用户名: 密码: 验证码:
基于线粒体全基因组信息剖分普通牛种母系结构及其ATP酶基因对泌乳性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畜禽品种资源的保护与开发利用首先建立在清楚了解其遗传结构的基础上。采用线粒体基因组全序列和大规模数据集研究家养动物的遗传结构,群体演化历史及起源进化关系是最近发展出来的全新技术手段和分析方法,能有效解决以前各研究的不足。线粒体DNA作为细胞质效应的内在遗传基础,研究其SNP位点与性状间的关联性可以为标记辅助选择提供重要依据。本文通过线粒体基因组全序列和大规模控制区序列数据集研究普通牛种的母系结构、群体历史学特征和地理区域分布模式,分析线粒体DNA ATPase 8和ATPase 6基因SNP位点与荷斯坦奶牛泌乳性状间的关联性,得到以下结果:
     1.基于线粒体基因组全序列对普通牛种母系结构进行剖分,除已经报道的T1、T2、T4和T5单倍型组外,在传统的T3单倍型组内剖分出2个新的单倍型组,分别由第16119和第16122位点突变而来,命名为T16119和T16122单倍型组。所有现代普通牛(B.taurus)以较低的遗传分歧度被聚为一大支,其中T16119和T16122单倍型组与T4单倍型组具有相对平等的系统发生学地位。结果表明,采用线粒体基因组全序列可以对普通牛种母系结构进行更深入详细地剖分。
     2.本研究所测定的5个四川通江黄牛线粒体基因组全序列能稳定地被聚在T1、T2、T3、T4和T16119单倍型组中,与根据控制区序列分析得到的结果一致。这是首次在线粒体基因组全序列水平上证实了非洲起源的T1单倍型组存在于中国黄牛群体中。
     3.T16119是仅次于T3的优势单倍型组,其遗传网络关系为星状结构,中性检验的Fs值为-25.9805(P<0.00001)。该单倍型组中约70%的个体来自中国地区,23%的个体来自东北亚地区,其最高频率出现在中国的西南地区,其次依次为黄河中上游地区、韩国地区和日本地区。结果表明,T16119单倍型组出现过群体扩张,可能发生在中国的西南地区,随后向北进一步扩散到东北亚地区。
     4.T16122单倍型组的遗传网络关系为星状结构,该单倍型组中81%的样本来自东北亚地区。中性检验的Fs值为-8.2383,P值为0.00500。结果表明,T16122单倍型组在东北亚地区发生过群体扩张。5个中国北方地区本地黄牛样本也出现在该单倍型组内,说明T16122单倍型组对中国北方地区的黄牛群体存在一定程度的影响。
     5.在T1单倍型组的遗传网络结构中,来自东亚地区与欧洲地区的样本分别被连接到只存在1个碱基差异的2个中心节点,表明起源于非洲地区的T1单倍型组为独立迁入到东亚地区和欧洲地区。
     6.T4单倍型组中97%的样本来自于中国和东北亚地区,分别出现37次和46次。结果表明,T4单倍型组不仅分布于东北亚地区,在中国地区也有广泛的分布,且出现的频率基本相当。
     7.在中国和东北亚地区的样本中检测到P和Q两种欧洲野牛单倍型类型,这说明欧洲野牛对现代家养普通牛的影响到达了除欧洲外的其它地区。
     8.不管采用何种地理区域分类标准,单独对普通牛和瘤牛(B.indicus)样本进行分析,约85~90%的遗传方差出现在品种内部,固定指数(F_(ST))在0.15左右。当把普通牛和瘤牛样本综合在一起分析时,品种内的遗传方差组分降到79%,F_(ST)为0.21。因此认为,中国现代家养黄牛在地理区域间表现出来的遗传差异主要是由于瘤牛对各地区的影响程度不同造成的,而普通牛种内部在地理区域间不存在显著的遗传差异。
     9.作为一个实例研究(Case study),在54个通江黄牛样本中,共检测到5种单倍型组(T1~T4,T16119)。因此推断,在样本含量足够大的情况下,可以在同一中国黄牛品种内检测到大部分的单倍型组;品种间在母系结构上的差异可能仅仅表现在各单倍型组以不同的频率出现,而不存在单倍型组特异性的品种。
     10.在线粒体基因组16338 bp中共检测到139个简约信息位点,其中11个分布在细胞色素b基因,变异位点数仅次于控制区,表明细胞色素b基因是线粒体DNA中的另一个高变区。
     11.在包括ATPase 8和ATPase 6两个基因的936 bp片段中共检测到18个多态位点,确定了6种单倍型(H1~H6)。在本研究所分析荷斯坦奶牛的4个泌乳性状中,不同单倍型对脂肪含量和体细胞数2个指标不存在显著影响(P>0.05),而蛋白含量和305天产奶量在不同单倍型间差异显著(P<0.05),其中单倍型H2具有最高的蛋白含量,单倍型H4具有最高的305天产奶量。结果表明,H2单倍型和H4单倍型可能是牛奶蛋白含量、305天产奶量的候选基因型,有待进一步验证。
To develop effective conservation and utilization proposal of genetic resources in farm animal,we must first understand the genetic structure clearly.One recently developed and useful analysis method to study the genetic structure,population expansion history,and phylogenetic relationship of domestic animals is refered to the mitochondrial genomes sequence variation.The michondrial DNA(mtDNA) is the genetic basis for cytoplasmic inheritance effect,and to study the correlation of SNPs of mtDNA with important economic traits is significiant to perform marker-assisted selection.In this study,we seuqneced the mtDNA genome entire sequence of Chinese indigenious cattles,and studied the matrilineal components,population expansion history,and phylogeographical pattern of Bos taurus combined with available data from GenBank.In addition,we studied the SNPs distribution in the mtDNA ATPase 8 and ATPase 6 genes and the correlation with milk production traits in Holstein.The results are followed:
     1.After dissecting the matrilineal components of Bos taurus based on mitochondrial genomes sequence variation,we detected two new haplogroups as well as four already reported T1,T2,T4,and T5 haplogrous.The two new haplogroups separated by 16119~(th) and 16122~(nd) mutations,respectively,were defined by T16119 and T16122.All modern Bos taurus were clustered together with low genetic divergence,and in which T16119 and T16122 haplogroups presented comparable phylogenetic location with T4 haplogroup.The results suggested that the complete mitochondrial genome sequence variation could be used to dissect systematically matrilineal components of Bos taurus.
     2.The five new complete mtDNA sequences of Tonjiang cattle from Southwest China were perfectly clustered into T1,T2,T3,T4,and T16119 haplogrous, respectively,which is consistent with former reports studied by mtDNA D-loop sequence variation.This is the first report to verify the African haplogroup(T1) exist in the Chinese indigenious cattle population based on the mitochondrial genome entire sequence.
     3.The occurrence frequency of T16119 haplogroup was only inferior to T3 haplogroup.The network profile of T16119 haplogroup was the star-like shape,and the Fs value of neutrality test was-25.98045(P<0.00001).In T16119 haplogroup, about 70%samples came from China and 23%from Northeast Asia.The highest frequency of T16119 haplogroup occurred in Southwest China,and followed by the middle and upstream region of the Yellow River,Korea region,and Japan region.The results suggested that T16119 haplogroup might have undergone population expansion in the past,which would occur in Southwest China.Subsequently,T16119 haplogroup spread north to Northeast Asia.
     4.The network profile of T16122 haplogroup was the star-like shape,in which more than 80%samples was from Northeast Asia.The Fs value of neutrality test was -8.2383(P=0.00500).The results suggested that T16122 haplogroup might have undergone population,and perhaps occurred in Northeast Asia.Five samples from North China region was also detected in T16122 haplogroup,which suggested that the influence of T16122 haplogroup presented in North China region.
     5.Although network profile of T1 haplogroup almost showed the star-like shape,all the samples could be clustered into two potential central nodes with one mutation distance,which were further occurred by East Asian and European samples, respectively.Then we proposed that T1 haplogroup was introduced into East Asia and Europe regions with independent events,and the one nucleotide mutation already existed before initial diffusion.
     6.97%samples in T4 haplgroup came from China(37 individuals) and Northeast Asia(46 individuals).The results suggested that the distribution of T4 haplgroup was not only in Northeast Asia but also in China with comparable frequency.
