用户名: 密码: 验证码:
盐析两相流理论及旋流泵内部流动的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴有盐析的两相流动现象普遍存在于相关工业生产部门的盐类溶液输运流程中,结盐会造成能源与资源的极大浪费,这是学术界和工程界迫切需要解决的难题。目前对盐析两相流动理论的研究仍处于探索之中,叶轮机械内部盐析流动机理尚未被揭示。在国家自然科学基金项目(No.50476068)及江苏省普通高校研究生培养创新工程项目(No.CX07B_093z)的资助下,本文选择适用于盐类溶液输运的旋流式模型泵为研究对象,以具有典型盐析特性的硫酸钠过饱和溶液为输送介质,围绕盐析两相流动理论、旋流泵内盐析两相流动机理等问题进行了较为系统的研究,主要工作及取得的创新性成果如下:
     1、从分析盐析过程基本理论入手,详细阐述了晶体成核及生长、晶体颗粒输运等过程及其与流动的关系,研究认为:盐析进程中,过冷度(过饱和度)是盐析晶体晶核形成最直接的相变驱动力,非均相成核与碰撞成核是泵内盐析晶体成核的主导机制,且成核速率、成核后的晶体颗粒粒径与浓度分布受当地流动条件的制约。
     2、借鉴界面相理论的思想,首次提出并定义了邻界区概念,用以描述盐析层及其邻近区域特征,并将其划分为盐析界面层、吸附层和过渡层三部分,每一部分的结构与特性各不相同,在盐析过程中所起的作用也有差异;同时也对盐析层的内部结构及特性进行了分析,阐明了盐析层增长的数学处理方法及实验研究方法,由此提出研究泵内盐析进程时可建立“扬程—盐析时间”关系的设想。
     3、在上述研究基础上,采用双流体模型构建了比较符合实际的盐析流动物理模型,再利用流体力学方法建立了完整的盐析两相湍流流动方程组,给出了质量、动量、能量交换率及其它本构关系式,并采用k-ε-k_p模型对方程组进行封闭;在方程中计入因叶轮旋转而产生的离心力和科氏力等惯性力的作用,建立了叶轮机械中的盐析两相流方程组。
     4、提出引入粒数衡算模型(PBM)来描述泵内因盐析晶体颗粒间及颗粒与叶轮叶片或流道内壁间碰撞而产生的聚并、破碎等微观行为,并将其与宏观属性联系起来。研究表明用PBM-CFD的耦合方法可提高双流体模型的精度,对其应用于盐析流场计算的方法及存在的问题进行了分析,为盐析两相流动研究提供了一种新方法。
     5、基于Eulerian多相流模型和混合的RNG k-ε两方程湍流模型,采用滑移网格技术,对模型泵内的盐析两相流场进行了全流道、三维非定常计算,初步揭示了不同时刻、不同温度条件下泵内液相和盐析晶体颗粒相的运动特性及颗粒的迁移规律;根据颗粒浓度分布特点,推测泵内的盐析进程为:盐析层最初在压水室内壁及叶片工作面形成并不断增厚,最终堵塞流道。此外对泵送清水和盐溶液时的性能也进行了预测,并将结果与外特性试验数据对比。
     6、运用PIV在径向和轴向两种测量模式下对泵内不同外部条件下盐析两相流场进行了准三维测量,经图像后处理,获得了盐析晶体颗粒在叶轮内、无叶腔中及轴面上的速度矢量分布,实现了颗粒流场的可视化,更为直观地揭示了泵内盐析颗粒的运动规律。计算得到的颗粒运动规律与PIV实验结果基本一致,但在数值上与实验值存在一定差异。
     7、摸索了一套PDPA应用于叶轮机械内部盐析两相流场测量的有效方法,并对模型泵内盐析两相湍流流动进行了较细致和全面的测量,获得了盐析两相在无叶腔与叶轮内的湍流流动特性、盐析晶体颗粒粒径分布及浓度分布规律,并通过改变运行工况、输送介质温度、浓度等这些影响泵内盐析流动体系的主要参数,发现并详细分析了盐析流动随外部条件改变后的演化规律,基本掌握了无叶腔及叶轮内的盐析流动机理。
     本文的研究成果、研究方法在一定程度上可以推广应用于其它类型叶轮机械内的盐析流动的研究。
The salt-out two-phase flow phenomenon exists widely in the salt solution transporting process in relative industrial domain departments.It is a difficult issue both in academic and project field that costs vast waste of energy and resource.At present,researches on the salt-out two-phase flow theory are still on exploration road, especially in the internal field of impeller machinery.Under the support of National Natural Science Fund(No.50476068) and Postgraduate Cultivation Innovation Project of Jiangsu Province(No.CX07B_093z),vortex model pump suitable for salt solution transporting is adopted as the study object,and sodium sulfate supersaturated solution with representative characteristics of salt-out as the conveying medium in this paper. Systematic study on salt-out two-phase flow theory and salt-out flow mechanism in the vortex pump has been done.The major works and achievements are as following.
