用户名: 密码: 验证码:
退化红壤植被恢复对土壤节肢动物群落的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤动物是森林生态系统的重要组成部分,在系统养分循环、能量流动中具有重要的地位。土壤动物群落与植物群落间存在动态的相互影响,从生态系统的角度来看,地上植物群落的变化必然会对其中的土壤动物群落产生影响。土壤动物通过对凋落物的分解、直接取食植物根系以及对土壤的耕耘作用,使土壤理化性质发生改变,对地上植物群落产生直接或间接的作用,从而影响其结构、功能和恢复动态。关于土壤动物群落与植物群落之间相互作用的研究,目前已经成为国际上土壤动物研究领域的热点之一,国内鲜有报道。
     论文选择退化红壤地区4种主要的植被恢复类型,即旱生性草坡、稀疏针叶林、针叶林、针阔混交林,另设裸地和顶级的常绿阔叶林2种类型作为研究的对照。于2005年秋至2006年夏,对这6个样地中的土壤节肢动物群落进行了详细的四季调查,包括大型和中小型节肢动物。大型节肢动物按凋落物层,0-10cm土层,10-20cm土层;中小型节肢动物按凋落物层,0-5cm土层,5-10cm土层进行取样。同时,对各类型的植被群落和土壤养分进行调查和分析。在全面了解植被恢复对土壤节肢动物的影响的基础上,分析土壤大型土壤节肢动物的种类分布与植被群落的关系,以及中小型节肢动物(螨类和弹尾虫)与土壤养分之间的关系。这有助于深入地认识植被恢复对土壤生物多样性的影响,对于进一步探讨土壤退化的内部机制具有重要的理论意义。主要研究结果如下:
     1.该地的土壤节肢动物种类丰富,其中大型土壤节肢动物21目107科;螨类和弹尾虫构成该地中小型节肢动物的主体,二者共计60科,A/c值高达7.6。大型节肢动物的优势类群为路舍蚁属,占总数的10.24%;常见类群金龟甲科幼虫(Scarabaeidaelarvae),食虫虻科幼虫(Asilidae larvae)、蚁属(Formica)等20类,二者共占大型动物总数的73.85%。中小型节肢动物中,土壤螨类计4亚目53科,前气门亚目17科,中气门亚目8科,甲螨亚目27科,粉螨亚目1科;弹尾虫计2亚目7科23属。螨类的优势类群有甲螨亚目的矮汉甲螨(Nanhermanniidae)和单翼甲螨科(Haplozetidae);常见类群包括囊螨科(Ascidae)、长须螨科(stigmaeidae)、跗线螨科(Tarsonemidae)、珠足甲螨科(Belbidae)、真卷甲螨科(Archoplophoridae)、菌甲螨科(Scheloribatidae)等16类;其余35类均为稀有类群。弹尾目中的优势类群包括优势类群为符跳属(Folsomia)、类符跳属(Folsomina)、小圆跳属(Sminthurinus)、棘跳属(Onychiurus);常见类群包括长跳属(Entomobrya)、土跳属(Tullbergia)、裔符跳属(Folsomides)等3类;其余16类为稀有类群。
     2.土壤节肢动物在空间上存在明显的成层现象;在时间上,节肢动物四季的类群数、个体数量、优势类群和多样性都发生明显的变化。在空间分布上,无论类群数还是个体数,均是凋落物层最高,0-10 cm层次之,10-20cm层最低。在时间上,就类群数而言,夏季的类群数最高,达到112类,其次为春季,有92类,秋季与冬季的类群数相同,均为82类。就个体数而言,夏季的个体数量也最多,占全年总数的33.42%;其次是冬季,占全年总数的25.45%;而秋季的个体数量最少,仅占全年总数的17.42%。优势类群也随着季节发生改变,春季的优势类群有路舍蚁属和举腹蚁属,夏季的优势类群仅有路舍蚁属,秋季的优势类群包括路舍蚁属和近扭尉属,到了冬季,蚁属和华扭尉属成了优势类群。密度-类群DG指数综合了各方面的因素,反映出土壤大型节肢动物群落多样性的四季变化:夏季>春季>秋季>冬季。土壤小型节肢动物(螨类、弹尾虫)群落多样性的四季变化均为:夏季<春季<秋季<冬季。
     3.植被恢复对土壤大型节肢动物的组成产生影响,各植被类型的优势类群存在差异。在较高级的分类等级目上看,除了膜翅目是所有类型共有的优势类群,各类型还有自己的优势类群。从低级的科属分类等级上看,不同植被类型的优势类群各不相同。
     4.植被的恢复对土壤大型节肢动物群落产生影响。顶级常绿阔叶林群落中土壤动物的类群数和个体数均最高,针阔混交林、旱生性草坡、稀疏针叶林的类群数和个体数相近,针叶林的个体数和类群数均显著地低于这些林分,裸地最低。密度-类群DG指数综合考虑了诸多因素,得到不同恢复类型土壤节肢动物群落多样性的变化为:常绿阔叶林>针阔混交林>稀疏针叶林>旱生性草坡>针叶林>裸地。
     5.植被恢复不同类型的土壤大型节肢动物群落可作如下聚类:裸地、常绿阔叶林群落各为一类、其它4个类型聚为一类。聚类分析的结果表明:裸地中的土壤大型节肢动物群落与林地间存在着本质的区别,常绿阔叶林群落中的土壤动物可以认为是该地的顶级群落。而从灌草丛向常绿阔叶林恢复的过程中,土壤节肢动物群落并没产生显著的变化。
     6.植被恢复对土壤螨类的密度、类群数、多样性都有显著影响;季节变化对土壤螨类的密度的影响达到显著性水平,但对类群数、多样性的影响未达到显著性水平。应用MGP方法对甲螨群落进行分析,在MGP分析Ⅰ中,各类型的甲螨群落均属于M型;MGP分析Ⅱ中,裸地群落属于MP型,旱生性草坡群落属P型,稀疏针叶林群落、针叶林群落、针阔混交林群落均属于M型,而顶级的常绿阔叶林群落的甲螨群落属于O型。应用MⅠ指数对中气门螨类群落进行分析,表明,各类型的MⅠ指数无明显的变化。应用DCA分析对土壤螨类群落进行排序,将6类型分为3类:裸地、常绿阔叶林群落各为一类,其它4类型归为一大类,显示了土壤螨类群落对植被恢复的响应。
     7.应用个体密度、类群数及多样性指数等指标,研究植被类型对弹尾虫群落特征的影响。结果表明,各项指标以常绿阔叶林为最高,裸地处于最低水平,基本没有弹尾虫的存在。旱生型草坡、稀疏针叶林、针叶林和针阔混交林等4种植被恢复类型的土壤弹尾虫群落得到了一定的恢复,但各类型之间土壤弹尾虫群落没有明显差异。Bray-Curtis指数显示侵蚀裸地与顶级常绿阔叶林的差异最大(0.99),各植被恢复类型与顶级常绿阔叶林的差异也较明显,但各恢复类型间弹尾虫群落间差异较小。
     8.应用CCA分析大型节肢动物种类、样地分布与植被群落关系,结果表明,乔木多样性是影响土壤大型动物群落结构和种类组成的最重要的因子,草本优势度也是影响动物种类的重要因子。CCA排序图很好地揭示了土壤动物种类分布对植物群落的适应,狂蚁属、窒蟷科、大蚊科幼虫、大尉属等顶级常绿阔叶林的常见类群,它们分布的环境具有灌木多样性、均匀度高,乔木丰富度高,草本植物的种类、多样性低的特点。近扭尉属、蚁属、幺蚣科等旱生性草坡的常见种类,它们分布的环境具有草本植物盖度高,灌木种类稀少的特点。复翅蠊科、多刺蚁属等是针叶林、针阔混交林的常见类群,它们分布的环境的特征是草本植物的种类、多样性高,灌木种类丰富,但乔木种类单一。
     9.在退化红壤恢复的各类型,土壤的小型节肢动物组成发生改变,同时对采集的土壤样品性质进行分析。以4类主要中小型动物与主要的土壤性质的9项指标为研究对象,采用典范相关分析,研究影响土壤小型动物的主要因子。结果表明,蔗糖酶、全氮、含水量、有机质的载荷量较高,4类土壤动物中弹尾纲、前气门亚目载荷量较高。在二者作为整体的组成中,蔗糖酶、全氮、含水量对弹尾纲、前气门亚目影响较大,而有机质和全氮对甲螨亚目和中气门亚目影响较大,其它土壤因子与小动物之间的相关性较弱。土壤动物类群组的变化被土壤性质第Ⅰ变量和第Ⅱ变量解释的比例为13.75%和32.71%,仍有53.54%以上变化不能得到解释。
Soil arthropods are important components of forest ecosystems,and they play a particularly significant role in the process of nutrient cycling and energy flowing.From the view of ecosystem,it is the fact that the changes of plant affect the soil arthropods.Soil arthropods alter the availability of nutrients for plant as well as structure and function of plant directly or indirectly,by their effect on the process of decomposition,and their moving ability.The interactions between soil fauna and plant has been one of the hottest topics in soil faunal ecology abroad,however,few has been mentioned in China.
     Soil arthropods was studied quarterly in degraded red soil,including 5 restored plantatins, i.e.a bare land(Ⅰ),a xeric mesophilous herbosa(Ⅱ),a sparse coniferous woodland(Ⅲ),a coniferous woodland(Ⅳ),a coniferous-broadleaf mixed woodland(Ⅴ) and an evergreen broadleaf forest(Ⅵ)(ⅠandⅥwere used as CK).Soil fauna,including macroarthropods and microarthropods was sampled in the above vegetations from the autumn of 2005 to the summer of 2006.Soil macroarthropods were taken in the litter,0-10cm and 10-20cm,while, soil microarthropods were taken in the litter,0-5cm and 5-10cm.In the meantime,nutrients contents in the soil and species diversity of vegetation at different restored plantations were studied too.Based on a comprehensive knowledge of the soil fauna in the degraded red soil, the effects of vegetation restored on the soil fauna were analyzed.And the relevance between plant and soil macroarthropods as well as the relevance between soil property and soil microarthropods was also studied.It will contribute to,a deep understanding of the effects of vegetation restoration on soil biodiversity and it is theoretically of great significance to further exploration of internal dynamics of soil degradation.The main findings are as follows:
     1.Soil macroarthropods in the degraded red soil were abundant,a total of 107 families was observed,falling into 21 orders.The dominant group was Tetramorium,accounting for 10.24%of the total;the common groups were Scarabaeidae larvae,Asilidae larvae and Formica and others,altogether making up 63.61%of the total.The main groups of microarthropods were Acarina and Collembolan,A/C value was as high as 7.6.A total of 53 families of Acarina was observed,fairing into 4 suborders(17 Prostigmata,8 Mesostigmata,27 Oribatida and 1 Astigmata),dominant families were Nanhermanniidae and Haplozetidae;common families were Ascidae,Stigmaeidae,Tarsonemidae and others.A total of 23 genus of collembolan was observed,falling into 2 suborder and 7 families,respectively,dominant genus were Folsomia,Folsomina,Sminthurinus, Onychiurus;common genus were Entomobrya,Tullbergia,Folsomides.
     2.Both the numbers of groups and individuals in the litter were much richer than in 0-10cm and 10-20cm.both the number of soil macroarthropods and individuals varied widely in four seasons.The number of soil macroarthropods was highest in summer (112),the second highest in spring(92) and lowest in autumn and winter(82). Individuals was highest in summer,accounting for 33.42%of the annual total,lowest in autumn,accounting for 17.42%of the annual total The dominant groups changed along with seasons.Tetramorium and Crematogaster were dominant groups in spring, Tetramorium was the only dominant group in summer.By density-groups index(DG), the seasonal fluctuations of diversity of soil macroarthropods can be represented as: summer>spring>autumn>winter,however,the seasonal fluctuations of diversity of soil microarthropods can be represented as:summer<spring<autumn<winter.
     3.With the restoration of vegetations,both the number of groups and individuals have increased,which tended to fluctuate in the different restored vegetations.In the hierarchy of order,the dominant groups changed in the different vegetations,excepting for Hymenoptera,which was dominant group in all of these vegetations.However,in the hierarchy of family or genus,dominant groups in different vegetations were different.
     4.Both the number of groups and individuals were highest inⅥ,they were second highest, inⅡ,ⅢandⅤ,and they were lowest inⅠ.By density-groups index(DG),the diversity of soil macroarthropods in different restored vegetations can be represented as. follows:Ⅵ>Ⅴ>Ⅲ>Ⅱ>Ⅳ>Ⅰ.
     5.Based on Jaccard index and Bray-Curtis index,Soil macroarthropods in different restored vegetations can be clustered as follows:ⅠandⅥwas isolated respectively,all others were classed into one group,which showed the response of soil macroarthropods to these different restored plantations in degraded red soil.The result showed that the soil macroarthropods in the bare land was essentially distinct from those in the forested land,and the soil macroarthropods in the natural forest markedly different from those in the other forested land.In the 4 different restored plantations(Ⅴ,Ⅲ,ⅡandⅣ),there were no remarkable changes in the soil macroarthropod communities.
     6.The characteristics of soil mite community structure was analyzed by using individual density,number of taxon,diversity,DG index,abundance,and evenness as well as MGP analysis and MI index.The highest density was observed inⅥandⅢ,the lowest density was observed inⅠandⅣ.The same pattern was observed by using other indices.MGPⅠanalysis indicated the soil oribatida communities of all these ecosystems match the M Pattern,however,MGPⅡanalysis identified different patterns for them,ie,MP pattern forⅠ,P pattern forⅡ,O pattern forⅥ,M pattern for others. No difference was observed by MI index among these different restored plantations. These 6 communities were classed into 3 groups by using DCA analysis,ie,ⅠandⅥwas isolated respectively,all others were classed into one group,which showed the response of soil mite to these different restored plantations in degraded red soil.