     7.Two extinct anrochsen mtDNA haplogroups(P and Q) were detected in China and Northeast Asia cattle population with much low frequency.The results suggested the influence of Aurochs on modern cattle population would be not restricted only in Europe region.
     8.Whichever geographical classifications were adopted,about 85-90%of the genetic variation was distributed within breeds when the Bos taurus and Bos indicus type samples were separately studied.The population pairwise F_(ST) value was about 0.15.The genetic variation within breeds and F_(ST) value were changed to 79%and 0.21 in all Bos taurus and Bos indicus samples,respectively.Then we proposed that the genetic difference of Chinese cattle among ecologically geographical areas was resulted from the different influence degree of Bos indicus on these geograpchical populations.For Bos taurus type alone,there was no significiant genetic difference among ecologically geographical areas.
     9.As one case study,total five haplogroups(T1-T4,T16119) were detected in Tongjiang cattle with 54 samples.We proposed that there was no haplogroup-specific breed for Chinese indigenious cattle.The difference of matrilineal components of Chinese cattle populations would be only referred to different occurrence frequency of haplogroups.
     10.Total 139 parsimony informative sites were detected in complete mtDNA sequence.Among them,92 sites were distributed in coding region,and the Cyt b gene was the secondary mutational hot spots fragment.
     11.Total 18 polymorphism sites were detected in the 936 bp fragment of ATPase 6 and ATPase 8 genes,which further determined six haplogroups(H1-H6).The least squares analyses revealed that the haplotypes had no significant influence on fat content and somatic cell count(SCC) traits.In contrast,the protein content and 305 days milk production differed significantly among haplotypes(P<0.05).Haplotype H2 had the highest protein content and haplotype H4 ocurred by the highest 305 days milk production.The results suggested that H2 and H4 haplotypes could be used as candidate gentypes for protein content and 305 days milk production traits,which should be further confirmed.
引文
[1]Taberlet P,Valentini A,Rezaei HR et al.Are cattle,sheep,and goats endangered species?Molecular Ecology,2008,17(1):275-284
    [2]联合国粮食与农业组织.世界粮食与农业动物遗传资源状况.北京,中国农业出版社,2007
    [3]Scherf BD.World Watch List for Domestic Animal Diversity,3rd edn.Rome,Food and Agriculture Organization of the United Nations,2000
    [4]“中国畜禽遗传资源状况”编委会.中国畜禽遗传资源状况.北京,中国农业出版社,2004
    [5]马月辉,陈幼春,冯维祺等.中国家养动物种质资源及其保护.中国农业科技导报,2002,4(3):37-42
    [6]冯维祺,马月辉.中国家养动物品种资源浅析.畜牧兽医学报,1997,28(4):300-303
    [7]Oven MV,Kayser M.Updated Comprehensive Phylogenetic Tree of Global Human mitochondrial DNA variation.Human Mutation,2008,29:E386-E394
    [8]Avise JC,Arnold J,Ball RM et al.Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics.Annual Review of Ecology and Systematics,1987,18(1):489-522.
    [9]Harrison RG.Animal mitochondrial DNA as a genetic marker in population and evolutionary biology.Trends in Ecology & Evolution,1989,4:6-11
    [10]Brown JR.Intraspecifie DNA sequence variation of the mitochondrial control region of white sturgeon(Acipenser transmontanus).Molecular Biology and Evolution 1993,10(2):326-341
    [11]Andreu AL,Bruno C,Hadjigeorgiou GM et al.Polymorphic Variants in the Human Mitochondrial CytochromebGene.Molecular Genetics and Metabolism,1999,67(1):49-52
    [12]田志华,杨公社.家畜分子育种研究进展.黄牛杂志,2001,27(1):8-11
    [13]Jobling MA,Tyler-Smith C.The human Y chromosome:an evolutionary marker comes of age.Nature Reviews Genetics,2003,4(8):598-612
    [14]Torroni A,Achilli A,Macaulay V et al.Harvesting the fruit of the human mtDNA tree.Trends in Genetics,2006,22(6):339-345
    [15]Underhill PA,Kivisild T.Use of Y chromosome and mitochondrial DNA population structure in tracing human migrations.Annual Reviews,2007,41:539-564
    [16]Kayser M,Marine S,Stec EM et al.Uni-parental markers in human identity testing including forensic DNA analysis.BioTechniques,2007,43(6):S16-S21
    [17]Taylor RW,Turnbull DM.Mitochondrial DNA mutations in human disease.Nature Reviews Genetics,2005,6(5):389-402
    [18]Qi XB.Phylogeographical insights into the origin,domestication and dispersion of domestic yak.博士学位论文.昆明,中科院昆明动物研究所,2004
    [19]Behar DM,Villems R,Soodyall H et al.The dawn of human matrilineal diversity.The American Journal of Human Genetics,2008,82(5):1130-1140
    [20]Macaulay V,Hill C,Achilli A et al.Single,rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes.Science,2005,308(5724):1034-1036
    [21]Mishmar D,Ruiz-Pesini E,Golik P et al.Natural selection shaped regional mtDNA variation in humans.Proceedings of the National Academy of Sciences,2003,100(1):171-176
    [22]Howell N,Elson JL,Howell C et al.Relative rates of evolution in the coding and control regions of African mtDNAs.Molecular Biology and Evolution,2007,24(10):2213
    [23]Pakendorf B,Stoneking M.Mitochondrial DNA and human evolution.Annual Review of Genomics and Human Genetics 2005,6:165-183
    [24]Lai SJ,Chen SY,Liu YP et al.Mitochondrial DNA sequence diversity and origin of Chinese domestic yak.Animal Genetics,2007,38(1):77-79
    [25]He DQ,Zhu Q,Chen SY et al.A homogenous nature of Chinese native duck matrilineal pool.BMC Evolutionary Biology,2008,8(1):298-308
    [26]Achilli A,Olivieri A,Pellecchia M et al.Mitochondrial genomes of extinct aurochs survive in domestic cattle.Current Biology,2008,18(4):157-158
    [27]Hiendleder S,Lewalski H,Janke A.Complete mitochondrial genomes of Bos taurus and Bos indicus provide new insights into intra-species variation,taxonomy and domestication.Cytogenetic Genome Research,2008,120(1-2):150-156
    [28]Wu GS,Yao YG,Qu KX et al.Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia.Genome Biology,2007,8(11):R245-R256
