用户名: 密码: 验证码:
含硅丙烯酸酯核/壳乳液的制备及其共混膜梯度结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于材料的组成和结构呈连续分布、材料的性质和功能沿厚度方向呈梯度变化,高分子梯度材料作为梯度功能材料的一个重要分支,在许多技术领域和日常生活领域都有着极大的应用前景。有机硅聚合物的表面能比丙烯酸酯类聚合物的表面能低,通过控制成膜条件,含硅丙烯酸酯类聚合物共混乳液在成膜时会发生自组织行为(如自分层),由此得到的有机硅高分子梯度膜的一侧表面具备有机硅的耐沾污、疏水、耐腐蚀和耐老化等优点,另一侧表面具备丙烯酸酯类聚合物优异的粘接性、成膜性、耐候性和装饰性。
     本论文首先用γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH-570)和三甲基氯硅烷(CMS)发生取代反应合成高硅含量单体γ-甲基丙烯酰氧丙基三(三甲基硅氧基)硅烷(TRIS),不但解决了KH-570在乳液聚合过程中的水解问题,还引入了-Si(CH3)3基团,可以提高聚合物中的硅含量和憎水性。以甲基丙烯酸甲酯(MMA)和TRIS为原料,以十二烷基硫酸钠(SDS)和1-丙烯基-2-羟基烷基磺酸钠(COPS-1)为复配乳化剂,采用种子乳液聚合半连续滴加法,分别制备了有机硅均聚物(PTRIS)乳液、一系列不同配比的聚(TRIS-甲基丙烯酸甲酯)(P(TRIS-co-MMA))乳液和聚甲基丙烯酸甲酯(PMMA)乳液。测试结果表明,随着乳液中TRIS单体比例的增加,乳液的稳定性逐渐降低,乳胶粒的粒径增大而粒径分布变宽,并且共聚物出现宽泛的Tg平台;所合成的聚(TRIS-甲基丙烯酸甲酯)乳胶粒子具有三层核/壳结构的特殊形态。随着共聚物组分中TRIS含量的增加,各乳胶膜的表面能依次降低,疏水性能随之提高。
     由于乳液共混成膜时链段会发生自组织迁移,以一种聚(TRIS-甲基丙烯酸甲酯)核/壳乳液分别与三种不同Tg的丙烯酸酯共聚物乳液共混,制备共混乳胶膜。通过表面接触角测试、SEM和AFM等测试,详细探讨了成膜温度、热处理条件、两共混组分的Tg差异和成膜基材等因素对硅丙共混乳液自组织形成梯度结构的影响。测试结果表明,1.适当提高成膜温度,有助于共混乳胶膜中两组分发生自分层,产生梯度结构。2.以玻璃为成膜基材,当P(TRIS-co-MMA)组分不能参与成膜(即成膜温度为25℃和45℃)时,退火有利于乳胶膜中的含硅组分进一步迁移,使得乳胶膜两接触表面的表面能差异继续增大,并且沿断面方向上Si成梯度化分布;当P(TRIS-co-MMA)组分能够参与成膜(即成膜温度为55℃和65℃)时,退火对两接触表面的表面能影响不大。3.共混组分的Tg差别越大,其共混乳胶膜的自组织迁移效果越明显。4.成膜基材不同,会影响含硅组分的迁移方向,从而对乳胶膜的表面性能和梯度结构造成影响,并且共混组分的Tg差别会对含硅链段向两接触表面的迁移程度造成影响。
Gradient polymer blend materials through self-organization have attracted increasing attention of many investigators recently. Due to one component in blends having special functional groups, this component could self-organize to the surface of blend films during film-formation process or annealing process, and accordingly, a film surface with special properties is obtained. Organosilicone acrylate polymers have much lower surface free energy than non-organosilicane acrylate polymers, so self-organization will happen during the film-formation of their latex blends under effects of surface free energy. Finally, an organosilicone acrylate polymer material with gradient film structure is obtained. In this gradient material, one surface side of the blend film exhibits special surface properties, such as antifouling property, self-cleaning property, water-resistance and oil-resistance, whereas, the other surface side shows good adhesion
     In this theses, firstly, a reactive organosilicone monomer mathacryloxypropyltris (trimethlsiloxy)silane(TRIS),was synthesized by substitution reaction between math acryloxypropyltrimethloxysilane(KH-570) and chlorotrimethylsilane (CMS).Not only the hydrolysis problem of KH-570 was solved in the process of emulsion polymerization, but also -Si(CH3)3 group was induced into the molecular, that could effectively increase the content of organosilicon of the latexes prepared, and provided the copolymer excellent water-resistance.