     7.The characteristics of soil collembolan community were analyzed by using individual density,number of taxon,diversity,abundance as well as evenness index.The lowest species richness was found in the bare land and highest was found in the evergreen broadleaved forest,difference amongⅡ,Ⅲ,Ⅳ,Ⅴwas not significant.The same pattern was observed by using other indices.The Bray-Curtis between the 5 restored plantations and the evergreen broadleaf forest were high,reaching its maximum(0.99) whenⅠandⅥwere compared.This survey indicated that planting is beneficial to restoration of collembolan community in degraded red soil,although these degraded ecosystems were still in the early stages of the restoration.
     8.Soil macroarthropods and plant diversity were studied under different restored plantations in degraded red soil,and CCA was used to explore the distributional relationship between soil macroarthropods and plant diversity.The genus(or sites)-enviroument biplots of CCA were automatically mapped using CANOCO 4.5, and the relationships between the distribution of the species and communities with the plant diversity were clearly revealed on these biplots.The results also showed that shannon diversity of tree was the most important factor influencing the distribution of soil macroarthropods,Simpson index of herbage was major factor affecting soil macroarthropods.Common genus of evergreen broadleaf forest such as Paratrechina, Macrotermes,closely linked to high shannon diversity of herbage and high richness of tree.Common genus of xere-mesophilous herbosa such as Pericapritermes, Formica,closely linked to low Shannon diversity of shrubbery and high cover of herbage.Ubiquitous genus such as Polyrhachis,Blattella Caudel,closely linked to low Shannon diversity of tree and high Shannon diversity of herbage.CCA can be a useful tool to understand the distribution of soil macroarthropods in degraded red soil.
     9.The relationship between soil microarthropods and soil properties was analysed by canonical correlation analysis based on 4 groups of soil microarthropos and 9 indexes of soil properties in the paper,which respectively include Prostigmata,Mesostigmata, Oribatida,Collembola and soil organic matter,pH,moisture content,total nitrogen, available kalium Urease,Sucrase,AP,Protease aimed to find major soil factor variables affecting soil microarthropods in different restored plantations in degraded red soil.The results indicated that CoUembola,Prostigmata were affected firstly by the contents of Sucrase,total nitrogen and moisture content in soil,and Mesostigmata,Oribatida were affected by the contents of organic matters and total nitrogen in soil,while other factors had not much relation with that pattern of distribution.It was found that 13.75%and 32.71%of the variance of soil microarthropods in degraded red soil was respectively explained by the first and the second canonical variable of soil factor variable,the rest was not interpreted yet.
引文
1赵士同。1996。从“DIVERSITAS”计划方案看生物多样性研究的发展趋势。生物多样性,4(3):125-129.
    2赵士同.1997.生物多样性科学内涵及其基本问题--介绍“DIVERSITAS”的实施计划。生物多样性5(1):1-4
    3章家恩.1999.土壤生物多样性的研究内容及持续利用展望.生物多样性,7(2):140-144
    4曹安堂,王庆忠。2003.土壤动物研究概述 潍坊教育学院学报,16(4):37-40
    6郭建英,吴岷。1998.土壤动物的采集方法.生物学通报,33(3):38-39。
    7由文辉.1994。我国土壤动物学研究概况与展望。土壤学进展,22(4):11-17
    8.张荣祖,杨明宪,陈鹏,张庭伟1980。长白山北坡森林生态系统土壤动物初步调查.森林生态系统研究(Ⅰ):133-152.
    9张荣祖,殷绥公,王世彰,等2000中温带长白山土壤动物的组成与生态分布.见尹文英等著中国土壤动物.北京:科学技术出版社p27-57。
    10陈鹏.1983.土壤动物的采集和调查方法.生态系杂志,2(3):46-51
    11陈鹏,田中真悟.1990长春净月潭地区土壤跳虫的生态分布。昆虫学报,33(2):219-226。
    12陈鹏,文在根,青木淳一等.1988.长春净月潭地区土壤螨类的调查研究.动物学报,1988,34(3):282-293
    13尹文英等。1992。中国亚热带土壤动物.北京:科学出版社
    14尹文英等。1998.中国土壤动物检索图鉴.北京:科学出版社
    15尹文英等。2000。中国土壤动物.北京:科学出版社
    16尹文英。2001.土壤动物学研究的回顾与展望.生物学通报,36(8):1-3。
    17仲伟彦,殷秀琴,陈鹏.1997.凉水自然保护区土壤动物群落结构特征。东北林业大学学报,25(3):80-85.
    18陈颖彪,殷秀琴.凉水地区不同林型土壤动物群落研究[J]。上海师范大学学报(自然科学版),2000,29(2):79-84.
    19.傅荣恕.尹文英.1999.伏牛山地区土壤动物群落的初步研究。动物学研究,20(5):396-398。
    20傅必谦,陈卫,董晓晖,等.2002。北京松山四种大型土壤动物群落组成和结构.生态学报,22(2):215-223
    21殷秀琴等2001东北森林土壤动物研究长春:东北师范大学出版社
    22殷秀琴.李建东1998羊草草原土壤动物群落多样性的研究应用生态学报,9(2):186-188
    23殷秀琴,仲伟彦,王海霞,等.小兴安岭森林落叶分解与土壤动物的作用。地理研究,2002,21(6):689-699.
    24殷秀琴,吴东辉,韩晓梅.2003小兴安岭森林土壤动物群落多样性的研究。地理科学,23(3):316-322.
    25刘永江,刘新民,郭砺,等1999内蒙古草原土壤动物生态学研究.中国草地,3:51-56
    26刘新民,刘永江,郭砺,等1999内蒙古典型草原大型土壤动物群落动态及其在放牧下的变化.草地学报,7(3):228-235
    27林英华,张夫道,杨学云,等2004农田土壤动物与土壤理化性质关系的研究中国农业科学,37(6):871-877
    28刘红,袁兴中2000中国东部山地森林土壤动物多样性.山地学报,18(3):221-225
    29柯欣,岳巧云,傅荣恕。等2002浦东滩涂中型土壤动物群落结构及土质酸碱度生物评价分析.动物学研究,23(2):129-135
    30柯欣,徐建明,谢荣栋,等2003浙江衢州中型土壤动物群落结构及其季节性变化.动物学研究,24(2):86-93
    31柯欣,赵立军,尹文英1999青冈林土壤动物群落结构在落叶分解过程中的演替变化。动物学研究,20(3):207-213
    32柯欣,赵立军,尹文英2001a青冈林土壤跳虫群落结构在落叶分解过程中的变化.生态学报,21(6):982-987
    33柯欣,赵立军,尹文英2001b三种乔木落叶分解过程中跳虫群落结构的演替.昆虫学报,44(2):221-226
    34柯欣,梁文举,宇万太,谢荣栋,翁朝联,杨毅明,尹文英,2004.下辽河平原不同土地利用方式下土壤微节肢动物群落结构研究.应用生态学报,15(4):600-604
    35王振中,张友梅1990湘江流域工业污染源对农田生态系统土壤动物群落影响的研究.应用生态学报,1(2):156-164
    36王振中,张友梅。衡山自然保护区森林土壤动物群落研究。地理学报,1989,44(2):205-213.