    [29]巴华杰,张璐,赵阳等.人类Y染色体STR的发展与应用.广东公安科技,2007,2:20-22
    [30]Anderung C.Genetic Analyses of Bovid Remains and the Origin of Early European Cattle.Sweden,Acta Universitatis Upsaliensis,2006
    [31]于汝梁,辛彩云.中国黄牛Y染色体多态性及品种起源演变的探讨.中国农业科学,1993,26(5):61-67
    [32]Kikkawa Y,Takada T,Nomura K et al.Phylogenies using mtDNA and SRY provide evidence for male-mediated introgression in Asian domestic cattle.Animal Genetics,2003,34(2):96-101
    [33]Cai X,Chen H,Wang S et al.Polymorphisms of two Y chromosome microsatellites in Chinese cattle.Genetic Selection Evolution,2006,38:525-534
    [34]Li MH,Zerabruk M,Vangen O et al.Reduced genetic structure of north Ethiopian cattle revealed by Y-chromosome analysis.Heredity,2007,98(4):214-221
    [35]Ginja C,da Gama T.Y Chromosome Haplotype Analysis in Portuguese Cattle Breeds Using SNPs and STRs.Journal of Heredity,2008,0:esn080v081-esn080
    [36]Nijman IJ,van Boxtel DCJ,van Cann LM et al.Phylogeny of Y chromosomes from bovine species.Cladistics,2008,24(5):723-726
    [37]Rubinsztein DC,Amos W,Leggo J et al.Microsatellite evolution—evidence for directionality and variation in rate between species.Nature Genetics,1995,10(3):337-343
    [38]Takezaki N,Nei M.Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA.Genetics,1996,144(1):389-399
    [39]Ritz LR,Glowatzki-Mullis ML,MacHugh DE et al.Phylogenetic analysis of the tribe Bovini using microsatellites.Animal Genetics,2000,31(3):178-185
    [40]Czemekova V,Kott T,Dudkova G et al.Genetic diversity between seven Central European cattle breeds as revealed by microsatellite analysis.2006,Czech Journal Animal Science,51:1-7
    [41]Bruford MW,Bradley DG,Luikart G.DNA markers reveal the complexity of livestock domestication.Nature Reviews Genetics,2003,4(11):900-910
    [42]Martin-Burriel I,Rodellar C,Lenstra JA et al.Genetic Diversity and Relationships of Endangered Spanish Cattle Breeds.Journal of Heredity,2007,98(7):687-691
    [43]MacNeil MD,Cronin MA,Blackburn HD et al.Genetic relationships between feral cattle from Chirikof Island,Alaska and other breeds.Animal Genetics,2007,38(3):193-197
    [44]Mao Y,Chang H,Yang Z et al.Genetic Structure and Differentiation of Three Chinese Indigenous Cattle Populations.Biochemical Genetics,2007,45(3):195-209
    [45]Egito AA,Paiva SR,Albuquerque MSM et al.Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil.BMC genetics,2007,8(1):83-96
    [46]Chang WH,Chu HP,Jiang YN et al.Genetic variation and phylogenetics of Lanyu and exotic pig breeds in Taiwan analyzed by nineteen microsatellite markers.Journal of Animal Science,2009,87(1):1-8
    [47]Zenger KR,Khatkar MS,Cavanagh JAL et al.Genome-wide genetic diversity of Holstein Friesian cattle reveals new insights into Australian and global population variability,including impact of selection.Animal Genetics,2007,38(1):7-14
    [48]Stephanie MK,Robert S,Brenda M et al.An assessment of population structure in eight breeds of cattle using a whole genome SNP panel.BMC Genetics,9:37-45
    [49]Svensson EM,Anderung C,Baubliene J et al.Tracing genetic change over time using nuclear SNPs in ancient and modem cattle.Animal Genetics,2007,38(4):378-383
    [50]Gautier M,Faraut T,Moazami-Goudarzi K et al.Genetic and haplotypic structure in 14European and African cattle breeds.Genetics,2007,177(2):1059-1070
    [51]Khatkar MS,Nicholas FW,Collins AR et al.Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel.BMC genomics,2008,9(1):187-204
    [52]Nei M.Molecular evolutionary genetics:Columbia Univ Press;1987
    [53]李易,王云波.基因进化过程中核苷酸替代模型的比较分析.曲靖师范学院学报,2006,3:5-9
    [54]Tajima F.Simple methods for testing the molecular evolutionary clock hypothesis.Genetics, 1993,135(2):599-607
    [55]Tamura K.Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases.Molecular Biology and Evolution,1992,9(4):678-687
    [56]Tamura K.Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.Molecular Biology and Evolution,1993,10(3):512-526
    [57]Bandelt HJ,Forster P,Sykes BC et al.Mitochondrial portraits of human populations using median networks.Genetics,1995,141(2):743-753
    [58]Loftus RT,MacHugh DE,Bradley DG et al.Evidence for two independent domestications of cattle.Proceedings of the National Academy of Sciences,1994,91(7):2757-2761
    [59]耿社民,刘小林.中国家畜品种资源刚要.北京,中国农业出版社,2002
    [60]郑丕留.中国家畜生态.北京,农业出版社,1990
    [61]《中国牛品种志》编写组.中国牛品种志.上海,上海科技出版社,1988
    [62]Anderson S,De Bruijn MH,Coulson AR et al.Complete sequence of bovine mitochondrial DNA.Conserved features of the mammalian mitochondrial genome.Journal of Molecular Biology,1982,156(4):683-717
    [63]Lai SJ,Liu YP,Liu YX et al.Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation.Molecular Phylogenetics and Evolution,2006,38(1):146-154
    [64]Lei CZ,Chen H,Zhang HC et al.Origin and phylogeographical structure of Chinese cattle.Animal Genetics,2006,37(6):579-584
    [65]周艳,陈宏,贾善刚等.中国南方部分黄牛品种mtDNA D-loop区的遗传变异与分类分析.西北农林科技大学学报,2008,36(5):7-11
    [66]王朝锋,陈宏,雷初朝等.延边牛线粒体DNA D-loop序列多态性研究.西北农林科技大学学报,2005,33(7):9-11,16
    [67]张志清,陈宏,刘波等.晋南牛父系和母系起源研究.中国农学通报,2005,21(9):7-9
    [68]耿荣庆,常洪,冀德君等.雷琼牛母系起源的遗传学证据.畜牧兽医学报,2008,39(7):849-852
    [69]蔡欣,陈宏,雷初朝等.中国3个牛种cytb基因多态性及其系统发育研究.西北农林科技大学学报,2007,35(2):43-46,52
    [70]赖松家,刘延鑫,李学伟等.四川黄牛品种线粒体DNA遗传多样性研究.畜牧兽医学报,2005,36(9):887-892
    [71]孟彦,许尚忠,昝林森等.SSCP技术用于牛mtDNA多态性检测的可行性研究.中国畜牧兽医,2007,34(4):67-71
    [72]Yu Y,Nie L,He ZQ et al.Mitochondrial DNA variation in cattle of South China:origin and introgression.Animal Genetics,1999,30(4):245-250
    [73]雷初朝,陈宏,杨公社等.中国部分黄牛品种mtDNA遗传多态性研究.遗传学报,2004,31(1):57-62
    [74]雷初朝,宋林生.蒙古牛mtDNA D-loop高变区序列分析.黄牛杂志,2002,28(3):6-7
    [75]王朝锋,雷初朝,陈宏等.雷琼牛mtDNA D-loop遗传多态性研究.黄牛杂志,2005,31(5):14-15
    [76]Cai X,Chen H,Lei C et al.mtDNA Diversity and genetic lineages of eighteen cattle breeds from Bos taurus and Bos indicus in China.Genetica,2007,131(2):175-183