     1.Based on the basic theories of salt-out process,detailed descriptions about crystal nucleation and growth,crystal particle transportation and the relation with flow conditions are given.It is concluded that supercooling(or supersaturated) is the direct driving force of phase change in the nucleation process.Heterogeneous and collision nucleation become dominant mechanisms during pump salt-out.Nucleation velocity,crystal particle size and concentration distribution are affected mostly by local flow conditions.
     2.The idea of interface phase theory is helpful for proposing and defining the near interface zone.It is divided into three parts to describe the salt-out layer and zones nearby,such as salt-out interface,adsorption and transition layer.Each part with various structures and features makes different functions on salt-out process.Analysis on internal characteristics of salt-out layer is also taken.Mathematical and experimental methods on the layer increasing are illuminated.An assumption on looking for "pump head-time" relation is proposed for pump salt-out research.
     3.According to the practical process,two-fluid model is used to set up the physical model of salt-out flow.Then the whole salt-out two-phase turbulent flow equations are established by fluid mechanics methods.Constitutive relations are also given,such as mass,momentum,energy and so on.Equation group is closed by k-ε-k_p model.In order to establish the mathematics model in impeller machinery, centrifugal and coriolis forces due to the impeller rotation are involved in the equations.
     4.Population Balance Model(PBM) is introduced to describe the particle microscopic behaviors of coalescence and breakage,relate to the macroscopic features as well.It shows that PBM-CFD coupling may improve the precision of two-fluid model.Ways and existing problems of application on salt-out flow flied calculation are discussed.It provides a new way for studying the salt-out two-phase flow.
     5.Based on the Eulerian multiphase model and mixture RNG k-εturbulent model,three dimensional unsteady turbulent salt-out flow field in the pump is simulated by moving mesh technique.It is a preliminary study on the movements both liquid and salt-out particle phases at different time and temperature conditions. According to the particle concentration distribution,the salt-out process in the pump can be proposed that salt-out layer may formed on the internal wall of pump chamber and pressure side of impeller at first,and thickening until blocked the whole passage finally.Performance prediction of the pump when transporting water and salt solution is also studied.Results are compared and analyzed with experimental data.
     6.The salt-out flow field is measured on three dimensions by Particle Image Velocimemter(PIV) via radial and axial two test models.After image processing, velocity distribution of crystal particles in the pump is obtained.Particle flow field is visualized to reveal the particle motion law intuitionally.Except for the numerical difference,computational results are basically consistent with PIV data.
     7.Phase Doppler Particle Anemometer(PDPA) is used to measure the salt-out flow field in the pump in detail and completely.An effective method is groped for impeller machinery internal flow measurement.Turbulent flow features,crystal particle size and number density distribution in the impeller and volute are obtained. Evolution rule of salt-out flow with different external conditions is found and analyzed via changing the major factors that affecting flow system,such as pump running condition,conveying medium temperature and concentration.The salt-out flow mechanism in the pump is basically grasped at last.
     Research achievements and methods from this paper can be extended and applied on the salt-out two-phase flow in other types of impeller machinery.
引文
[1]张瑞年,石油开采中结盐的预测及防止[M],北京:石油工业出版社,1992.
    [2]Zaki,Nael N.A,Nehal S,et al.Sodium lignin sulfonate to stabilize heavy crude oil-in-water emulsions for pipeline transportation[J].Petroleum Sci.Tech.,2000,18:1175-1193.
    [3]Timothy D.Welch Tank Waste Transport,Pipeline Plugging,and the Prospects for Reducing the Risk of Waste Transfers.Web site:http://www.osti.gov/contact.html,Aug 2001.