     Secondly, with sodium lauryl sulfate(SDS) and sodium 3-alyoxy-2-hydroxy propane sulfonate(COPS-1) as composite emulsifier system, methylmethacrylate and self-made monomer TRIS were used as raw materials, a series of TRIS/MMA copoly-mer latexes were prepared by seeded semibatch emulsion polymerization. A PTRIS latex and a PMMA latex were prepared by batch emulsion polymerization. The properties, average particle size and distribution, particle morphology and Tg of these latexes were tested, respectively. The results indicated that as the mass content of TRIS increased, the latexes'stability decreased, the average particle size increased while the distribution and Tg platform boarded. In the end, the TEM photograph showed that the copolymer latex particle had a special morphology with three layers. The free energy of these copolymer films decreased as the content of organic silicone decreased, and all of them provided excellent water-resistance.
     Finally, polysilane-polyacrylate gradient films were prepared by emulsion blend method through self-organization. How the factors, such as film-formation temperat-ure, Tg difference, heat treatment and film formation matrix influenced on the formation process of self-organization of polysilane-polyacrylate gradient films were discussed in details with the characterizations of surface contact angel method, SEM, TEM and so on. The results indicated that increasing the film-formation temperature could promote the two components migrate in latex blend. Take Samplel for example, when the film-formation was lower than the Tg of P (TRIS-co-MMA), annealing could help organic silicone segment migrate, that could increase the difference between the two surface free energies of the film, while when the film-formation was higher than the Tg of P (TRIS-co-MMA), annealing had Iittlie influence with the two surface free energies. The larger the Tg difference between two components was, the more obvious the self-organization effect appeared. In the end, matrix kind could influence the migrate direction,degree of organic silicone segment and the gradient structure.
引文
[1]刘学清.采用微波辐照技术制备热膨胀及玻璃化转变温度渐变的梯度聚合物材料的研究:[博士学位论文].成都:四川大学高分子研究所.2004
    [2]Ohtsuka Y, Sugano T. Studies on the light-focusing plastic rod14:GRIN rod of CR-39-trifluoroethyl methacrylate copolymer by a vapor-phase transfer process. Applied Optics,1983.22(3):413-417
    [3]Timothy E P, Krzysztof M. Atom Transfer Radical Polymerization and Synthesis of Poly-meric Materials. Advanced Materials,1998.10(12):901-915
    [4]温变英,吴刚.聚丙烯/滑石粉平板状梯度材料的研究——(I)制备及表征.高分子材料科学与工程,2005.21(3):270~273
    [5]徐坚,马军.一种有机硅、陶瓷梯度材料及其制备方法.中华人民共和国发明专利,00123711.X,2002-03-20
    [6]Huang Z M, Wang Q A, Ramakrishna S. Tensile behaviour of functionally gradient composite. Polymers and Polymer Composites,2002.10(4):307~317