    [77]周艳,陈宏,贾善刚等.云南昭通黄牛mtDNA D-loop区遗传变异分析.中国牛业科学,2007,33(6):38-41
    [78]贾善刚,陈宏,张桂香等.中国部分地方黄牛品种线粒体D-loop区的遗传变异与进化分析.遗传学报,2007,34(6):510-518
    [79]房兴堂,周艳,陈宏等.中国黄牛mtDNA D-loop遗传多样性及起源.动物学报,2007,53(5):928-933
    [80]宋光明,常洪,毛永江等.闽南牛遗传多样性及其系统地位的研究.中国牛业科学,2006,32(5):1-6
    [81]刘武艺,陈宏权.皖北黄牛随机扩增多态DNA研究.中国牛业科学.2006,32:8-11
    [82]毛永江,常洪,杨章平等.3个中国地方黄牛品种遗传结构及其遗传分化的研究.畜牧兽医学报,2007,38(2):125-132
    [83]刘庆华,甘乾福,梁学武.福建黄牛的遗传多态性及分类.福建农林大学学报:自然科学版,2007,36(6):604-607
    [84]赵玉民,杨国忠,任文陟.草原红牛及其杂交群体中微卫星DNA多态性研究.中国牛业科学,2006,32(6):34-37
    [85]Gunderson KL,Steemers FJ,Lee G et al.A genome-wide scalable SNP genotyping assay using microarray technology.Nature genetics,2005,37:549-554
    [86]Guan X,Geng T,Silva P et al.Mitochondrial DNA sequence and haplotype variation analysis in the chicken(Gallus gallus).Journal of Heredity,2007,98(7):723-726
    [87]Kim KS,Yeo JS,Choi CB.Genetic diversity of north-east Asian cattle based on microsatellite data:Animal Genetics,2002,33(3):201-204
    [88]Zhou GL,Jin HG,Zhu Q et al.Genetic diversity analysis of five cattle breeds native to China usintg microsatellites.Journal of Genetics,2005,84(1):77-80
    [89]李荣岭,张桂香,王志刚等.微卫星标记对12个中外牛品种群体遗传结构的研究.遗传,2007,29(12):1463-1470
    [90]许明,张桂香,常洪.我国中东部地区地方水牛品种的遗传多样性分析.家畜生态学报,2007,28(5):11-14
    [91]邱志国,肖兵南,李志才等.湘西黄牛遗传多样性的初步研究.中国牛业科学,2007, 33(6):30-33
    [92]金海国,曹阳,金允浩.延边黄牛的微卫星遗传变异及DNA指纹分析.延边大学农学学报,2007,29(4):229-232
    [93]王敏强,李萍莉,陈礼学.用20个微卫星标记研究鲁西黄牛和渤海黑牛的遗传多样性.河北农业大学学报,2006,29(6):76-81
    [94]王均辉,昝林森,张桂香.中国9个南方黄牛品种和3个引进品种的遗传多样性分析.西北农林科技大学学报,2008,36(3):1-7
    [95]Cymbron T,Freeman AR,Isabel Malheiro Met al.Microsatellite diversity suggests different histories for Mediterranean and Northern European cattle populations.Proceedings of the Royal Society B:Biological Sciences,2005,272(1574):1837-1843
    [96]Citek J,Panicke L,ehout V et al.Study of genetic distances between cattle breeds of Central Europe.Czech Journal Animal Science,2006,51:429-436
    [97]Chikhi L,Goossens B,Treanor A et al.Population genetic structure of and inbreeding in an insular cattle breed,the Jersey,and its implications for genetic resource management.Heredity,2004,92(5):396-401
    [98]Marcus JC,Penedo MCT,Alves VC et al.Genetic diversity and differentiation in Portuguese cattle breeds using microsatellites.Animal Genetics,2004,35(2):106-113
    [99]Wiener P,Burton D,Williams JL.Breed relationships and definition in British cattle:a genetic analysis.Heredity,2004,93(6):597-602
    [100]Rendo F,Iriondo M,Jugo BM et al.Analysis of the genetic structure of endangered bovine breeds from the Western Pyrenees using DNA microsatellite markers.Biochemical Genetics,2004,42(3):99-108
    [101]Jordana J,Alexandrino P,Beja-Pereira A et al.Genetic structure of eighteen local south European beef cattle breeds by comparative F-statistics analysis.Journal of Animal Breeding and Genetics,2003,120(2):73-87
    [102]Ibeagha-Awemu EM,Erhardt G.Genetic structure and differentiation of 12 African Bos indicus and Bos taurus cattle breeds,inferred from protein and microsatellite polymorphisms.Journal of Animal Breeding and Genetics,2005,122(1):12-20
    [103]Ibeagha-Awemu EM,Jann OC,Weimann C et al.Genetic diversity,introgression and relationships among West/Central African cattle breeds.Genetic Selection Evolution,2004,36:673-690
    [104]Freeman AR,Meghen CM,Machugh DE et al.Admixture and diversity in West African cattle populations.Molecular Ecology,2004,13(11):3477-3487
    [105]Uzun M,Gutierrez-Gil B,Arranz JJ et al.Genetic relationships among Turkish sheep.Genetic Selection Evolution,2006,38:513-524
    [106]Sodhi M,Mukesh M,Ahlawat SPS et al.Genetic Diversity and Structure of Two Prominent Zebu Cattle Breeds Adapted to the Arid Region of India Inferred from Microsatellite Polymorphism.Biochemical genetics,2008,46(3):124-136
    [107] Sodhi M, Mukesh M, Prakash B et al. Microsatellite DNA typing for assessment of genetic variability in Tharparkar breed of Indian zebu (Bos indicus) cattle, a major breed of Rajasthan. Journal of Genetics, 2006, 85(3): 165-170
    [108] Mukesh M, Sodhi M, Bhatia S et al. Genetic diversity of Indian native cattle breeds as analysed with 20 microsatellite loci. Journal of Animal Breeding and Genetics, 2004, 121(6):416-424
    [109] Metta M, Kanginakudru S, Gudiseva N et al. Genetic characterization of the Indian cattle breeds, Ongole and Deoni (Bos indicus), using microsatellite markers-a preliminary study.BMC genetics, 2004, 5(16): 16-20
    [110] Kumar P, Freeman AR, Loftus RT et al. Admixture analysis of South Asian cattle. Heredity,2003, 91(1): 43-50
    [111] Priskin K, Tomory G, Bogacsi-Szabo E et al. Mitochondrial DNA control region analysis of a late neolithic aurochs (Bos primigenius Boj. 1827) from the Carpathian Basin. Acta Biologica Hungarica, 2007,58: 131-137
    [112] Beja-Pereira A, Caramelli D, Lalueza-Fox C et al. The origin of European cattle: evidence from modern and ancient DNA. Proceedings of the National Academy of Sciences, 2006,103(21): 8113-8118
    [113] Epstein H, Mason 1L. Cattle. In: Mason IL (ed) Evolution of domesticated animals, 1st edn.Longman, London, 1984
    [114] Payne WJA. Domestication: a forward step in civilisation. In: Hickman CG, Neimanns(?)rensen A, Tribe DE (eds) Cattle genetic resources. World animal science, 1991,B7: 51-72
    [115] Grigson C. The craniology and relationships of four species of Bos. 5. Bos indicus L.Journal of Archaeological Science, 1980, 7(1): 3-32
    [116] Meadow RH. Animal domestication in the Middle East: A revised view from the Eastern Margin. In: Possehl G (ed) Harappan civilisation, Oxford & IBH, New Delhi, 1993
    [117] Clutton-Brock, J. A natural history of domesticated animals. Cambridge, Cambridge university press, 1999
    [118] Troy CS, MacHugh DE, Bailey JF et al. Genetic evidence for Near-Eastern origins of European cattle. Nature, 2001,410(6832): 1088-1091
    