    [4]Somerscales E F C,Knudsen J G.Fouling of heat transfer equipment[M].Hemisphere Publishing Corporation,1981.
    [5]Bott T R.Aspect of crystallization fouling[J].Exp.Therm.Fluid Sci.,1997,14:356-360.
    [6]Watkinson A P.Chemical reaction fouling[J].Exp.Therm.Fluid Sci.,1997,14:361-374.
    [7]Bansal B,Chen X D,Muller-Steinhagen H.Analysis of classical deposition rate law for crystallisation fouling[J].Chem.Eng.Proc.,2008,47:1201-1210.
    [8]Foster M,Augustin W,Bohnet M.Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation[J].Chem.Eng.Proc.,1999,38:449-461.
    [9]Scholl S,Augustin W.Numerical simulation of micro roughness effects on convective heat transfer[C].16~(th) European Symposium on Computer Aided Process Engineering and 9~(th)International Symposium on Process System Engineering,2006.
    [10]Karabelas A J.Scale formation in tubular exchangers-research priorities[J].Int.J.Therm.Sci.,2002,41:682-692.
    [11]Pamplin B R.Crystal growth[M].Pergamon Press,1980.
    [12]Tian S.Li,Iztok L,Ilievski D.Supersaturation and temperature dependency of gibbsite growth in laminar and turbulent flows[J].J.Crystal Growth.2003,258:409-419.
    [13]Andrzej J N,Ryszard A B,Adam F,et al.Analysis of fluid flow and energy transport in Czochralski's process[J].Computers & Fluids,2003,32:85-95.
    [14]Ma W J,Khoo B C,Xu D.Influence of coriolis force on bulk flows during horizontal Bridgman growth on a centrifuge:a numerical study[J].J.Crystal Growth,1998,193:430-442.
    [15]唐家俊.催化装置分馏塔顶部结盐的原因分析及对策[J].中外能源,2006,11:61-64.
    [16]陈荣杰,吴小薇,陈美惠等.卫城油田油井结盐机理分析及防治措施[J].内蒙古石油化 工,2006,7:96-98.
    [17]胡云峰.察尔汗盐湖卤水结盐条件分析与防治结盐的措施[J].青海地质,1994:21-27.
    [18]马红钦,朱慧铭,谭欣等.脱硅中液固循环流化床清洁传热[J].化工学报,2003,54:288-293.
    [19]邢晓凯,荆冬锋.CaCO3结垢过程控制机理分析[J].热能动力工程,2007,22:336-350.
    [20]杨传芳,徐敦颀,沈自求.CaCO3结垢诱导期的理论分析与实验研究[J].化工学报,1994,45:199-205.
    [21]崔海亮.溶菌酶晶体生长过程中固/液流动体系的流体特性[J].科学通报,2007,52:777-784.
    [22]张小平,钱宁.流态化结晶过程中晶体生长的湍流传质模型[J].化工学报,1997,48:465-470.
    [23]宇慧平,隋允康,张峰翊等.紊流模型模拟分析旋转对提拉大直径单晶硅的影响[J].人工晶体学报,2004,33:835-840.
    [24]金蔚青,潘志雷,蔡丽霞等.溶质表面张力对流模型及其对空间实验的解析[J].无机材料学报,2000,15:385-391.
    [25]贾卫东,杨敏官,王春林等.绿液结盐过程中的物理化学作用[J].盐业与化工,2007,36:21-23.
    [26]杨敏官,贾卫东,王春林等.盐析流动理论研究综述[J].盐业与化工,2007,36:35-38.
    [27]Yang M G,Jia W D,Gao B,et al.The fractal features of salt-out crystal surface in liquid-solid two-phase flow[C].8th Asian International Fluid Machinery Conference.October,2005 Yichang,China.
    [28]贾卫东,杨敏官,高波等.管内绿液输运过程中结盐机理[J].江苏大学学报(自然科学版),2005,26:514-516.
    [29]杨敏官,董祥,刘栋等.输卤管路结盐诱导期试验[J].江苏大学学报(自然科学版),2007,28:504-507.
    [30]贾卫东,杨敏官,高波等.水平圆管内盐析湍流流动特性的实验研究[J].过程工程学报,2008.8:1075-1079.
    [31]Nizamutdinov A S,Semashko V V.Optical and gain properties of series of crystals LiF-YF3-LuF3 doped with Ce3+ and Yb3+ ions[J].J.Luminescence,2007,127:p71-75.
