用户名: 密码: 验证码:
土壤—苦丁茶树系统中铅的分布特征及迁移转化规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅是环境中对动植物以及人类毒性最强的典型重金属污染物。铅从土壤向茶叶部分迁移积累的强度和数量首先受重金属根际化学和生物过程及茶叶作物对其运输及分配特性的调控,也受土壤理化性质、生态环境条件等的影响。研究铅在土壤-苦丁茶树系统中的分布特征、迁移转化规律及影响因素,可以为降低铅对苦丁茶的潜在污染提供科学依据,对促进海南苦丁茶的开发利用具有重要的现实意义。
     本文建立了高压密封消解-石墨炉原子吸收光谱法和微波消解-电感耦合等离子体发射光谱法测定茶树及其土壤样品中铅含量的方法。以海南大学苦丁茶种质资源库、澄迈万昌苦丁茶场以及盆栽试验的苦丁茶树为对象,采集茶树及其土壤样品,用建立的方法对样品中铅进行测定。结果表明:采用高压密封罐消解样品、石墨炉原子吸收检测,铅在0.0-60.0ng·mL-1呈良好线性关系,相关系数r=0.99989,检出限为0.215ng·mL-1,方法精密度RSD<5%,加标回收率92%-107%;采用微波消解样品、电感耦合等离子体发射光谱检测,铅在0.0-400.0ng·mL-1呈现良好线性关系,相关系数r=0.99995,检出限为0.038ng·mL-1,方法精密度RSD<5%,加标回收率96%-107%。海大种质资源库中6种冬青科苦丁茶树系统,除华中苟骨有所异常,其铅分布特征为:土壤>>茶树,根际土壤>非根际土壤,吸收根>主根,枯叶>茎>老叶>嫩叶;作为烘制茶的嫩叶,生物吸收系数为0.005-0.016,铅含量为0.10μg·g-1~0.47μg·g-1,且枸骨冬青<苦丁茶冬青<大叶冬青<五棱冬青<霍山冬青<华中苟骨冬青,均远低于铅的限量指标(Pb≤5.0μg·g-1)。与澄迈茶场对照表明,苦丁茶冬青系统中铅的分布在不同种植地表现出一定的差异,且铅的分布还与种植年代有关。
     本文研究了海南大学种质资源库6种冬青科苦丁茶树土壤中铅的形态分布,结果显示:.残渣态>有机态>碳酸盐态>铁锰氧化态>可交换态。从非根际土壤到根际土壤,6种冬青科苦丁茶树土壤铅的各种形态的相对含量发生了改变,其变化情况虽各有差异,但总体上呈现出生物有效性较大的碳酸盐态铅和生物有效性居中的铁锰氧化态铅、有机态铅有下降趋势,而难于被植物吸收的残渣态铅含量有上升趋势,表明冬青科苦丁茶树的根际环境具有一定的降低铅污染的阻截作用。此外,还研究了盆栽苦丁茶冬青树土壤铅的形态分布随土壤pH、氧化还原电位(ORP)的影响,结果表明,在酸性条件下,随着酸性增强,铅的生物可给性有所下降,有利于减少铅对苦丁茶的危害;相反,在碱性条件下,随着碱性的增强,铅对苦丁茶冬青树污染的潜在风险增强,对苦丁茶的安全生产不利。随着ORP的增大,铅在苦丁茶根际土壤中的有效、潜在有效态增大,对苦丁茶的铅污染风险增大。
     改变pH、氧化还原电极电位和外源添加铅、镉、铜的单因素盆栽试验表明:①酸性条件下,铅主要被截留在土壤中,如pH=5.17时,铅在土壤中层富集,根、茎、叶中铝的含量均较低,铅的污染风险最低。②随着土壤氧化还原电位的增大,土壤中铅的含量先增大后降低,在ORP=260.5时含量为45.18 mg·kg-1达最大,此时茶树叶中铅的含量最低。表明此时茶树土壤将铅富集在表层,可阻止铅在土壤中的垂直下降及向植物体内的迁移吸收,从而降低铅在茶树叶中的含量。③随着外源铅浓度的增大,土壤中铅的含量表现为近似呈线性增加;茎、叶中铅含量呈现先增大后减小的分布规律。④随着外源镉浓度的增大,促进了铅在土壤和茶体内的迁移并最终富集在根际土壤和茶树的叶子中,即镉对铅的迁移具有协同作用。⑤随着外源铜浓度的增加,同样促进了铅在茶树根系-茎-叶之间的迁移,这和外源添加镉的影响类似。
     盆栽正交试验表明:铅浓度200mg·kg-1、铜浓度100mg·kg-1、镉浓度10mg·kg-1、复合肥5g/盆、pH=4情况下铅在土壤-苦丁茶系统中的迁移程度最高,说明此时各因素对苦丁茶树的复合污染最强;极差分析表明对苦丁茶树叶子中铅的生物吸收系数影响程度分别为:外源添加铅>酸碱度>外源添加铜>氧化还原电位>外源添加镉;方差分析表明:各因子的F检验值均小于F0(0.05),在95%置信度范围内,对苦丁茶树叶子中铅的生物吸收系数影响程度和极差分析结果一致。
Lead is typically the most toxic heavy metal pollutants for plants, animals and humans in environment. There are three factors that influence the lead of intensity and quantity when accumulating of migrating from soil to tea. The first is the chemical and biological processes in rhizosphere, the second is the regulation of transport and distribution characteristics in crops, the third is the of the soil physico-chemical properties and environmental conditions, etc. The study on distribution characteristics, migration and transformation, influencing factors of lead in the soil-Kudingcha system can provide scientific basis for reducing potential of lead contamination in Kudingcha. It also has important practical significance for promoting the development and utilization of Hainan Kudingcha.