    [7]McLellan R B, Donghui Z, Funabashi M. Gradient composites of nickel coated carbon fibre filled epoxy resin moulded under centrifugal force. Compostes Part A:Applied Science and Manufacturing,1997.28(8):731~737
    [8]孔祥明,谢续明,张增民.通过自组织方法在高分子合金中形成特殊结构的研究.材料导报,2000.14(1):55~57
    [9]上利泰幸,选田雅之,上田明,等.高分子学会要旨集,1994.43(3):1210
    [10]温变英,吴刚,侯少华.新型聚合物复合梯度材料的制备及材料结构性能.复合材料学报,2004.21(3):151~155
    [11]李治,孔祥明,谢续明.电场条件下高分子共混物组分浓度梯度化的研究.高等学校化学学报,2001.22(10):1764~1766
    [12]Jang J, Bae J. Formation of Polyaniline Nanorod/Liquid Crystalline Epoxy Composite Nanowires Using a Temperature-Gradient Method. Advanced Functional Materials, 2005.15(11):1877~1882
    [13]Karabanova V L, Mikhalovsky V S, Lloyd W A, et al. Gradient semi-interpenetrating polymer network based on polyurethane and poly(vinyl pyrrolidone). Journal of Material Chemistry,2005.15:499~507
    [14]赵培仲,朱金华,王源升.高分子梯度材料的研究.弹性体,2006.16(3):58~60
    [15]刘世宏,王当憨,潘承璜.X射线光电子能谱分析.北京:科学出版社,1988.231~ 235
    [16]Simon J C G, Eidelma N, Deng Y, et al. High-through-put method for determining modulus of polymer blends. Macromolecular Rapid Communications,2004.25(24):2003~2007
    [17]Wang Y D, Cakmak M. Hierarchical structure gradients developed in injection-molded PVDF and PVDF-PMMA blends. Ⅰ. Optical and thermal analysis. Journal of Applied Polymer Science,1998.68(6):909~926
    [18]Lee Y, Akiba I, Akiyama S. The study of surface segregation and the formation of gradient domain structure at the blend of poly(methyl methacrylate)/poly(dimethyl siloxane)graft copolymers and acrylate adhesive copolymer. Journal of Applicated Polymer Science, 2003.87(3):375~380
    [19]Wen B, Wu G, Yu J. A flat polymeric gradient material:preparation, structure and propert y. Polymer,2004.45(10):3359~3365
    [20]Munz M, Sturm H, Stark W. Mechanical gradient interphase by interdiffusion and antiplastic-isation effect-study of an epoxy/thermoplastic system. Polymer,2005.46(21): 90~97
    [21]Hidgen P, McMullen J N. A new gradient matrix:formulation and characterization. Journal of Controlled Release,1995.34(3):263~271
    [22]李健民编译.通过聚合物掺混制造梯度功能材料.粘接,2002.23(3):57
    [23]Wang D J, Gu C B, Chen P L. Preparation of heat-resistant gradient-index polymer optical fiber rods based on poly(N-isopropylmaleimide-co-methyl methacrylate). Journal of Applied Polymer Science,2003.87(2):280~283
    [24]Ogumi Z, Abe T, Nakamura S, et al. Functionally gradient polymer electrolyte prepared by plasma polymerization. Solid State Ionics,1999.121(1-4):289~293
    [25]Wang J, Richard J, Mignaud C, et al. Stability and compatibility in blends of silicone and vinylacrylate polymer emulsion. Polymer International,1993.31(4):357~375
    [26]范青华,黄英,刘香鸾.聚硅氧烷改性苯乙烯-丙烯酸丁酯共聚乳液膜性能的研究.合成橡胶工业,1995.18(5):276~278
    [27]黄光速,李克友.有机硅-丙烯酸酯共聚乳液的合成弹性体.合成橡胶工业,1994.4(2):6-14
    [28]孔祥正,阚成友,罗东,等.有机硅改性丙烯酸酯共聚乳液合成方法及胶膜性能的研究.高等学校化学学报,1995.16(11):1810~1813
    [29]孙中新,李继航,李毅,等.硅丙乳液的结构表征及性能研究.化学建材,2001.2:21~24
    [30]黄光速,李克友.硅氧烷-丙烯酸丁酯共聚物的结构与性能.合成橡胶工业,1994.17(5): 288~292.