    [32]Forward,Peter.Control of iron biofouling in submersible pumps in the woolpunda salt interception scheme in South Australia[C].National Conference Publication - Institution of Engineers,Australia,1994:169-174.
    [33]Shin-Ichiro Kawasaki.Flow characteristics of aqueous salt solutions for applications in supercdtical water oxidation[J].J.Supercritical Fluids,2007,42:241-254.
    [34]Mesenzhnik Y Z,Prut L Y.Operational reliability of electrocentrifugal pumps for oil production in Western Siberia[J].Elektrotekhnika,1994,8:26-30.
    [35]Lopez,Michael,Goodwin,et al.Successful application of horizontal multistage centrifugal pumps in lean amine service[C].Proceedings,Annual Convention-Gas Processors Association,1998:78-82.
    [36]Sakr S A.Type curves for pumping test analysis in coastal aquifers[J].Ground Water,2001,39:5-9.
    [37]Kenji Shimizu,Toshio Nomura.Crystal size distribution of aluminum potassium sulfate in a batch crystallizer equipped with different types of impeller[J].J.Crystal Growth,1998:178-184.
    [38]Maret Liiri,Tuomas Koiranen.Secondary nucleation due to crystal-impeller and crystal-vessel collisions by population balances in CFD modeling[J].J.Crystal Growth,2002:2188-2193.
    [39]周黎旸,沈乃璋.结晶介质泵密封的改进[J].工艺与设备,2002,9:20-22.
    [40]刘迎香,杨东兰,张傲霜等.防盐抽油泵的设计与应用[J].断块油气田,2005,12:81-84.
    [41]江梅.盐湖卤水输送设备的防结盐及防腐蚀[J].IM&P化工矿物与加工,2006,7:33-34.
    [42]王春林,杨敏官,殷震宇等.输卤泵水力模型的试验研究[J].流体机械,2003,31:5-7.
    [43]杨敏官,刘栋,高波等.盐析液固两相流对化工泵性能影响的研究[J].中国工程热物理学会多相流分会论文集.2007,大庆.
    [44]Yang M G,Liu D.Reseach of liquid-solid two-phase flow in the chemical pump[J].9~(th)AICFM,2007,10,Korea.
    [45]Yang M G,Liu D.Research of the PIV technology used to measure the Liquid-solid flow in the pump[J].5~(th) ISMTMF,2006,Macau.
    [46]杨敏官,刘栋,贾卫东等.离心泵叶轮中固液两相流动的数值模拟[J].水泵技术,2005,(4):31-34.
    [47]杨敏官,贾卫东,周洪斌等.输卤泵叶轮内部湍流流动的分析[J].农业工程学报, 2005,21:86-89.
    [48]杨敏官,贾卫东,刘栋等.混流式输卤泵内部湍流场的研究[J].农业机械学报,2005,36:46-50.
    [49]杨敏官,刘栋,康灿等.离心泵叶轮内部伴有盐析流场的分析[J].农业机械学报,2006,37:83-86.
    [50]杨敏官,刘栋,贾卫东等.离心泵叶轮内部三维湍流流动的分析[J].江苏大学学报(自然科学版),2006,27:524-527.
    [51]刘栋,杨敏官,李辉等.化工泵叶轮内部固液两相流场的研究[J].水泵技术,2007,(3):16-19.
    [52]杨敏官,高波,刘栋等.旋流泵内部液固两相流场的PDPA测量与分析[J].农业机械学报,2007,38:53-57.
    [53]杨敏官,顾海飞,刘栋等.离心泵叶轮内部湍流流动的数值计算及试验[J].机械工程学报,2006,42:180-185.
    [54]杨敏官,高波,刘栋等.旋流泵内部盐析两相流速度场的PDPA实验[J].工程热物理学报,2008,29:237-240.
    [55]Yang M G,Liu D,Dong X.Analysis on Turbulent Flow in the Impeller of Chemical Pump[J].Journal of Engineering Science &Technology,2007,2:218-225.
    [56]杨敏官,刘栋,康灿等.离心泵叶轮内部伴有盐析流场的PIV实验研究[J].中国工程热物理学会多相流分会论文集,2006,重庆.
    [57]陈海生,谭春青.叶轮机械内部流动研究进展[J].机械工程学报,2007,43:1-12.