    [119] Bradley DG, MacHugh DE, Cunningham P et al. Mitochondrial diversity and the origins of African and European cattle. 1996,93(10): 5131-5135
    [120] Cymbron T. Mitochondrial sequence variation suggests an African influence in Portuguese cattle. Proceedings of the Royal Society B: Biological Sciences, 1999,266(1419): 597-603
    [121] Loftus RT, Ertugrul O, Harba AH et al. A microsatellite survey of cattle from a centre of origin: the Near East. Molecular Ecology, 1999, 8(12): 2015-2022
    [122] Cymbron T, Freeman AR, Isabel Malheiro M et al. Microsatellite diversity suggests different histories for Mediterranean and Northern European cattle populations. Proceedings of the Royal Society B: Biological Sciences, 2005, 272(1574): 1837-1843
    
    [123] Anderung C, Bouwman A, Persson P et al. Prehistoric contacts over the Straits of Gibraltar indicated by genetic analysis of Iberian Bronze Age cattle. Proceedings of the National Academy of Sciences, 2005, 102(24): 8431-8435
    
    [124] Edwards CJ, Bollongino R, Scheu A et al. Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1616):1377-1385
    
    [125] Mannen H, Tsuji S, Loftus RT et al. Mitochondrial DNA variation and evolution of Japanese black cattle (Bos taurus). Genetics, 1998, 150(3): 1169-1175
    