    [31]杨建军,吴庆云,张建安,等.有机硅-丙烯酸酯共聚乳液的研究.涂料工业,2002.6:6~8
    [32]陈忠奎,范慧俐,康立训,等.高硅含量自交联硅丙乳液的合成及性能研究。涂料工业,2004.34(12):15~18
    [33]孙志娟,张心亚,陈立军,等.有机硅氧烷对硅丙微乳液的影响.热固性树脂,2006.21(4):1~4
    [34]龚兴宇,范晓东.γ-甲基丙烯酰氧丙基三甲氧基硅烷改性丙烯酸酯乳液的研究.高分子材料科学与工程,2003.19(1):61~64
    [35]龚兴宇,解云川,张乾,等.高硅含量硅丙复合乳液的性能及应用研究.涂料工业,2002.5:6-9
    [36]周新华,文秀芳,涂伟萍,等.γ-甲基丙烯酰氧丙基三异丙氧基硅烷/丙烯酸酯共聚乳液的研究.原材料,2003.2:27~29
    [37]王镛先.聚有机硅氧烷-聚丙烯酸酯IPN涂料的合成.应用化学,1997.14(4):33~36
    [38]范青华,黄英,刘香鸾.核/壳聚硅氧烷丙烯酸酯复合乳液的制备.应用化学,1995.12(3):52-56
    [39]王镛先.聚有机硅氧烷-聚丙烯酸酯IPN涂料的合成.应用化学,1997.14(4):33~36
    [40]邬润德,童筱莉,周安安,等.有机硅氧烷原位、接枝聚合改性丙烯酸树脂研究.涂料工业,1999.5:5~8
    [41]陈振耀.有机硅改性苯丙乳液的合成及其性能研究.涂料工业,1999.11:15~16
    [42]王世泰.D(4)-丙烯酸酯水性胶粘剂的研制.中国胶粘剂,2000.9(6):10-11,35
    [43]段洪东,李鹏,徐桂云.有机硅烷偶联剂对丙烯酸胶粘剂粘接作用的研究.中国胶粘剂,2000.9(3):15~16
    [44]陈元武.反应性乙丙共聚建筑密封胶的研制.中国胶粘剂,2001.10(3):27~28
    [45]施法宽.紫外光固化丙烯酸酯聚硅氧烷防粘剂.粘接,2000.21(3):5-8
    [46]金鲜英,张涑成,李立平.微乳型改性聚丙烯酸酯粘合剂的合成与应用.印染助剂,2000.17(6):29~31
    [47]张涑成,叶功华.改性丙烯酸酯乳液的合成.印染助剂,2000.17(1):13~15
    [48]Vink P, Bots T L. Formulation parameters influencing self-stratification of coating-s. Progress in Organic Coatings,1996.28(3):173~181
    [49]Hansen C M. The Three Dimensional Solubility Parameter-key to Paint Component Affinities:Ⅱ-Ⅲ. Dyes, Emulsifiers, Mutual Solubility and Compatibility, and Pigment-s. Journal of Coatings Technology,1967.39(511):505~510
    [50]Carr C, Wallatom E. Theoretical aspects of self-stratification. Progress in Organic Coatings, 1996.28(3):161~171
    [51]Walbridge D J. Self-stratifying coatings-an overview of a European Community Research Project. Progress in Organic Coatings,1996.28(3):155-159
    [52]秦总根,涂伟萍.含氟乳液与环氧乳液成膜过程与自分层的探讨.皮革化工,2006.23(2):8~11
    [53]Kim D K, Lee S B, Doh K S, et al. Synthesis of block copolymers having perfluoroalkyl and silicone-containing side chains using diazo macroinitiator and their surface propertie-s. Journal of Applied Polymer Science,1999.174(8):1917-1926
    [54]Goh M C, Juhue D, Leung 0 M, et al. Annealing effects on the surface structure of latex films studied by atomic force microscopy. Langmuir,1993.9(5):1319-1322
    [55]秦总根,涂伟萍,夏正斌,等.含氟乳液的成膜条件对涂膜性能的影响.华南理工大学学报,2004.32(8):50~53
    [56]吴人洁.高聚物的表面与界面.北京:科学出版社,1997.26
    [57]Chevalier Y, Pichot C, Graillat C, et al. Film formation of latex particles. Colloid and Polymer Science,1992.270(8):806-821
    [58]刘耀东,孔祥明,谢续明.界面张力在基板诱导共混物分散相粒子粗化生长加速现象中的作用.高分子学报,2002.12(6):823~827
    [59]肖天晶,谢续明.界面张力对高分子共混物梯度相形态的影响研究.功能高分子学报,1996.9(4):501~506
    [60]Hahn K, Ley G, Schuller H, et al. On particle coalescence in latex films. Colloid and Polymer Science,1986.264(12):1092-1096
    [61]Hahn K, Ley G, Oberthur R. On particle coalescence in latex films(Ⅱ). Colloid and Polymer Science,1988.266(7):631~639
    [62]De Gennes P G. Reptation of a Polymer Chain in the Presence of Fixed Obstacles. Journal of Chemical Physics,1997.55:572~578