    37王振中,张友梅,刑协加.2002土壤环境变化对土壤动物群落影响的研究.土壤学报,39(6):892-897
    38陈国孝,宋大祥2000暖温带北京小龙门林区土壤动物的研究.生物多样性,8(1):88-95
    39李朝达,杨大荣,肖宁年等2000西双版纳热带雨林的土壤动物.见尹文英等著中国土壤动物北京:科学出版社.p100-105
    40邓晓保,邹寿青 付先惠等2003西双版纳热带雨林不同土地利用方式对土壤动物个体数量的影响。生态学报,23(1):130-138
    41邓晓保.热带胶茶人工群落中土壤动物季节变化的研究.生态学杂志,1994,13(5):31-3
    42胡圣豪2000青冈林落叶分解过程中甲螨群落的演替.见尹文英等著中国土壤动物北京:科学出版社.p191-198
    43胡圣豪等1992.天目山甲螨群落结构及其变动规律.见:尹文英等。中国亚热带土壤动物.北京:科学出版社,PP.30-39
    44候戚岭,张华,倪乃荫2001红松阔叶混交林乔木凋落物分解与土壤动物的关系.见殷秀琴等著.东北森林土壤动物研究。p316-325
    45杨效东2004.热带季节雨林凋落物分解过程中的中型土壤节肢动物的群落结构及动态.生物多样性,12(2):252-261
    46杨效东,沙丽清。2001西双版纳“龙山”片断热带雨林中小型土壤动物群落组成与多样性研究.应用生态学报,,12(2):261-265
    47杨效东,刘宏茂,沙丽清等。西双版纳2种热带雨林类型土壤节肢动物群落结构及分布特征.林业科学研究,2002,15(3):343-348.
    48杨效东,余宇平。1998西双版纳热带森林雨季土壤动物群落组成与分布特征.东北林业大学学报,26(6):65-70
    49郭继勋,祝延成1992羊草草地枯枝落叶与分解者之间能量流动的研究.植物生态学与地植物学学报,16(2):143-148
    50郭继勋,祝延成.羊草草原土壤动物特征的研究.应用生态学报,1995,6(4):359-362
    51李文芳,文赤夫,李国章.2005.土壤环境及其生物指标.生物学教学,30(4):7-9
    52梁文举,闻大中2001.土壤生物及其对土壤生态学发展的影响.应用生态学报,12(1):137-140.
    53梁文举,葛亭魁,段玉玺2001土壤健康及土壤动物生物指示的研究与应用.沈阳农业大学学报,32(1):70-72
    54唐本安,唐敏2000。利用土壤动物生态优化筛选最佳油茶林林间地生境研究。生态学报,20(6):1009-1014
    55唐本安,唐敏,陈春福.2006。海南东郊椰林生态系统土壤动物群落特征.生态学报,26(1):26-32
    56苏永春,张崇邦1995东北高寒地区麦田土壤动物数量的季节变化与环境因素关系的研究.生态习性杂志.14(3):10-14
    57苏永春,勾影波,郁达.2004.江苏常熟虞山土壤动物群落多样性研究。生物多样性,12(3):333-338.
    58李忠武,王振中,邢协加。1999.农药污染对土壤动物群落影响.环境科学研究,12(1):49-53
    59彭少麟等2000.恢复生态-退化生态系统生物多样性保护途经。生态学杂志,19(1):53-58.
    60谢锦升,杨玉盛,解明曙,2004。亚热带花岗岩侵蚀红壤的生态退化与恢复技术.水土保持研究,2004,11(3):154-156。
    61郑华,欧阳志云,易自力。2004.红壤侵蚀区恢复森林群落物种多样性对土壤生物学特性的影响.水土保持学报,18(4):137-141.
    62杨玉盛,何宗明,林光耀。1998植物生态学报,22(3):281-288
    63杨玉盛,何宗明,邱仁辉.1999生态学报,19(4):490-494
    64蔡守坤,杨开红.1992红壤生态站植被图(1/6000)概述。石华等编著 红壤生态系统研究第一集。科学出版社pp262.
    65钟觉民1990幼虫分类学.北京:农业出版社
    66钟觉民1985昆虫分类图谱.南京:江苏科学技术出版社
    67忻介六,杨庆爽,胡成业等。1985昆虫形态分类学。上海:复旦大学出版社.
    68蔡邦华1985昆虫分类学北京:科学出版社
    69胡金林1983中国农林蜘蛛天津:天津科学技术出版社
    70付荣恕,田家怡,张蓬军,程仕伟。2005鹤伴山国家森林公园土壤动物群落结构的研究.山东师范大学学报,20(4):76-79。
    71谢宝平,牛德奎.2000.赣南红壤侵蚀区植被群落的研究.江西农业大学学报,22(2):209-213
    72刘苑秋,罗良兴,杨国平,牛德奎,孙科辉.2004.退化红壤森林林下植被恢复及其环境影响分析江西农业大学学报,26(5):695-699
    73刘满强,胡锋,李辉信,陈小云,何圆球2002。退化红壤不同人工林恢复下土壤节肢动物群落特征生态学报,22(1):54-61
    74马克平.1994.生物多样性的测度方法.见:钱迎倩,马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社.141-165
    75佟富春,王庆礼,刘兴双,肖以华.2004长白山次生林演替过程中土壤动物群落的变化应用生态学报,15(9):1531-1535
    76徐国良,周国逸,莫江明,周小勇,彭闪江.2005鹤山丘陵退化生态系统植被恢复的土壤动物群落结构生态学报,25(7):1670-1677
    77徐国良,莫江明,周国逸。2003.土壤动物与N素循环及对N沉降的响应.生态学报,23(11):2453-2463.
    78徐国良,周国逸,莫江明。2006南亚热带退化植被重建中土壤动物群落变化。动物学研究,27(1):23-28
    79张雪萍.1995.土壤动物与环境质量关系探讨。哈尔滨师范大学自然科学学报,11(4):95-99
    80张雪萍,李春艳,殷秀琴,陈鹏.1999.不同使用方式林地的土壤动物与土壤营养元素的关系.应用与环境生物学报.5(1):26-31.
    81张雪萍,张毅,候戚岭2000小兴安岭针叶凋落物的分解与土壤动物的作用。地理科学,20(6):552-556
    82廖崇惠,林少明,李健雄.1995a不同类型人工林土壤动物群落结构与功能研究3个人工林凋落物的分解试验.生态学报,15(增刊A):197-203。
    83廖崇惠,林少明,李耀泉.1995b土壤动物生物量与森林凋落物分解的关系.生态学报,15(增刊A):156-164。
    84廖崇惠,李建雄1997.亚热带退化生态系统恢复过程中动物群落的演替与功能见余作岳等主编.热带亚热带退化生态系统的恢复生态学。广州。广东科技出版社,192-213.