     The methods were established for determining tea trees and its soil samples by high pressure sealed digestion-Graphite Fμrnace atomic absorption spectrometry (GF-AAS) and microwave digestion-inductively coupled plasma emission spectrometry (ICP-AES). Having been collected tea trees and its soil samples in Hainan university Kudingcha germplasm resource pool, Chengmai Wanchang Kudingcha plantation and pot experiments Kudingcha, the content of lead in samples was determined by established methods. The results showed that:The Linear Range of the standard curve was at 0.0 ng·g-1~60.0 ng·g-1, linear correlation coefficient was 0.99989, and the method detection limit was 0.215ng·mL-1, RSD<5%, the results of recovery test was 92%-106% by high pressure sealed digestion-Graphite Fμrnace atomic absorption spectrometry. The Linear Range of the standard curve was at 0.0 ng·g-1~400.0 ng·g-1, linear correlation coefficient was 0.99995, and the method detection limit was 0.038 ng·mL-1, RSD<5%, the results of recovery test was 96%-107% by microwave digestion-inductively coupled plasma emission spectrometry. Besides Ilex centrochinese S,Y. Hu, the lead distribution characteristics of six kinds Ilex Kudingcha systems in Hainan university Kudingcha germplasm resource pool were:soil >>tea tree, rhizosphere soil>non-rhizosphere soil, absorbing roots>main roots, dead leaves>stem >old leaves>young leaves. The biological absorption coefficient(BAC) of young leaves that were used for firing tea were 0.005~0.016. The contents of lead were 0.10μg·g-1~0.47μg·g-1,and the distribution were Ilex cornuta Lindl.     The research on the speciation distribution of Pb in six kinds Ilex Kudingcha soils in Hainan university Kudingcha germplasm resource pool showed:residual species> organic matter species> carbonates species> Fe-Mn oxides species> exchangeable species. The relative content of various speciation of Pb in six Ilex Kudingcha trees was changed from the non-rhizosphere soil to rhizosphere soil.Though the change was various, in general, there was a downward trend in the carbonates Pb which has greater bioavailability and in the Fe-Mn oxides Pb, the organic Pb which have intermediate bioavailability,yet there was an upward trend in the content of the residual Pb which was difficult to be absorbed by plants.The rhizosphere environment of Ilex Kudingcha trees has a certain block function to reduce the contamination of Pb. In addition, this article also researched the speciation distribution of Pb in pot experiments Ilex Kudingcha soils when pH and oxidation-reduction potential(ORP) in soil changed. The results indicated:under acidic condition, it was help for reducing the hazards of lead for Kudingcha that the bioavailability of lead decline along acidic enhancement. In contrast, under alkaline condition, it was harmful for safety production of Kudingcha that the potential risk of lead pollution in Ilex Kudingcha tree increased along acidic enhancement. With the increase of ORP, effective state and potentially effective state of lead were increased in Kudingcha rhizosphere soil. It increased risk of lead contamination in Kudingcha.