    [58]刘瑞韬,徐忠.离心叶轮机械内部流动的研究进展[J].力学进展,2003,33:518-532.
    [59]Johnson M W,Moore J.Secondary flow mixing losses in a centrifugal impeller[J].ASME J.Eng.Power,1983,105:24-32.
    [60]Johnson M W,Moore J.The influence of flow rate on the wake in a centrifugal impeller[J].ASME J.Eng.Power,1983,105:33-39.
    [61]Abramian M,Howard J H G Experimental investigation of the steady and unsteady relative flow in a model centrifugal impeller passage[J].ASME J.Turbo.,1994,116:269-279.
    [62]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002.
    [63]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2007.
    [64]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报,2001,52:1-12.
    [65]Liu G Z,Van der eerden J P,Bennema P.The opening and closing of a hollow dislocation core:a Monte Carlo simulation[J].J Crystal Growth,1982,58:152-160.
    [66]Cheng V K W.A Monte Carlo study of moving steps during crystal growth and dissolution[J].J Crystal Growth,1993,134:356-365.
    [67]Meioslawa R,Marek I,Andrzej B.Kinetic Monte Carlo study of crystal growth from solution[J].Computer Physics Comm.,2001,138:250-256.
    [68]Cyrus K A,Lu Y.Lattice bolzmann simulation of solid particle suspended in fluid[J].J.Statistical Physics,1995,81:49-61.
    [69]Filippova O,Hanel D.Lattice-Bolzmann simulation of gas-particle flow in filters[J].Computer & Fluids.1997,27:5627-2628.
    [70]Otmis,Hadj,Ahmadi Goodarz.Brownian particle deposition in a directly simulated turbulent channel flow[J].Physics of Fluids A Fluid Dynamics,1993,5:1427-1432.
    [71]Mclaughlin J B.Aerosol Particle Deposition in Numerically Simulated Channels Flow[J].Phy.Fluids,1989,A2(7):1211-1224.
    [72]Squires K D,Eaton J K.Particle Response and Turbulence Modification in Isotropic Turbulence[J].Phy.Fluids,1990,A2(7):1291-1203.
    [73]Martin J.E.;Meiburg E.The accumulation and dispersion of heavy particles in forced two-dimensional mixing layers:The fundamental and subharmonic cases[J].Phy.Fluids,1994,6:1116-1132.
    [74]吴玉林等.离心泵叶轮内部固液两相流动的大涡模拟[J].清华大学学报(自然版),2001,41:93-96.
    [75]魏进家等.离心泵叶轮内密相液吲两相湍流的数值模拟[J].应用力学学报,2001,17:1-7.
    [76]吕晓珍等.两相流中颗粒相对湍流动能修正的模型及其应用[J].中国科学技术大学学报,1999,29:702-07.
    [77]周力行,古红霞.用非线性κ-ε-κ_p两相湍流模型模拟旋流两相流动[J].空气动力学学报,2001,19:288-295.
    [78]顾海飞.离心泵压出室及管内盐析液固两相流动的研究[D].江苏大学硕士学位论文,2007。
    [79]刘栋.离心泵内部盐析流场的数值模拟及实验研究[I)].江苏大学博士学位论文,2008.
    [80]董祥.离心泵叶轮叶片出口安放角对盐析流动影响的研究[D].江苏大学硕士学位论文,2008.
    [81]McCoy B J.A population balance framework for nucleation,growth,and aggregation[J].Chem.Eng.Sci.,2002,57:2279-2285.
    [82]Patruno L E,Dorao C A,Svendsen H F,et al.Analysis of breakage kernels for population balance modelling[J].Chem.Eng.Sci.,2009,64:501-508.
    [83]Drumm C,Menwer M A,Hans-Jorg B.Coupling of CFD with DPBM for an RDC extractor[J].Chem.Eng.Sci.,2009,64:721-732.
    [84]Stephan A S,Martin S,Menwer M A,et al.Droplet population balance modeling-hydrodynamics and mass transfer[J].Chem.Eng.Sci.,2006,61:246-256.
    [85]Oamar S,Ashfaq A,Angelov I,et al.Numerical solutions of population balance models in preferential crystallization[J].Chem.Eng.Sei.,2008,63:1342-1352.
    [86]Bannari R,Kerdouss F,Selma B,et al.Three-dimensional mathematical modeling of dispersed two-phase flow using class method of population balance in bubble columns[J].Computers and Chem.Eng,2008,32:3224-3237.