    85廖崇惠,李建雄,杨悦屏2003海南尖峰岭热带林土壤动物群落--群落结构的季节变化及其气候因素。生态学报,23(1):139-147
    86廖崇惠1990小良人工阔叶混交林中白蚁对枯枝落叶的消耗作用.生态学报,10(2):173-176
    87廖崇惠,李建雄,黄海涛1997南亚热带森林土壤动物群落多样性研究.生态学报,17(5):549-555
    88廖崇惠.陈茂乾。1990热带人工林土壤动物群落的次生演替和发展过程研究。应用生态学报,1(1):53-59
    89.吴东辉,胡克。2003大型土壤动物在鞍山市大孤山铁矿废弃地生态环境恢复与重建中的指示作用.吉林大学学报,33(2):213-216.
    90吴东辉,张柏,陈鹏.2005.吉林省中西部平原区土壤螨类群落结构特征,动物学报.51(3):401-412。
    91吴东辉,张柏,陈鹏,2005.吉林省中西部平原区土壤弹尾虫群落结构的比较。昆虫学报,48(6):935-942。
    92吴东辉,张柏,陈鹏。2006.长春市不同土地利用生境土壤弹尾虫群落结构特征.生态学杂志,25(2):180-184。
    93吴东辉,张柏,卜照义,陈鹏.2006长春市不同土地利用生境土壤螨类群落结构特征.生态学报,26(1):16-25.
    94王以方,朱文,陈国定1991土壤中甲螨垂直分布和季节动态的初步调查.生态学杂志。10(6):58-61.
    95王宗英,路有成,王慧芙.1996九华山土壤螨类的生态分布.生态学报,16(1):58-64
    96王宗英,朱永恒,路有成.2001.九华山土壤跳虫的生态分布.生态学报,21(7):1142-1147.
    97谢桂林,傅荣恕,刘建丽,王昌儒,郑继军.2004.菏泽牡丹园土壤甲螨群落特点研究.生态学报,24(4):693-699。
    98刘云慧,宇振荣,刘云2004北京东北旺农田景观步甲群落结构的时空动态比较。应用生态学报,15(1):85-90
    99李博,杨持,林鹏2000。生态学.北京:高等教育出版社.pp.78.
    100邓振旭,谢桂林.2005.中国不同地带土壤甲螨的初步研究.荷泽学院学报,27(5):57-60.
    101石华,赵其国,王明珠。1995.退化红壤生态系统的改造及可持续发展.见:王明珠,张桃林,何圆球等.红壤生态系统研究,第三集,北京:中国农业科技出版社,pp 1-27。
    102赵立军.1992天目山森林土壤弹尾目昆虫的群落生态见:中国亚热带土壤动物 尹文英等.1992.科学出版社。pp.39-46.
    103王广力,王勇,韩立亮,张美文,李波.2005。洞庭湖区不同土地利用方式下的土壤动物群落结构。生态学报,25(10):2629-2636。
    104陈国孝,宋大祥.2000暖温带北京小龙门林区土壤动物的研究.生物多样性,8(1):88-95.
    105刘满强,胡锋,李辉信,陈晓云,何圆球.2002。退化红壤不同人王林恢复下土壤节肢动物群落特征生态学报,22(1):54-61。
    106陈建秀,麻智春,严海娟,张峰.2007。跳虫在土壤生态系统中的作用。生物多样性,15(2):154-161
    107赵平,彭少麟.2001。物、种的多样性及退化生态系统功能的恢复和维持研究。应用生态学报,12(1):132-136
    108吴彦,刘庆,乔永康,潘开文,赵长明,陈庆恒.2001.亚高山针叶林不同恢复类型群落物种多样性变化及其对土壤理化性质的影响.植物生态学报,25(6):648-655.
    109郑华,欧阳志云,易自力,赵同谦,王效科,苗鸿,彭廷柏.2004.红壤侵蚀区恢复森林群落物种多样性对土壤生物学特性的影响.水土保持学报,18(4):137-141
    110郑奕,潘晓玲.2004.塔河上游地区阿拉尔段天然退化生态系统植物群落物种多样性特征分析及恢复途径。新疆环境保护,26(2):18-23
    111郝占庆,郭水良,叶吉.2003.长白山北坡木本植物分布与环境关系的典范对应分析.植物生态学报,27(6):733-741
    112牛德奎,谢宝平,郭晓敏,范方礼。2005。赣南红壤侵蚀地植被概况及其物种多样性的变化.江西农业大学学报,27(2):176-180.
    113牛德奎1998.红壤侵蚀区植被重建与可持续发展.水土保持研究,5(2):90-94
    114谢宝平,牛德奎.2000华南严重侵蚀地植被恢复对土壤条件影响的研究。江西农业大学学报,22(1):135-139
    115包维楷,刘照光.2002。四川瓦屋山原生和次生常绿阔叶林的群落学特征。应用与环境生物学报,8(2):120-126
    116李清河,杨立文,周金星.2002.北京九龙山植物群落物种多样性特征对比分析.应用生态学报,13(9):1065-1068
    117江小蕾,张卫国,杨振宇,王刚。2003.不同干扰类型对高寒草甸群落结构和植物多样性的影响.西北植物学报,23(9):1479-1485
    118吴泽民,何云核,孙启祥.2001。安徽长江滩地农林复合系统草本植物群落特征研究.安徽农业大学学报,28(1):27-31
    119刘苑秋,罗良兴,杨国平,牛德奎,孙科辉.2004.退化红壤重建森林林下植被恢复及其环境影响分析江西农业大学学报,26(5):695-699
    120贺金生,陈伟烈.江明喜,金义兴,胡东,路鹏.1998.长江三峡地区退化生态系统植物群落物种多样性特征。生态学报,18(4):399-407
    121贺金生,陈伟烈.1995。我国亚热带地区的退化生态系统:类型、分布、结构特征及恢复途径。陈灵芝、陈伟烈主编.见:中国退化生态系统研究.北京:中国科学技术出版社.61-93.
    122贺金生,陈伟烈。1997。陆地植物群落物种多样性的梯度变化特征.生态学报.17(1):91-99.
    123易兰.由文辉,宋永昌。2005。天童常绿阔叶林五个演替阶段凋落物中的土壤动物群落.生态学报,25(3):466-473。
    124易兰2005.浙江天童受损常绿阔叶林的次生演替对土壤动物群落的影响.华东师范大学.博士论文
    125易兰,由文辉2006.天童植被演替过程中环境因子对土壤动物群落的影响.华东师范大学学 报(自然科学版),26:109-116.
    126易兰,由文辉.2006.浙江天童山栲树林群落结构及其季节变化.华东师范大学学报,26:112-120.