     Having been changed pH,oxidation-reduction potential(ORP) and exogenous lead, cadmium, copper, the pot experiments showed the following results.①under acidic condition, lead was mainly held up in soils. Such as pH= 5.17, lead was enriched in middle soils and it was lower in roots, stems and leaves. In such a case, it was minimum for pollution risk of lead.②The lead contents in soil was enlarged first followed by reduced as ORP enlarging. The maximum content of lead in soil was 45.18 mg·kg-1 and the content of lead in leaf was minimum when ORP=260.5,.In this situation, the lead was enriched in surface soil, the vertical drop of lead in soil was preventd,and the migration or absorption was also held up from soil to Kudingcha tree.It can decreased the congtent of lead in Kudingcha tree.③Along the enlargement of exogenous lead, the lead in soil presented approximate linear increased, and the lead in soil presented enlarged first followed by reduced.④Along the enlargement of exogenous cadmium, the migration of lead was promoted in soil-Kudingcha system, which lead to the enrichment of lead in rhizosphere soil and leaf. This meaed that the cadmium had synergistic effect for the migration of lead.⑤Along the enlargement of exogenous copper, the migration of lead was promoted in Kudingcha tree, which was similar with the effects of exogenous cadmium.
     The orthogonal experiment showed that:when the concentration of exogenous lead was 200mg·kg-1, the concentration of exogenous copper was 100mg·kg-1, the concentration of exogenous cadmium was 10mg·kg-1, the concentration of compound fertilizer was 5g per pot, pH=4, the migrational degree of lead was highest in soil-Kudingcha system. This meaned that the combined pollution of various factors was strongest in above-mentioned condition in Kudingcha tree. Range analysising showed that the biology absorption coefficient of lead in Kudingcha leaf was respectively effected by the following factors:exogenous lead> pH> exogenous copper> ORP>exogenous cadmium. Variance analysising showed that the F test of each factor were all less that Fo(0.05). At the 95% confidence interval, the biology absorption coefficient of lead in Kudingcha leaf was respectively effected similar with the results of range analysis.
引文
[1]蒋建敏,许实波.苦丁茶化学成分和药理作用研究进展[J].时珍国医国药,2000,11(1):92-94
    [2]俸宇星,陈书坤,赵瑞峰,等.中国冬青属苦丁茶名实辨证[J].植物分类学报,1998,36(4):353~358
    [3]鄢东海,郑道君,粱远发,等.粗壮女贞RAPD-PCR试验体系优化的研究[J].贵州科学,2007,25(2):56-58
    [4]向华林,许宏大,田文艺,等.中国皋芦(苦丁)茶降脂作用的试验研究[J].中国中药杂志,1994,19(8):497~498
    [5]吕江陵,刘素纯.苦丁茶浓缩袋泡剂对肥胖症大鼠小肠绒毛影响的电镜研究[J].中药材,1999,22(12):641~642
    [6]Nishimura keiichi, ToshiyukiF,Toshio M., Activity Guided isolation of Triterpenoid acyl CoA cholylacyl transferase inhibitors from Ilex kudincha[J]. Natprod.1999,62 (7),1061-1064
    [7]陈一,李开双,谢唐贵.苦丁茶冬青叶降压作用研究[J].中草药,1995,26(5):250-252
    [8]刘刚,刘炎文.苦丁茶的化学成分及药理研究进展[J].湖北中医杂志,1999,21(1):46-47
    [9]黄镇才.苦丁茶治疗高血压病35例观察[J].中国中医药信息,1997,4(4):125~126
    [10]屈立志,陆婷,鲁培基,等.苦丁茶对大鼠肾上腺素性高血糖的影响[J].中药新药与临床药理,1999,10(5):279~280.
    [11]董艳,乔建成,张晓丽,等.苦丁茶药效学试验研究[J].牡丹江医学院学报,2001,22(1):7~9.
    [12]蒋建敏,王兵,许实波,等.苦丁茶的抗菌作用研究[J].中药药理与临床,2001,17(1):18~19.
    [13]Huafu wang,Gordon J.Provan and Keith Helliwell.(200).Tea flavonoids their functions, utilization and analysis'in Treads inFood Seienee & Tehnology 11,152~ 160.
    [14]杨彪,龙盛京,覃振江,等.苦丁茶提取物抗氧化作用的研究.广西民族学院学报(自然科学版),2000,6(2):108~110
    [15]姚新生.犬然药物化学[M].北京:人民卫生出版社.2002:171~173.