    [87]Nopens I,Briesen H,Ducoste J.Celebrating a milestone in Population Balance Modeling[J].Chem.Eng.Sci.,2009,64:627.
    [88]苏军伟,顾兆林,李云.以体积为内部坐标数量平衡模型的矩直接积分方法[J].西安交通大学学报,2007,41:621-624.
    [89]J.W.Su,Z.L.Gu,Y.Li,et al.Solution of population balance equation using quadrature method of moments with an adjustable factor[J].Chem.Eng.Sci.,2007,62:5897-5911.
    [90]苏军伟,焦建英,顾兆林等.颗粒系统成核、长大、聚并微观行为的模拟[J].中国科学B 辑,2008,38:844-850.
    [91]顾兆林,苏军伟,李云等.两相及多相体系的离散相行为与群体平衡模型[J].化学反应工程与工艺,2007,23:162-167.
    [92]林先贤.电动式过程层析成像基础研究[D],东北大学硕士学位论文,2004.
    [93]Levy Y,Lockwood F C.Velocity measurements in a particle laden turbulent free jet[J].Combustion and Flame,1981,40:333-339.
    [94]Lee S L,Durst E On the motion of particles in turbulent duct flows[J].Int.J.Multiphase Flow,1982,8:125-146.
    [95]Modaress D.,Tan H.,Elghobashi S.Two-Component LDA measurement in a two-phase turbulent jet[J].AIAA J.,1984,22:624-630.
    [96]Barlow R S,Morfison C O.Two-phase velocity measurements in dense particle-laden jets[J].Exp.Fluids,1990,9:93-104.
    [97]Vassallo P E,Trabold T A,Moore W E,et al.Measurements of velocities in gas-liquid two-phase flow using laser Doppler velocimetry[J].Exp.Fluids,1993,15:227-230.
    [98]Kashinsky O N,Timkin L S.Slip velocity measurements in an upward bubbly flow by combined LDA and electrodiffusional techniques[J].Exp.Fluids,1999,26:305-314.
    [99]刘青泉.水一沙两相流的激光多普勒分相测量和试验研究[J].泥沙研究,1988,6:72-79.
    [100]路展民,李广达等.气泡一水流两相流的激光多菩勒法测量[J].力学学报,1988,20:55-64.
    [101]Cader T,Masbemat O,Roco M C.LDV measurements in a centrifugal slurry pump:water and dilute slurry flows[J].ASME J Fluids Eng.,1992,114:606-615.
    [102]Wernet M P.Development of Digital Particle Imaging Velocimetry for Use in Trubomachinery[J].Exp.Fluids,2000,28:97-115.
    [103]Day S W,McDaniel J C.PIV Measurements of Flow in a Centrifugal Blood Pump:Steady Flow[J].J.Biomechanical Eng,2005,127:244-253.
    [104]Kadambi J R,Charoenngam P,Subramanian A.Investigations of Particle Velocities in a Slurry Pump Using PIV:Part 1:the Tongue and Adjacent Channel Flow[J].J.Energy Resources Tech.,2004,126:271-278.
    [105]许洪元,焦传国.两相流研究中的PIV实验技术-图像分析与处理[J].水泵技术,1997:3-6.
    [106]Stoffel B,Ludwig G,Weiss K.Experimental Investigations on the Structure of Part-Load Recirculations in Centrifugal Pump Impellers and the Role of Different Influence[J].Proc of 16~(th) IAHR Symp,1992,445-454.San Paulo
    [107]Dabiri D.Digital particle image thermometry/veloeimetry:a review[J].Exp Fluids,2009,46:191-241.
    [108]代钦,康文.基丁图像分割的两相流PIV/Frv测量技术[J].实验流体力学,2008,22:88-94.
    [109]盛森芝,徐月亭,袁辉靖.日新月异的现代流动测量技术[M].北京大学特赛流动测 量研究中心,1999.
    [110]Sazhin,S S,Crua,C.,Kennaird,D,et al.The initial stage of fuel spray penetration[J].Fuel,2003,82:875-885.
    [111]Günter B,Heiko B,Franz D.Investigation of the unsteady two-phase flow with small bubbles in a model bubble column using phase- Doppler anemometry[J].Chem.Eng.Sci.,2002,57:5143-5159.