    [63]Prager S, Tirrell M. The Healing Process at Polymer-Polymer Interfaces. Journal of Chemical Physics,1981.75(10):5194~5198
    [64]Kim Y H, Wool R P. A Theory of Healing at a Polymer-polymer Interfac-e. Macromolecules,1983.16(7):1115~1120
    [65]Mikos A G, Peppas N A. Kinetic modeling of copolymerization/crosslinking reaction-s. Macromolecules,1986.19(8):2174~2182
    [66]Boczear E M, Dionne B C, Fu Z W, et al. Spectroscopic Studies of Polymer Interdiffusion During Film Formation. Macromolecules,1993.26(21):5772~5781
    [67]Marion P, Beinert G, Juhue D, et al. Core-shell Latex Particles Containing a Fluorinated Polymer in the Shell.2.Internal Structure Studied by Fluorescence Nonradiative Energy Transfer. Macromolecules,1997.30(1):123~129
    [68]He C B, Donald A M. Morphology of Core-shell Polymer Latices During Drying. Langmuir,1996.12(26):6250-6256
    [69]Shull K R, Kramer E J, Bates F S, et al. Self-diffusion of Symmetric Diblock Copolymer Melts Near the Ordering Transition. Macromolecules,1991.24(6):1383~1386
    [70]Whitlow S J, Wool R P. Diffusion of Polymers at Interfaces:A Secondary Ion Mass Spectroscopy Study. Macromolecules,1991.24(22):5926~5938
    [71]Elizabeth A, Jordan R C, Ball A M, et al. Mutual Diffusion in Blends of Long and Short Entangled Polymer Chains. Macromolecules,1988.21(1):235~239
    [72]Yoo J N, Sperling L H, Glinka C J, et al. Characterization of film formation from polystyre-ne latex particles via SANS. 1.Moderate molecular weigh t. Macromolecules,1990.23(17): 3962-3967
    [73]Yoo J N, Sperling L H, Glinka C J, et al. Characterization of film formation from polystyrene latex particles via SANS.2.High molecular weight. Macromolecules, 1991.24(10):2868~2876
    [74]Pekcan O, Croucher M D, Winnik M A. Fluoresence studies of coalescence and film formation in poly(methylmethacrylate) nonaqueous dispersion particle. Macromolecules, 1990.23(10):2673~2678
    [75]Meincken M, Sanderson R D. Determination of the influence of the polymer structure and particle size on the film formation process of polymers by atomic force microscop-y. Polymer,2002.43(18):4947~4955
    [76]Mulvihill J, Toussaint A, Wilde M D. Onset, follow up and assessment of coalesenc-e. Progress in Organic Coatings,1997.30(3):127~139
    [77]Kang Y, Araki K,Iwamoto K, et al. Preparation and Gas Permeability of Polymer Blend Membranes of Polystyrene and Poly[1,1,1-Tris(trimethylsiloxy)methacrylate Propylsilan-e]. Journal of Applied Polymer Science,1982.27(6):2025~2032
    [78]Helary G, Migonney V, Belleney J, et al. Terpolymerization of 3-methacryloxypropyl tris(trimethylsiloxy)silane,methacrylic acid and dimethyloctyl ammonium styrene sulfonat-e:determination of the reactivity ratios. European Polymer Journal,2000.36(11):2365~ 2369
    [79]Garcia N, Guzman J, Riande E, et al. EPR study of the radical polymerization of 3-[tris(tri methyllsilyloxy)silyl]propyl methacrylate. Polymer,2001.42(15):6425~6430
