学和地植物学学报,1987,11(4):276-285.
    [149]朱学文,孙自友,叶永忠等.河南山地针叶林植物生活型谱的研究[J].河南科学,2000,18(3):274-276.
    [150]朱志红,王刚,赵松岭.不同放牧强度下高寒草甸无性系分株种群的地上生物量动态[J].中国草地,1994,3:10-14.
    [151]祝宁等.刺五加种群生态学的研究Ⅰ:刺五加的种群结构[J].应用生态学报,1993,4(2):113-119.
    [152]Aguiar,M.R,Paruelo,J.M,Sala,O.E,Lauenroth,William k.Ecosystem responses changes in plant functional type composition:An example fromt Patagonian steppe[J].Journal of Vegetation Science,1996(7):381-390.
    [153]Akin D.E.Histological and physical factors affecting digestibility of forages[J].Agronomy Journal,1989.81(1):17-25.
    [154]Bai,Y.,Han,X.,Wu,J.& Li,L.Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J].Nature,2004.431(7005),181-183.
    [155]Belsky A.J.Does herbivory benefit plants? A review of the evidence[J].The American Naturalist,1986,127(6):870-892.
    [156]Belsky A.J.Overcompensation by plants:herbivore optimization or red herring?[J].Evolutionary Ecology,1993,(7): 109-121.
    [157]Briske D. D. Development morphology and physiology of grasses. In: Heitschmidt R K,Stuth J W,(eds.)Grazing Management: An Ecological Perspective [M]. Portland, Oregon: Timber Press, 1991 :85-108.
    [158] Briske D D. Plant response to defoliation: morphological considerations and allocation priorities. In: Joss P. J., Lynch P. W., Williams 0. B. (eds.) Rangelands: A Resource Under Siege[C]. Sydney: Cambridge University Press, 1986:425-427.
    [159] Briske D.D. Strategies of plan survival in grazed systems: A functional interpretation. In: John Hodgson and A.W. Illius (eds.) The ecology and management of grazing systems[C].Center for Agriculture and Biosciences international Wallingford, UK, 1996:37-68.
    [160] Briske D.D. Developmental morphology and physiology of grasses. In: Heitschmidt RK and Strth JW,(eds.) Grazing Management: An Ecological Perspective[C]. Portland, Oregon: Timber Press. 1991,85-108.
    [161] Chapin,F.S., B.H.Walker, R.J.Hobbs,et al. Biotic control over the functioning of ecosystems[J]. Science, 1997,277:500-503.
    [162] Davis A. Tissue turnover in the sward. Sward management handbook[M].2nd,British Grassland Society. Reading,UK, 1988:183-216.
    [163] Lincoln Ellison. The influence of grazing on plant succession[J]. the Botanical Review,1960, 26(1):1-78.
    
    [164] Harper J. L. Population Biology of Plant[M]. Academic Press, London and New York, 1977.
    [165] Harper J.L. The concept of population in modular organisms. in R. M. May (eds.)Theoretical Ecology: Principles and Application[C].Sinauer Associates, Inc. Publishers. Sunderland. Massachusetts, 1981:53-77.
    [166] Ives,A.R., K.Gross, J.L. Klug. Stability and variability in competitive communities[J]. Science, 1999,286(5439):542-544.
    [167] L. Garibaldi, M. Semmartin, E. Chaneton. Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands[J]. Oecologia, 2007,151(4):650-662.
    [168] L. Kang, X. Han, Z. Zhang, O.J. Sun. Grassland ecosystems in China: review of current knowledge and research advancement[J].Philosophical Transactions of the Royal Society B: Biological Sciences, 2007.362(1482):997-1008.
    [169] Chapman D.,Lemaire G. Tissue flows in grazed plant communities. in J. Hodgson, A. W. Illius(eds.) The ecology and management of grazing systems[C]. Center for Agriculture and Biosciences international Wallingford, UK, 1996:1-36.
    [170] C. Matthew, G. Lemaire, N. R. Sackville Hamilton, A. Hernandez-Garay. A modified self-thinning equation to describe size/density relationship for defoliated swards[J]. Annuals of Botany, 1995, 76(6):597-588.
    [171] Menaughton S J,Chapin F S. Effects of phosphorus nutrition and defoliation on C4 graminoids from the Serengeti Plains [J]. Ecology, 1985,66(5): 167-169.
    [172] Menaughton S J. Grazing as an optimization proeess: grass — ungulate relationship in the Serengti[J]. American Naturalist, 1979,5:691-703.
    
    [173] Menaughton S J. On plants and herbivores[J].American Naturalist, 1986,128:765-770.
    [174] S. J. Mcnaughton. Serengeti Migratory Wildebeest: Facilitation of Energy Flow by Grazing [J].Science, 1976,191 (4222):92-94.
    [175] Milchunas D.G,Lauenroth W.K.Three-dimensional distribution of biomass in relation to grazing and topography in the shortgrass steppe[J].Oikos,1989,55(1):82-86.
    [176] Mueller-Dombois D,Ellenber G H.Aims and Methods of Vegetation[M]. New York: John Wiley& Sons, 1974:139-147.
    [177] Pitelka L. F et al. Physiology and integration of ramets in clonal plants. In.J. B. C. Jackson,L. W.Buss,R.E.Cook,(editors).Population Biology and Evolution of Clonal Organisms[C]. Yale University Press. New Haven.Connection,USA, 1985:399-436.
    [178] Raunkiaer C. The life forms of Plants and Statistical Plant Geography [M]. New York: Oxford University Press, 1932:2-104.
    [179] Rosenthal JP, Kotanen PM. Terrestrial plant tolerance to herbivory[J]. Trends in Ecology & Evolution, 1994,9:145-148.
    [180] Schmid B. et al. Clonal integration and population structure in perennials: effects of severing rhizome connections[J]. EcoLogy, 1987,68(6):2016-2022.
    [181] Schnid, B. Clonal growth in grassland perennials II. Growth forms and fine scale colonizing ability[J],Journal of Ecology, 1985,73:808-818.
    [182] Slade A J,Hutchings M J.Clonal integration and plasticity in foraging behavior in Glechoma hederacea[J]. Journal of Ecology,1987,75:1023-1036.
    [183] Tilman,D., J.Knops, D.Wedin,et al. The influence of functional diversity and composition on ecosystem processes[J]. Science, 1997,277:1300-1302.
    [184] Trlica M.J,L.R. Rittenhouse. Grazing and plant performance[J]. Ecological applications, 1993,3(1):21-23.
    [185] Walter H. Vegetation of the Earth and Ecological Systems of the Geo-biosphere [M]. (2nd ed.)New York:SpringerVerlag,1979:166-169.
    [186] White J. The plant as a Metapopulation[J]. Annual Review of Ecology and Systematics, 1979,10:109-115.
    
    [187] Whittaker R H. Communities and Ecosystems [M]. New York: Macmillan Company, 1970:6-17.
    [188] Wilson J B.Guilds. Functional types and ecological groups[J].Oikos, 1999,86:507-522.
    [189] Woodward F I,Cramer W. Plant functional types and climate changes: Introduction[J].Journal of Vegetation Science, 1997:306-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700