    [112]Geiss S A,Dreizler Z.,Stojanovic M.,et al.Investigation of turbulence modification in a non-reactive two-phase flow[J].Exp.Fluids,2004,36:344-354.
    [113]Ismailov M M,Obokata T,Kobayashi K,et al.LDA/PDA measurements of instantaneous characteristics in high pressure fucl injection and swirl spray[J].Exp.Fluids,1999,27:1-11.
    [114]Tao Guo,Ting Wang,Gaddis J L.Mist/Steam cooling in a hcated horizontal tube- part 2:result sand modeling[J].Transactions of the ASME,2000,122:366-374.
    [115]Anjorin V AO,Tang H,Morgan A J,et al.An experimental and numerical investigation into the dispersion of powder from a pipe[J].Exp.Thermal and Fluid Sci.,2003,28:45-54.
    [116]沈熊.应用双镜头三维LDV/PDPA系统诊断液流模型流动特性方法[J].流体力学实验与测量,1998,12:53-58.
    [117]苏亚欣,骆仲涣,卓建坤.方形下排气分离器气固两相流动的PDA研究[J].动力工程,2000,20:942-945.
    [118]任凯锋,王希麟,张会强.后台阶气固两相流动的PDPA实验[J].清华大学学报(自然科学版),2005,45:1099-1102.
    [119]刘正先,曹淑珍,谷传纲等.离心叶轮内三维湍流流场的研究[J].工程热物理学报,1999,20:558-562.
    [120]缪骏,谷传纲,王彤等.小流量工况下旋转离心叶轮内部流场PDA测量与分析[J].上海交通大学学报,2004,38:1209-1213.
    [121]王磊,郝金波,李争起等.应用PDA测量多重旋转气固两相流流场[J].流体机械,1999.29:9-12.
    [1]A.Fedyushkin,N.Bourago,V.Polezhaev et al.The influence of vibration on hydrodynamics and heat-mass transfer during crystal growth[J].J.Crystal Growth,2005,275:e1557-e1563.
    [2]姚连增.晶体生长基础[M].中国科学技术大学出版社,1995.
    [3]张克从.晶体生K科学与技术(上册)[M].科学出版社,1997.
    [4]Brian R.Pamplin.Crystal growth(second edition)[M].Pergamon Press,1980.
    [5]J.Lothe,G.M.Pound.Reconsiderations of nucleation[J].J.Appl.Phys.,1962,36(8):2080.
    [6]C.B.Richardson,Tamara D.Snyder.A study of heterogeneous nucleation in aqueous solution[J].Langmuir,1994,10:2462-2465.
    [7]Clifford Y.Tai,Cheng Yi Shih.A new model relating secondary nucleation rate and supersaturation[J].J.Crystal Growth,1996,160:186-189.
    [8]C.Gabn,A.Mersmann.Brittle fracture in crystallization processes Part A.Attrition and abrasion of brittle solids[J].Chem.Eng.Sci.,1999,54:1273-1282.
    [9]C.Gahn,A.Mersmann.Brittle fracture in crystallization processes Part B.Growth of fragments and scale-up of suspension crystallizers[J].Chem.Eng.Sci.,1999,54:1283-1292.
    [10]Maret Liiri,T.Koiranen,J.Aittamaa.Secondary nucleation due to crystal-impeller and crystal-vessel collision by population balances in CFD-modelling[J].J.Crystal Growth,2002,237:2188-2193.
    [11]D.Maynes,J.Klewicki,P.McMurtry et al.Hydrodynamic scalings in the rapid growth of crystals from solution[J].J.Crystal Growth,1997,178:545-558.
    [12]A.Shakib Manesh,J.A.Astrom,A.Koponen et al.Fouling dynamics in suspension flows[J].Eur.Phys.J.E.,2002,9:97-102.
    [13]M.lqbal H.Bhuiyan,D.S.Mavinic,R.D.Beekie.Nucleation and growth kinetics of struvite in a fluidized bed reactor[J].J.Crystal Growth,2008,310:1187-1194.
    [14]Bing Shi,W.James Frederick,Jr,et al.Nucleation,growth and composition of crystal obtained from solution of Na_2SO_3 and Na_2SO_4[J],Ind.Eng.Chem.Res.,2003,42:6343-6347.
    [15]T.R.Bott.Aspect of crystallization fouling[J].Exp.Them.Fluid Sci.,1997,14:356-360.