    [80]Ebdon J R, Hunt B J, Joseph P. Thermal degradation and flammability chacracteristics of some polystyrenes and poly(methyl methacrylate)s chemically modified with silicon-con taining groups. Polymer Degradation and Stability,2004.83(1):181~185
    [81]Garcia N, Tiemblo P, Laura Hermosilla, et al. Long-Lived Radicals in the Postpolymeriza-tion of Methacrylic Monomers at Low Conversions. Macromolecules,2005.38(18): 7601-7609
    [82]Sarilar S, Knott R, Barner-Kowollik C, et al. Reversible addition fragmentation chain transfer polymerization of 3-[tris(trimethylsilyloxy)silyl]propyl methacrylate. Polymer, 2003.44(18):5169-5176
    [83]Muratore L M, Heuts J P A, Davis T P. Synthesis of 3-[tris(trismethylsilyloxy)sily]propyl methacrylate macromers using catalytic chain transfer polymerization:a kinetic and mechanistic study. Macromolecular Chemistry and Physics,2000.201(9):985~994
    [84]Muratore L M, Coote M L, Davis T P. Determination of the propagation rate coefficient for 3-[tris(trismethylsilyloxy)sily]propyl methacrylate by pulsed-laser polymerization. Polymer, 2000.41(4):1441-1447
    [85]Shiho H, Desimone J M. Radical Polymerization of a Silicone-Containing Acrylic Mono-mer in Supercritical Carbon Dioxide. Journal of Polymer Science:Part A:Polymer Chemistry,2000.38(17):3100~3105
    [86]Porter K E, Hinchliffe A B, Tighe B J. Gas Separation Using Membranes.2.Developing a New Membrane for the Separation of Hydrogen and Carbon Monoxide Using the Targeting Approach. Industry Engineering Chemistry Research,1997.36:830~837
    [87]Li X L, Berner B. Copolymers of (±)2-Ethylhexyl Acrylate and 3-[3,3,3-Trimethyl-1,1-bis (trimethylsiloxy)disiloxanyl]propyl Methacrylat. Journal of Polymer Science:Part A: Polymer Chemistry,1997.35(16):3571~3574
    [88]Hiratani H, Mizutani Y, Alvarez-Lorenzo C. Controlling Drug Release from Imprinted Hydrogels by Modifying the Characteristics of the Imprinted Cavities. Macromolecular Bioscience,2005.5(9):728~733
    [89]Chern R T, Gu W. Unequivocal definition and determination of "dissolved gas" permeabili-ty and resistances of the liquid layers in contact lens applications. Journal of Membrane Science,1992.69(1):43~50
    [90]Bailey T, Choi B J, Colburn M, et al. Step and flash imprint lithography:Template surface treatment and defect analysis. Journal of Vacuum Science and Technology,2000.18(6): 3572~3577
    [91]唐敏锋,范晓东,王召娣,等.《新型支化有机硅单体的合成及其硅丙乳液的研究》 高分子材料科学与工程,2006.22(1):44~47
    [92]唐敏锋,范晓东,龚彦,等.《支化有机硅/丙烯酸酯共聚乳液的合成及其性能》,精细化工,2007.24(1):13~16
    [93]张淑娴,杜小兰,廖俊,等.《三(三甲基硅氧基)甲基丙烯酰氧丙基硅烷的合成研究》,武汉大学学报(理学版),2003.49(6):717~719
    [94]Fowkes F M. Attractive forces at interfaces. Industrial and Engineering Chemistry Research,1964.56(12):40~49
    [95]Wu S. Polymer Interface and Adhesion. New York:Basel,1982.169~173
    [96]潘祖仁.《高分子化学(第三版)》.北京:化学工业出版社,2003.76
    [97]Quaal J G. US 3377371.1968

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700