    127周红章,于晓东,罗天宏,何君舰,周海生,叶婵娟.2000.湖北神农架自然保护区昆虫的数量变化与环境关系的初步研究.生物多样性,8(3):262-270。
    128李强,杨莲芳,王备新.2006。西芍溪EPT昆虫群落分布与环境因子的典范对应分析.生态学报,26(11):3817-3825。
    129黄玉梅,张健,杨万勤.2006。巨桉人工林中小型土壤动物类群分布规律.应用生态学报,17(12):2327-2331.
    130郑长英,胡敦孝,李维炯.2001.农田土壤螨群落变化与环境因素关系的研究。中国生态农业学报,9(2):52-53.
    131张俊霞,刘贤谦。2005。太谷县枣园土壤动物与土壤养分的关系.山西农业大学学报,16(3):12-15.
    132刘艳,周国逸,褚国伟,刘菊秀,张倩媚.2005.鼎湖山针阔叶混交林土壤酸度与土壤养分的季节动态.生态环境,14(1):81-85
    133刘世忠,夏汉平,孔国辉,敖惠修,邓钊平,柯宏华,李丽华,谭鹏.2002。茂名北排油页岩废渣场的土壤与植被特性研究。生态科学,21(1):025-028
    134中国科学院南京土壤研究所.1978.土壤理化分析.上海:上海科学技术出版社
    135何跃军,钟章成,刘济明,刘锦春,金静,李青雨.2005.石灰岩退化生态系统不同恢复阶段土壤酶活性研究.应用生态学报,16(6):1077-1081
    136中国科学院林业土壤研究所等编。1998.中国土壤酶学研究文集.沈阳:辽宁科学技术出版社。pp16-29
    137唐守正.1986.多元统计分析方法.北京:中国林业出版社
    138糕惠璇,1998.SAS系统·SAS/STAT软件使用手册.北京:中国统计出版社
    139张玉兰,陈利军,张丽莉。2005。土壤质量的酶学指标研究.土壤通报,36(4):598-604
    140杨玉盛,何宗明,俞新妥.1997.杉木取代阔叶林后土壤生物学活性变化的研究.应用与环境生物学报,3(4):313-318
    141全国土壤普查办公室.1995.中国土壤。北京:中国农业出版社
    142邱军,傅荣恕.2004土壤温湿度对甲螨和跳虫数量的影响山东师范大学学报,19(4):72-74。
    143龙健,李娟,滕应,黄昌勇.2003.贵州高原喀斯特环境退化过程土壤质量的生物学特性研究水土保持学报,17(2):47-50
    144钱复生,王宗英。1995.水东枣园土壤动物与土壤环境的关系.应用生态学报,6(1):44-50。
    145 Addison J A,TrofymowJ A,Marshall V G.2003.Abundance,species diversity,and community structure of Collembolan in successional coastal temperate forests on Vancouver Island,Canada.Applied Soil Ecology,24:233-246
    146 Anderson J M.1975.The enigna of soil animals species diversity.In:P rogress in Soil Zoology.Edited by Jan Vanek,Academia,Prague,51-58.
    147 Anderson J M.1978.Inter-and intra-habitat relationships between woodland Cryptostigamata species diversity and diversity of soil and litter microhabitats.Oecologia,32:341-348
    148 Anderson J.M.and Ingram J.S.I.1993 Tropical Soil Biology and Fertility,A Handbook of Methods,CAB.International,Wallingford,UK
    149 Andre H.M.and Noti M.I.1993.Extracting sand microarthropods:a carbon tetrachloride flotation method. Eur. J. Soil. Biol. 29:91-96.
    150 Andre H.M, Ducarme X. and Lebrun Ph. 2002. Soil biodiversity: myth, reality or conning? Oikos. 96:3-24.
    151 Andrea R. 1998. A maturity index for predatory soil mites (Mesostigmata: Gamasina) as an indicator of environmental impacts of pollution on forest soils. App lied S oil Ecology, 9: 447-452.
    152 Andres P, Mateos E. 2005. Soil mesofaunal responses to post-mining restoration treatments. Appl. Soil. Ecol. 36:1-12.
    153 Askidis M D, Stamou G P. 1991. Spatial and temporal patterns of an oribatid mite community in an evergreen sclerophyllous formation (Hortatis, Greece). Pedobiologia, 35:53-63
    154 Bandick A K, Dick R P. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999,1:1471-1479
    155 Baker G H. Recognising and responding to the influences of agriculture and other land-use practice on soil fauna in Australia. Appl. Soil. Ecol. 1998,9: 303-310.
    156 Bazzaz F A. Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology.1975,56: 485-488
    157 Barajas Guzman G, Alvarez-Sanchez J . The relationships between litter fauna and rates of litter decomposition in a tropical rain forest .Applied Soil Ecology, 2003, 24: 91-100
    158 Bengsson J, Lundkvist H, Saetre P. Effects of organic matter removal on the soil food web: Forestry practices meet ecological theory. Appl. Soil. Ecol. 1998, 9:137-143.
    159 Bieri, M, Delucchi V, Stadtler M. 1986. Optimization of extraction conditions in the airconditioned Macfadyen funnel extractor for soil arthropods. Pedobiologia. 30:127-135.
    160 Brady J. 1969. Some physical gradients set up in Tullgren funnels during the extraction of mites from poultry litter. J. Appl. Ecol. 6: 391-402
    161 Brown V.K. and Gange A.C. 1989. Herbivory by soil-dwelling insects depresses plant species richness. Functional Ecology.3: 667-671
    162 Brown V.K. and Gange A.C. 1992. Secondary plant succession: how is it modified by insect herbivory? Vegetatio, 101:3-13.
    163 Bruyn de L.A.L. 1999. Ants as bioindicators of soil function in rural environments. Agric. Ecosyst. Environ. 74,425-441
    164.Calvert A.D. 1987. A flotation method using reduced air pressure for the extraction of sciarid fly larvae from organic soil. Pedobiologia. 30: 39-43.
    165 Clapperton M.J. Kanashiro D.A. and Pelletier V.M.B. 2002.Changes in abundance and diversity of microarthropods associated with Fescue Prairie grazing regimes. Pedobiologia 46,496-511.
    166 Crist T.O, Wiens J.A. 1996. The distribution of ant colonies in a semiarid landscape: implications for community and ecosystem processes. Oikos 76, 301-311.
    167 Decaensa T, Dutoitb T, Alardb D, Lavelle P. 1998. Factors influencing soil macrofaunal communities in post-pastoral successions of western France. Appl. Soil. Ecol. 9: 361-367.
    168 Dick R P. 1994 Soil enzyme activities as indicators of soil quality. In: Doran JW, Coleman DC, Bezdicek DF eds. Defining soil Quality for a Sustainable Environment. Soil Society of America Spetial Publication ( SSSA Spec. Publ). 35. SSSA and ASA, Madison. Wisconsin. 107 -124.