    [126] Mannen H, Kohno M, Nagata Y et al. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Molecular Phylogenetics and Evolution, 2004, 32(2): 539-544
    [127] Liron JP, Bravi CM, Mirol PM et al. African matrilineages in American Creole cattle:evidence of two independent continental sources. Animal Genetics, 2006, 37(4): 379-382
    
    [128] Cavalli-Sforza LL, Piazza A, Menozzi P et al. Reconstruction of human evolution: bringing together genetic, archaeological, and linguistic data. Proceedings of the National Academy of Sciences, 1988, 85(16): 6002-6006
    
    [129] Caramelli D. The Origins of Domesticated Cattle. Human Evolution, 2006, 21(2): 107-122
    [130] Kuhn R, Ludt C, Manhart H et al. Close genetic relationship of early Neolithic cattle from Ziegelberg (Freising, Germany) with modern breeds. Journal of Animal Breeding and Genetics, 122(S1): 36-44
    [131] Bollongino R, Edwards CJ, Alt KW et al. Early history of European domestic cattle as revealed by ancient DNA. Biology letters, 2006, 2(1): 155-159
    
    [132] G(o|¨)therstr(o|¨)m A, Anderung C, Hellborg L et al. Cattle domestication in the Near East was followed by hybridization with aurochs bulls in Europe. Proceedings of the Royal Society B:Biological Sciences, 2005, 272(1579): 2345-2350
    
    
    [133] Pellecchia M, Negrini R, Colli L et al. The mystery of Etruscan origins: novel clues from Bos taurus mitochondrial DNA. Proceedings of the Royal Society B: Biological Sciences,2007,274(1614): 1175-1179
    [134] Cortes O, Tupac-Yupanqui I, Dunner S et al. Ancestral matrilineages and mitochondrial DNA diversity of the Lidia cattle breed. Animal Genetics, 2008,39(6): 649-654
    [135] Cymbron T. Mitochondrial sequence variation suggests an African influence in Portuguese cattle. Proceedings of the Royal Society B: Biological Sciences, 1999, 266(1419): 597-603
    [136] Miretti MM, Dunner S, Naves M et al. Predominant African-derived mtDNA in Caribbean and Brazilian Creole cattle is also found in Spanish cattle (Bos taurus). Journal of Heredity, 2004, 95(5): 450-453
    [137] Bradley DG, Magee DA. Genetics and the origins of domestic cattle. Documenting Domestication:New Genetic and Archaeological Paradigms,2006:317-328.
    [138]Kim KI,Lee JH,Lee SS et al.Phylogenetic relationships of northeast Asian cattle to other cattle populations determined using mitochondrial DNA D-loop sequence polymorphism.Biochemical Genetics,2003,41(3):91-98
    [139]陈宏,邱怀.中国四品种黄牛性染色体多态性的研究.遗传,1993,15(4):14-17
    [140]Yang P,Chang H,Li X et al.A Study of Ecological and Morphological Characters on Tibet Zebu as a New Genetic Resource.Agricultural Sciences in China,2003,2(001):75-79
    [141]苟潇,王永奇,杨舒黎等.从mtDNA和SRY基因多态揭示云南大额牛杂交起源.中国农业大学学报,2009,14(1):31-37
    [142]陈幼春.中国黄牛生态种特征及其利用方向.北京,农业出版社,1990
    [143]涂正超,张亚平.中国地方黄牛的遗传多样性.生物多样性,1997,5(2):90-94
    [144]Naderi S,Rezaei HR,Taberlet P et al.Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity.PLoS ONE,2007,2(10):e1012
    [145]Ascunce MS,Kitchen A,Schmidt PR et al.An Unusual Pattern of Ancient Mitochondrial DNA Haplogroups in Northern African Cattle.Zoological Studies,2007,46(1):123-125
    [146]Ingman M,Kaessmann H,Paabo S et al.Mitochondrial genome variation and the origin of modem humans.Nature,2000,408(6813):708-713
    [147]Kong QP,Yao YG,Sun C et al.Phylogeny of East Asian mitochondrial DNA lineages inferred from complete sequences.The American Journal of Human Genetics,2003,73(3):671-676
    [148]Kong QP,Bandelt HJ,Sun C et al.Updating the East Asian mtDNA phylogeny:a prerequisite for the identification of pathogenic mutations.Human molecular genetics,2006,15(13):2076-2086
    [149]Ruiz-Pesini E,Lott MT,Procaccio V et al.An enhanced MITOMAP with a global mtDNA mutational phylogeny.Nucleic acids research,2006,35:D823-D828
    [150]Freitas F,Oliveira S,Rocha R et al.mtDNA GeneExtractor:A computer tool for mtDNA gene/region information extraction.Mitochondrion,2008,9:36-40
    [151]Bell BR,McDaniel BT,Robison OW.Effects of cytoplasmic inheritance on production traits of dairy cattle.Journal of Dairy Science,1985,68(8):2038-2051
    [152]Brown DR,Koehler CM,Lindberg GL et al.Molecular analysis of cytoplasmic genetic variation in Holstein cows.Journal of Animal Science,1989,67(8):1926-1932
    [153]Schutz MM,Freeman AE,Lindberg GL et al.Effects of maternal lineages grouped by mitochondrial genotypes on milk yield and composition.Journal of Dairy Science,1993,76(2):621-629
    [154]Schutz MM,Freeman AE,Lindberg GL et al.The effect of mitochondrial DNA on milk production and health of dairy cattle.Livestock Production Science,1994,37(3):283-295
    [155]Paneto JCC,Ferraz JBS,Balieiro JCC et al.Bos indicus or Bos taurus mitochondrial DNA-comparison of productive and reproductive breeding values in a Guzerat dairy herd. 2007(6): 20-22
    [157] Henkes LE, Benavides MV, Oliveira JFC et al. Maternal inheritance on reproductive traits in Brangus-Ibage cattle. Ciencia Rural, 2004, 34: 1163-1167
    