    [16]朱莉芬,李美珠,钟伟新,等.苦丁茶的心血管药理研究[J].中药材,1994,17(3):37~40
    [17]黄镇才.苦丁茶治疗高血压35例观察[J].中国中医药信息杂志,1997,4(4):18~21
    [18]王启春,陈建华,刘晓娟,等.民族药苦丁茶对高血压及心脑血管疾病疗效观察[J].中国民族民间医药杂志,1998,34:12~14
    [19]许旋,罗一帆,卢忠.不同部位苦丁茶叶的微量元素和黄酮含量的测定[J].中国民族民间医药杂微量元素与健康研究志,2000,17(2):32~33
    [20]杨远庆.贵州苦丁茶化学成分研究[J].贵州农业科学,1996,3:31~33
    [21]刘祖生,梁月荣.苦丁茶化学成分研究[J].1991,17(1):71~74.
    [22]童小麟,唐明德.苦丁茶化学成分分析[J].茶叶通讯,1996,(1):32~33
    [23]戴素贤.苦丁茶香气组成研究[J].华南农业大学学报.1998,1:68
    [24]温飞,陶华旸,李丽群.重金属污染的研究进展[J].甘肃科技,2008,24(12):118~121
    [25]Donghua L, Wusheng J, Wei, W, Fengmei Z, Cheng L.1994. Effeets of lead on root growth, cell division, and nucleolus of Allium CePa.Environmental Pollution,86:1~4
    [26]杨卓亚,张福锁.土壤-植物体系中的铅[J].土壤学进展,1993,21(1):1~10
    [27]Kakuzo kitagishi,et al.Heavy Metal Pollution inSoil of Japan,Japan Scientific Societies Press,Tokyo,1981
    [28]周毅,李应学,戴碧琼等.土壤中的铅对作物的影响[J].农业环境保护,1986,5(2):9~129
    [29]黄会一.木本植物对大气重金属污染物铅镉吸收累积作用的初步研究[J].林业科学,1982,18(1):93~97
    [30]张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000
    [31]董悦,刘晓群等.土壤重金属污染研究进展[J]现代农业科技,2009,101(4):143~144
    [32]胡前胜,任铁玲,傅洪军,等.宫内铅暴露对大鼠神经行为发育的影响[J].中国公共卫生,2005,21(2):152~153
    [33]杨健,杨杰.慢性醋酸铅染毒对小鼠皮层神经细胞粘附分子mRNA表达的观察[J].解放军预防医学杂志,2006,24(1):37~38
    [34]陈天金,魏益民,潘家荣.食品中铅对人体危害的风险评估[J].中国食物与营养,2007,(2):15~18
    [35]中华人民共和国国家标准GB 14935—94食品中铅限量卫生标准
    [36]中华人民共和国国家标准GB 13078—91饲料类卫生标准
    [37]中华人民共和国国家标准GB 15618—95铅的土壤环境质量标准
    [38]刘丹赤.化妆品铅含量测定的样品预处理方法比较研究[J].2006,23(6):46~47
    [39]杨定清,谢永红,黄惠兰.氢化物原子荧光光谱法测定土壤中的铅[J].西南农业学报,2003,16(3):129-131
    [40]杜兵兵,罗盛旭等.土壤-苦丁茶树系统中铅的GF-AAS测定及其分布特性[J].环境化学,2010,29(2):310~315
    [41]陈甫华.微波消解法在环境样品重金属分析中的应用[J].南开大学学报,1992(2):46~50.
    [42]许钢.微波消解-原子吸收法测定植物中的微量金属元素[J].无锡轻工大学学 报,1999,18(2):80-84.
    [43]吴政宙.微波消化技术在铁矿石分析中的应用研究[J]冶金分析,2005,25(5):69~70.
    [44]单孝全,王仲文.形态分析与生物可给性[J].分析试验室,2001,20(6):103-108.
    [45]李非里,刘丛强,宋照亮.上壤中重金属形态的化学分析综述[J].中国环境监测,2005,21(4):21-26,.