    169.Dunger W. and Voigt K. 2004. Assessment of biological soil quality in wooded reclaimed mine sites. Geoderma, 23:112-119.
    170 Ducarme X, AndreM H, Wauthy G. Are there real endogeic species in temperate forest mites? Pedobiologia, 2004, 48:139-147.
    171 Dunger W, Schulz H.J. 2004. Changes in collembolan species composition in Eastern German mine sites over fifty years of primary succession. Pedobiologia. 48: 503-517
    172 Dufrene M , Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345 - 366
    173 Eaton R.J., Barbercheck M., Buford M. 2004. Effects of organic matter removal, soil compaction, and vegetation control on Collembolan populations. Pedobiologia,48:121-128.
    174 Edwards C.A. and Fletcher K.E. 1971. A comparison of extraction methods for terrestrial arthropods In: Philipson, J.(ed.), Methods of study in quantitative soil ecology: population, production and energy flow. Blackwell Scientific. 150-185.
    175 Elise O , Abdoulaye M, Lijbert B. 2004. Soil macrofaunal-mediated organic resource disappearance in semiarid West Africa. Applied Soil Ecology, ,27: 259-267.
    176 Folgarait P.J. 1998. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers. Conserv. 7,1221-1244.
    177 Fenton G.R. 1947. The soil fauna with special reference to the ecosystem of forest. Soil. J. Anim. Ecol. 16: 76-93
    178 Gardi C , Tomaselli M, Parisi V , 2002. Soil quality indicators and biodiversity in northern Italian permanent grasslands. Eur. J. Soil. Biol. 38:103-110.
    179 Gilyarov M.S. 1947. Distribution of humus, root-system and soil invertebrates within the soil of the walnut forest of the ferghana mowitain range. Dokl Akad NaukSesr(N.S), 55:49-52.
    180 Grizelle G, Timothy R. 1986. Seastedt and Zugeily Donato earthworms, arthropods and plant litter decomposition in aspen ( Populus tremuloides ) and lodgepole pine ( Pinus contorta) forests in Colorado ,USA: The 7th International Symposium on Earthworm Ecology
    181 Gormsen D., Hedlund K., Wang H. 2005. Diversity of soil mite communities when managing plant communities on set-aside arable land. Appl. Soil. Ecol. 27: 68-74.
    182 Huish S , Leonard MA , Anderson J M. Wetting and drying effects on animal/ microbial mediated nitrogen mineralization and mineral element losses from deciduous forest litter and raw humus. Pedobiologia, 1985, 28:177-183
    183 Hart B. J. Fain A. 1987. Anew technique for isolation of mites exploiting the difference in density between ethanol and saturated NaCl: qualitative and quantitative studies. Acarologia. 28: 251-254.
    184 Humphrey J.W. Hawes C. Relationships between insect diversity and habitat characteristics in plantation forests. For. Ecol. Mana. 1999(113): 11-21.
    185 Jennifer L D., Rick J Z., John CM. Soil microarthropod community structure and dynamics in organic and conventionally managed apple orchards in Western Colorado, USA. Appl. Soil. Ecol. 2001,18: 83-96.
    186 Karin H. 2003. Soil nematode fauna of afforested mine sites : Genera distribution , trophic structure and functional guilds. Applied Soil Ecology, 22:113-126
    187 Kinnear A, Tongway D. 2004. Grazing impacts on soil mites of semi-arid chenopod shrublands in Western Australia. J. of Arid Environ. 56: 63-82.
    188 Klein B.C. 1989. Effects of forest fragmentation on dung and carrion beetle communities in central Amazonia. Ecology 70,1715-1725.
    189 Koehler H. 1999. Predatory mites (Gamasina, Mesostigmata). Agr. Ecosyst. Environ. 74: 395-410.
    190 Laakso J , Setala H. 1999. Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos, 87: 57-64
    191 Larsen T., Schjnning P., Axelsen J. 2004. The impact of soil compaction on euedaphic Collembola. Appl.Soil. Ecol. 26:273-281.
    192 Lavelle P. 1996. Faunal activities and soil process: Adaptive strategies that determine ecosystem function. In: Transaction of International Congress of Soil Science (Mexico) Vol 1:189-220.
    193 Lavelle P, Dangerfield M, Fragoso C, Eschenbrenner V, Lopez D, Pashanasi B, Brussard L. 1994. The relationships between soil macrofauna and tropical soil fertility. In: Noomer, P.L., Swift, M.J. (Eds.). The Management of Tropical Soil Biology and Fertility. Wiley-Sayce Publication
    194 Lavelle P. 1997. Faunal activities and soil process: adaptive strategies that determine ecosystem function. Advances in Ecological Research, 27: 93-132.
    195 Lawton J.H., Bignell D.E., Bloemer G.F., Eggleton P., Hodda M.E. 1996. Carbon flux and diversity of nematodes and termites in Cameroon forest soils. Biodivers. Conserv. 5, 261-273.
    196 Leigh R A, Stevenson J H. 1993. Rothamsted experimental station: 150 years of agricultural research.Biologist. 40:217-220.
    197 Linden D R, Hendrix P F, Coleman D C , et al. 1994. Faunal indicators of soil quality. In : Doran J W, Coleman D C , Bezdicek D F , et al. eds. Defining Soil Quality for a Sustainable Environment. Madison ,WI: Soil Science Society of America, Inc. 91-106
    198 Loucks O L. 1970. Evolution of diversity, efficiency, and community stability. Am.Zool. 10:17-25
    199 Macfadyen A. 1961. Improved funnel-type extractors for soil arthropods. J.Anim.Ecol. 30:171-184.
    200 Macfadyen A. 1962. Control of humidity of three funnel type extractors for soil arthropods. In: Murphy, P. (ed.), Progress in soil zoology. Butterworths, 158-168.
    201 Martin S, Roland B. 2005. Do invertebrate decomposers affect the disappearance rate of litter mixtures ? Soil Biology &Biochemistry, 37: 329-337
    202 Martin R, Jukes. 2002. Carabid beetle communites: associated with coniferous plantation in Britain: the influence of site, ground vegetation and stand structure. For. Ecol. Mana. 148: 271-286.
    203 Marshall V.G. 1972. Comparison of two methods of estimating efficiency of funnel extractors for microarthropods. Soil. Biol. Biochem. 4: 417-426.
    204. Maurizio G P. 1997. The role of earthworms for assessment of sustainability and as bioindicators. Ag ricu ltu re, Ecosystems and Environment, 74:137-155.
    205 Muller G. A. 1962. Centrifugal-flotation extraction technique and its comparison with two funnel extractors. In: Murphy, P. (ed.), Progress in soil zoology. Butterworths 207-211.
    206 Moore J.C. and Walter D.E. 1988. Arthropod regulation of micro- and meso-biota in below-ground detrital food webs. Ann. Rev. Entomol. 33: 419-439.
    207 Mikola J., Setala H. 1998. Productivity and trophic-level biomasses in a microbial-based soil food web. Oikos,82:158-168..