    [158] Malau-Aduli AEO, Nishimura-Abe A, Niibayashi T et al. Mitochondrial DNA polymorphism, maternal lineage and correlations with postnatal growth of Japanese Black beef cattle to yearling age. Asian Australasian Journal of Animal Sciences, 2004, 17(11):1484-1490
    
    [159] Alberto MC, Magdalena ML, Marcelo CP et al. Effects of cytoplasmic inheritance on preweaning traits of Hereford cattle. Genetics and Molecular Biology, 28(3): 354-362
    [160] Mannen H, Kojima T, Oyama K et al. Effect of mitochondrial DNA variation on carcass traits of Japanese Black cattle. Journal of Animal Science, 1998, 76(1): 36-41
    [161] Mannen H, Morimoto M, Oyama K et al. Identification of mitochondrial DNA substitutions related to meat quality in Japanese Black cattle. Journal of Animal Science, 2003, 81(1):68-75
    
    [162] Oh JD, Yoon DH, Kong HS et al. Effect of sequence variation in bovine mitochondrial DNA D-loop region on economic traits for Hanwoo. Journal of Animal Science and Technology, 2003, 45(6): 933-938
    
    [163] Fernandez Al, Alves E, Fernandez A et al. Mitochondrial genome polymorphisms associated with longissimus muscle composition in Iberian pigs. Journal of Animal Science,2008,86: 1283-1290
    
    [164] Tamassia M, Nuttinck F, May-Panloup P et al. In vitro embryo production efficiency in cattle and its association with oocyte adenosine triphosphate content, quantity of mitochondrial DNA, and mitochondrial DNA haplogroup. Biology of reproduction, 2004,71(2): 697-704
    
    [165] Sutamo JM, Cummins J, Greeff J et al. Mitochondrial DNA polymorphisms and fertility in beef cattle. Theriogenology, 2002, 57: 1603-1610
    
    [166] Yen NT, Lin CS, Ju CC et al. Mitochondrial DNA Polymorphism and Determination of Effects on Reproductive Trait in Pigs. Reproduction in Domestic Animals, 2007, 42(4):387-392
    