    [46]朱她婉,沈壬水.土壤中金属元素的五个组分的连续提取法.土壤,1989,10(5):163-166
    [47]彭刚华.水稻土中重金属锡的形态含量变化.福建环境.2002,19(1):13-14
    [48]王亚平,黄毅,王苏明.土壤和沉积物中元素的化学形态及其顺序提取法.地质通报,2005,24(8):729~736
    [49]杨宏伟,王明仕,徐爱菊,等.黄河(清水河段)沉积物中锰、钻、镍的化学形态研究[J].环境科学研究.14(5):20~22
    [50]Rauret QRubio R, Lopez-Sanchez JF. Optimization of Tessier procedure for metal solid speciation in river sediments[J].Trends Anal. Chem.,1989,36:69-83
    [51]Petit MD, Rucandio MI.Sequential extractions for determination of cadmium distribution in coal fly ash, soil and sediment samples[J].Analytica Chimica acta,1999,401(1-2):283~ 291
    [52]顾淑华,旭军,朱忠精,等.红壤性水稻土铅环境容量研究[J].环境科学学报,1989,9(1):27~36
    [53]陈宝才,罗建中,关红安,等.土壤重金属污染及其化学特征[J].2009,122(1):94-95
    [54]段文锋.重视茶叶中的铅含量[J].上海计量测试,1995,(5):30
    [55]陈宗懋,吴询.关于茶叶中铅含量问题[J].中国茶叶,2000,22(5):3~5
    [56]李继明,叶学春,张全智,等.农产品的肥料污染与对策[J].河南农业科学,2002,(9):29~30
    [57]沈宏,徐青,殷学锋.痕量铅的形态分析[J].杭州师范学院学报,1997,3(5):112-114
    [58]徐和宝,王嘉熙,谢明云.铅对几种作物生长的影响及其在植物体内的累积[J].植物生态学与地植物学丛刊,1983,7(4):273-278
    [59]周鸿,刘成运.玉米幼根对铅的吸收途径及有关的两种酶活性变化初探[J].环境科学学报,1986,6(1):66-70
    [60]Kloke A,Riebartsoh.Nature wissens chaften,1964,51 (3):367~368
    [61]GKirehhoff, R.Bunsen, Chemieal Analysis by Spectrom-observation, Phil.Mag, 860,20(4).89
    [62]A.Walsh, Spectroehim Acta,1955,7,108
    [63]B.V.L'vov, Ing.Fiz.Zhur,1959,11(2),44
    [64]B.V.L'vov, Speetroehim Acta,1961,17,761
    [65]H.Masmann, Speetroehim Acta,1966,22,1325
    [66]马怡载,何华馄,杨啸涛编著,石墨炉原子吸收分光光度法[M].北京,原子能出版社:1989
    [67]C.Bendico, M.T.C.Deloos-Vollebregt, J.Anal.At.Speetrom,1991,6,353
    [68]T B Reed.J.appl.Phys,1961,32(821),2534
    [69]S Greefield.Analyst,1964,89,7
    [70]R H Wlendt.V A Fassel.Anal.Chem.1965,37,920
    [71]张桂和,郑道俊等.五种冬青科苦丁擦汗的酯酶同工酶分析[J].农业生物技术科学,2008,24(8):50~52
    [72]李丽蓉,姚伯元,罗盛旭.桉树土壤样品的采集和预处理[J].琼州学院学报,2007,14(5):19~21
    [73]薛小珍.江苏浙江两省茶叶中微量元素分析[J].苏州医学院学报.1999,19(12):1363~1364
    [74]石元值,马立锋等.茶叶重金属元素检测中样品采集及其触理[J].中国茶叶,2008,1:6~7
    [75]刘志广,张华,李亚明.仪器分析[M].大连:大连理工大学出版社,2007.185~186
    [76]吴良,杜兵兵,罗盛旭等,海南苦丁茶和绿茶叶中微量元素溶出率的比较分析[J].微量元素与健康研究,2008,25(5):39~41
    [77]Fortescme A C,Environmental Geochemistry[M].New York:Spring-Verlag,1980,79~172
    [78]周涛发,殷汉琴等.铜陵矿区土壤中铅的存在形态及生物有效性[J].合肥工业大学学报.2005,28(9):1147~1149
    [79]王美青,章明奎.杭州市城郊土壤重金属含量和形态的研究[J].环境科学学报,2002,22(5):603~608.
    [80]李天杰,宫世国,潘根兴,等.土壤环境学[M].北京:高等教育出版社,1996
    [81]谢凌等,极低放射性废物填埋场土壤理化指标的测定[J],化学研究与应用,2006.10:1238~1241
    [82]邢丹,刘鸿雁.铅锌矿区重金属耐性植物与超富集植物筛选研究进展[J].安徽农业科学,2009,37(7):3208~3209
    [83]朱江,周俊.外源铅在土壤中的形态、分布及其对土壤养分的影响[J].水土保持学报,2008,22(1):74~77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700