    208 McIntyre N.E, Rango J, Fagan W.F, Faeth S.H. 2001. Ground arthropod community structure in a heterogeneous urban environment. Land and Urban planning. 52: 257-274
    209 Mark D H, Sina A, Catherine M P.2003. Relative effects of macroinvertebrates and habitat on the chemistry of litter during decomposition. Pedobiologia, 47(2): 101-115
    210 Naeem S., Thompson L.J., Lawler S.P., Lawton J.H., Woodfin R.M. 1995. Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems. Phil. Trans. R. Soc. London B 347, 249-262
    211 Nassima S , Jean Franois P. 2003. Soil animal communities in holm oak forests : Influence of horizon , altitude and year. European Journal of Soil Biology, 39:197-207.
    212 Olof A, Thomas K, Riitta H. 2001. Projecting soil fauna influence on longterm soil carbon balances from faunal exclusion experiments. Applied Soil Ecology, 18:177-186
    213 Pearse A.S. 1946. Observations on the macrofauna of the Duke Forest. Ecol. Monogr. 16:127-160
    214 Persson T. 1989. Role of soil animals in C and N mineralisation. Plant Soil, 115:241-245
    215 Pielou E C. 1975. Ecological Diversity. New York: John Wiley. pl6-51.
    216 Pflug A, Wolters V. 2002. Collembola communities along a European transect. Eur. J. Soil. Biol. 38: 301-304.
    217 Peachey R E, Moldenke A, William R D. 2002. Effect of cover crops and tillage systemon symphylan (Symphlya: Scutigerella immaculata, Newport) and Pergamasus quisquiliarum Canestrini (Acari: Mesostigmata) populations, and other soil organisms in agricultural soils. Appl. Soil. Ecol., 21: 59-70.
    218 Ponge J F, Gillet S, Dubs F. 2003. Collembolan communities as bioindicators of land use intensification. Soil. Biol. Biochem. 35: 813-826
    219 Peng Shao-Lin and Wang Bo-Sun. 1995. Forest succession at Dinghushan, Guangdong, China. Chinese Journal of Botany, 7(1):75-80
    220 Randi A. Hansen, David C.1998. Coleman Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Appl. Soil. Ecol. 9:17-23.
    221 Rohan G C , Richard D B. 2001. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes. Soil Biology &Biochemistry, 33 :2073-2081
    222 Rodriguez, E. Javier, F. Anero, F. 2005. Soil arthropod abundance under conventional and no tillage in a Mediterranean climate. Soil. Tillage Research
    223 Ruf A, Beck L, Dreher P. 2003. A biological classification concept for the assessment of soil quality: "biological soil classification scheme" (BBSK). Agr. Ecosyst. Environ. 98: 263-271
    224 Ruf A. 1998. A maturity index for predatory soil mites (Mesostigmata: Gamasina) as an indicator of environmental impacts of pollution on forest soils. Appl. Soil. Ecol. 9:447-452.
    225 Schaefer M. 1993. Interspecific interactions in the soil community. Acta Zool. Fennica 196: 101-106.
    226 Silke V, Oliver F, Klemens E. 2004. Limitations of faunal effects on soil carbon flow: density dependence, biotic regulation and mutual inhibition. Soil Biology &Biochemistry, 36: 387-397
    227 Seastedt T R. 1984. The role of microarthropods in decomposition and mineralization processes. Ann. Rev. E ntomol. 29: 25-46.
    228 Setala H, Valin G, Marshall J.A. 1995 Influence of micro- and macro-habitat factors on collembola communities in Douglas-fir stumps during forest succession. Appl. Soil Ecol. (2):237-242.
    229 Siepel H, Maaskamp F. 1994. Mites of different feeding guilds affect decomposition of organic matter. Soil Biol. Biochem. 26,1389-1394.
    230 Swift M J, Andren O, Brussaard L, Briones M, Couteaux M M, Ekschmitt K, Kjoller A, Loiseau P, Smith P. 1998. Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies. Global Change Biology, 4:729-743
    231 Ter Braak C.J.F. 1986. Canonical Correspondence Analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67:1167-1179
    232 Thomas F, Folgarait P, Lavelle P, Rossi J.P. 2004. Soil macrofaunal communities along an abandoned rice field chronosequence in Northern Argentina. Appl. Soil Ecol. 27: 23-29
    233 Tilman D, ElHaddi A. 1992. Drought and biodiversity in grasslands. Oecologia, 89:257-264
    234 Ulrich I. 2000. Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests. Pedobiologia, 44(2): 105-118
    235 Vreeken-buijs M J, Hassink J, Brussaard L.1998. Relationships of soil microarthropod biomass with organic matter and pore size distribution in soils under different land use. Soil. Biol. Biochem. 30: 97-106.
    
    236 Valerie M.B. 1999. Oribatid mite biodiversity in agroecosystems: role for bioindication.Agr.Ecosyst. Environ. 74: 411-423.
    237 Vossbrinck C R, Coleman D C, Woodlley T A. 1979. Abiotic and biotic factors in litter decomposition in a semiarid grassland. Ecology, 60 :265-271
    238 Wardle D A, Bonner KL, Barker G M, et al. 1999. Plant removals in perennial grassland: vegetation dynamics , decomposers , soil biodiversity , and ecosystem properties. Ecological Monographs, 69: 535-568
    239 Walter D. E, Kethley J, Moore J. C. 1987. A heptane flotation method for recovering Microarthro-pods from semiarid soils, with comparison to the Merchant-Crossley high-gradient extraction method and estimates of microarthropod biomass. Pedobiologia. 30: 221-232.
    240 Wardle D.A., Bardgett R.D. and Klironomos J.N. 2004. Ecological Linkages Between Abovegro-und and Belowground Biota.Science, 304:1629-1633.
    241 Wardle D.A, Nicholson K S, Bonner K I, et al.1999. Effects of agricultural intensification on soil associated arthropod population dynamics, community structure, diversity and temporal variability over a seven-year period. Soil. Biol. Biochem. 31:1691-1706.
    242 Xin K, Karin W, Juliane F. 2005. Effects of soil mesofauna and fanning management on decomposition of clover litter: A microcosm experiment. Soil Biology &Biochemistry, 37(4): 731-738
    243 Xuluc-Tolosa F J , Vester H F M, Ramyrez-Marcial N. 2003. Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche , Mexico. Forest Ecology and Management, 174 :401-412
    244 Yeates G.W, Bongers T. 1999. Nematode diversity in agroecosystems. Agr. Ecosyst. Environ.74: 113-135.
    245 Yang W.Q, Wang KY, Song GY, et al. 2002. Preliminary study on biological characteristics of degraded soil ecosystems in dry hot valley of Jinsha River. Pedosphere, 12: 365-372
    246 Zlotin R I.1971. Invertebrate animals as a factor of the biological turnover. In : IV Colloquium Pedobilogiae , Dijon , 14/ 192IX21970 , Institut Nation de la Recherche Agronomique, Paris, France, 455-462

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700