    [167] Thompson JD, Gibson TJ, Plewniak F et al. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997,24:4876-4882
    [168] Tamura K, Dudley J, Nei M et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology Evolution, 2007, 24:1596-1599
    [169] Excoffier L, Laval G, Schneider S. Arlequin ver. 3.11: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 2005, 1: 47-50
    [170]Bandelt H-J,Dress AWM.Split Decomposition:A new and useful approach to phylogenetic analysis of distance data.Molecular Phylogenetics and Evolution,1992,1:242-252
    [171]Kierstein G,Vallinoto M,Silva Aet al.Analysis of mitochondrial D-loop region casts new light on domestic water buffalo(Bubalus bubalis) phylogeny.Molecular Phylogenetics and Evolution,2004,30(2):308-324
    [172]Excoffier,L.Software AMOVA(Analysis of Molecular Variance).Genetics and Biometry Laboratory,University of Geneva,Switzerland,1992
    [173]Rozas J.DnaSP version 3:an integrated program for molecular population genetics and molecular evolution analysis.Bioinformatics,1999,15(2):174-175
    [174]赵辉,李启寨,李俊等.相邻碱基组分与产生SNP的转换或颠换在植物基因组中的研究.中国科学C辑生命科学2006,36(1):1-8
    [175]刘运强,廖顺尧.动物线粒体编码序列相邻碱基组成对核苷酸替换的影响.西南农业大学学报,2001,23(3):270-272
    [176]Jia S,Chen H,Zhang G et al.Genetic variation of mitochondrial D-loop region and evolution analysis in some Chinese cattle breeds.Journal of Genetics and Genomics,2007,34(6):510-518
    [177]赖松家,王玲,刘益平等.中国部分牦牛品种线粒体DNA遗传多态性研究.遗传学报,2005,32(5):463-470
    [178]吴平,黄恭情.用RFLP和PCR—RFLP技术研究东北虎和华南虎线粒体DNA多态性.生物多样性,1997,5(3):173-178
    [179]刘益平,曹少先,傅泽红等.中国部分山羊品种线粒体DNA D-loop序列遗传多样性分析.畜牧兽医学报,2007,38(4):313-320
    [180]Geigl EM.Palaeogenetics of cattle domestication:Methodological challenges for the study of fossil bones preserved in the domestication centre in Southwest Asia.Comptes rendus-Palevol,2008,7(2-3):99-112
    [181]Bandelt HJ,Forster P,Sykes BC et al.Mitochondrial-portraits of human populations using median networks.Genetics,1995,141(2):743-753
    [182]Bandelt HJ.Median-joining networks for inferring intraspecific phylogenies.Molecular Biology and Evolution,1999,16(1):37-48
    [183]Piazza A.Human evolution Towards a genetic history of China.Nature,1998,395(6703):636-639
    [184]Chen SY,Liu YP,Wang W et al.Dissecting the matrilineal components of Tongjiang cattle from southwest China.Biochemical Genetics,2008,46(3):206-215
    [185]黄宏文,康明.保育遗传学导沦.北京,科学出版社,2005
    [186]Meyer S,Weiss G,yon Haeseler A.Pattern ofnucleotide substitution and rate heterogeneity in the hypervariable regions Ⅰ and Ⅱ of human mtDNA.Genetics,1999,152(3):1103-1110
    [187]Excoffier L,Schneider S.Why hunter-gatherer populations do not show signs of Pleistocene demographic expansions.National Acad Sciences,1999,96(19):10597-10602
    [188]姚永刚,张亚平.线粒体DNA和人类进化.动物学研究,2000,21(5):392-406
    [189]周琦,王文.DNA水平自然选择作用的检测.动物学研究,2004,25(1):73-80
    [190]Kreitman M.Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster.Nature,1983,304(5925):412-417
    [191]Fu YX,Li WH.Statistical tests of neutrality of mutations.Genetics,1993,133(3):693-709
    [192]Fu YX.Statistical tests of neutrality of mutations against population growth,hitchhiking and background selection.Genetics,1997,147(2):915-925
    [193]Rogers AR.Genetic evidence for a Pleistocene population explosion.Evolution,1995:608-615
    [194]Tajima F.Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics,1989,123(3):585-595
    [195]Liu YP,Cao SX,Chen SY et al.Genetic diversity of Chinese domestic goat based on the mitochondrial DNA sequence variation.Journal of Animal Breeding and Genetics,2009,126(1):80-89
    [196]Excoffier L,Smouse PE,Quattro JM.Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to haman mitochondrial DNA restriction data.Genetics,1992,131(2):479-491
    [197]Liron JP,Peral-Garcia P,Giovambattista G.Genetic characterization of Argentine and Bolivian creole cattle breeds assessed through microsatellites.Journal of Heredity,2006,97(4):331-339
    [198]Li MH,Sternbauer K,Haahr PT et al.Genetic components in contemporary Faroe Islands Cattle as revealed by microsatellite analysis.Journal of Animal Breeding and Genetics,2005,122(5):309-317
    [199]Li MH,Tapio I,Vilkki J et al.The genetic structure of cattle populations(Bos taurus) in northern Eurasia and the neighbouring Near Eastern regions:implications for breeding strategies and conservation.Molecular Ecology,2007,16(18):3839-3853
    [200]Fan B,Chen SL,Kijas JH et al.Phylogenetic relationships among Chinese indigenous goat breeds inferred from mitochondrial control region sequence.Small Ruminant Research,2007,73(1-3):262-266
    [201]Muchadeyi FC,Eding H,Simianer Het al.Mitochondrial DNA D-loop sequences suggest a Southeast Asian and Indian origin of Zimbabwean village chickens.Animal Genetics,2008,39(6):615-622
    [202]王丽娟,李秋玲,王洪梅等.中国荷斯坦牛催乳素基因A8398G多态性与产奶性状相关性分析.山东大学学报-理学版,2008,43(5):10-13,18
    [203]杨海,李秋玲,王洪梅等.中国荷斯坦牛POU1F1基因第6外显子多态性与产奶性能相关研究.安徽农业大学学报,2008,35(3):452-455
    [204]毛海霞,陈宏,陈付英等.郏县红牛DGAT2基因多态性与生长性状的相关性分析.遗 传,2008,30(3):329-332
    [205]徐敏,平富强,陈仕毅等.CXCR2基因多态性与奶牛乳房炎和乳品质的关联.遗传,2008,30(4):463-468
    [206]张慧林,惠小强.奶牛前期泌乳性能与305天产奶量的相关分析.黄牛杂志,2002,28(4):11-15
    [207]徐华,孙少华.国外奶牛DGAT1基因单核苷酸多态性与产奶性能相关的研究现状.中国奶牛,2006(1):25-27
    [208]张润锋,陈宏,雷初朝等.西安地区荷斯坦奶牛群5个基因位点遗传多态性与泌乳性状的相关分析.农业生物技术学报,2006,14(3):329-333
    [209]付小波,昝林森,张佳兰等.中国荷斯坦奶牛CSN1S2基因第二外显子SSCP多态性与产奶性状的关系.西北农林科技大学学报.2006,34(8):21-24
    [210]昝林森,张佳兰,刘新武.牛AGPAT6基因遗传特征与奶牛产奶性能相关性研究.中国农业科学,2007,40(7):1498-1503
    [211]张佳兰,昝林森,申光磊.牛催乳素受体(PRLR)基因Hinf Ⅰ多态性与奶牛生产性能相关性研究.畜牧兽医学报,2007,38(9):888-892
    [212]陈艳珍.影响牛乳成分含量变化的因素.乳业科学与技术,2005,27(4):186-188
    [213]王萍,王宏.胎次、产犊间隔对荷斯坦泌乳牛产奶量的影响.畜禽业,2006(1):49
    [214]王海滨,刘拉平,单翠燕等.不同胎次中国荷斯坦牛鲜乳脂肪酸组成研究.中国乳品工业,2006,34(6):32-35
    [215]唐正香,杨勤,甘伯中等.季节和胎次对白牦牛乳中酶活性的影响研究.中国草食动物,2007,27(1):11-13
    [216]Hitosugi S,Tsuda K,Okabayashi H et al.Phylogenetic relationships of mitochondrial DNA cytochrome b gene in East Asian ducks.The Journal of Poultry Science,2007,44(2):141-145
    [217]Kumar S,Nagarajan M,Sandhu JS et al.Mitochondrial DNA analyses of Indian water buffalo support a distinct genetic origin of river and swamp buffalo.Animal Genetics,2007,38(3):227-232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700