    [16]R.Oliveria.Understanding adhesion:a means for preventing fouling[J].Exp.Them.Fluid Sci.,1997,14:316-322.
    [17]J.W.Mullin.Crystallization(3~(rd) edition)[M].Butterworth Heinemann,1993.
    [18]A.Helalizadeh,H.Muller Steinhagen,M.Jamialahmadi.Mixed salt crystallization fouling[J].Chem.Eng.Prec.,2000,39:29-43.
    [19]A.J.Nowak,R.A.Bialecki,Adam Fic,et al.Analysis of fluid flow and energy transport in Czochralski's process[J].Compu.& Fluids,2003,32:85-95.
    [20]Hongmin Li,M.J.Braun.A new heating configuration for hydrothermal crystal growth vessels to achieve better thermal and flow environments[J].J.Crystal Growth,2007,299:109-119.
    [21]Q.Kang,L Duan,W.R.Hu.Mass transfer process during the NaCLO3 crystal growth process[J].Int.J.Heat Mass Transfer,2001,44:3213-3222.
    [22]B.Bansal,X.D.Chen,H.M.Steinhagen.Analysis of classical deposition rate law for crystallization fouling[J].Chem.Eng.Prec.,2008,47:1201-1210.
    [23]吴树森,章燕豪.界面化学-原理与应用[M].华东化工学院出版社,1989.
    [24]顾惕人等.表面化学.科学出版社,1994.
    [25]管志远,刘铮,丁富新等.界面相及其特性、表征与应用[J].化工学报,1999,50:356-361.
    [26]胡学铮,刘俊康,虞学俊等.界面不稳定现象与相间迁移[J].物理化学学报,1998:1503-1506.
    [27]李国华,王大伟,黄志良.晶体生长界面相研究[J].人工晶体学报,2001,30:170-176.
    [28]Grimbergen R.EP,Meekes H.,Bennema E,et al.On the prediction of crystal morphology Ⅰ.The Hartman-Perdok theory revisited[J].Acta Cryst,1998,A.54:491-500.
    [29]Grimbergen R.F.P,Bennema E,Meekes H.On the prediction of crystal morphology Ⅲ.Equilibrium and growth behavior of crystal faces containing multiple connected nets[J].Acta Cryst,1999,A55:84-94.
    [30]H.Takiyama,N.Tezuka,M.Matsuoka,et al.Growth rate enhancement by micro-crystals and the quality of resulting potashalum crystal[J].J.Crystal Growth,1998,192:439-447.
    [31]M.Foster,W.Augustin,M.Bohnet.Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation[J].Chem.Eng.Proc.,1999,38:449-461.
    [32]F.Brahim,W.Augustin,M.Bohnet.Numerical simulation of fouling process[J].Int.J.Therm.Sci.,2003,42:323-334.
    [33]M.Bohnet,W.Augustin,H.Hirsch.Influence of fouling layer shear strength on removal behaviour,in:T.R.Bott,et al.(Eds),Understanding heat exchanger fouling and its mitigation,United Engineering Foundation and Begell House,1997:201-208.
    [34]D.Q.Kean,R.E.Seaton.A theoretical analysis of thermal surface fouling[J].British Chem.Eng.,1959,4:258-262.
    [35]D.Q.Kean,R.E.Seaton.Surface fouling how to calculate limits[J].Chem.Eng.Proc.,1959,55:71-73.
    [36]J.Lammers.Zur kdstallisation von calciumsulfat bei der verkrustung von heizflachen[D].TU Berlin,1972.
    [37]M.Bohnet.Fouling of heat transfer surfaces[J].Chem.Engrg.Technon.,1987,10:113-125.
    [38]贾卫东,杨敏官,王春林等.盐析层热阻随时间变化的试验[J].江苏大学学报(自然科学版),2008,29:134-137.
    [39]刘栋,杨敏官,董祥等.盐析液同两相流对化工泵性能的影响[J].排灌机械,2008,26:61-64.
    [1]贾卫东,杨敏官,王春林等.盐析层热阻随时间变化的试验[J].江苏大学学报(自然科学版),2008,29:134-137.
    [2]马根娣,孙鸿元.气液二相流研究概述[J].力学进展,1986,16:65-72.
    [3]车得福,李会雄.多相流及其应用[M].西安交通大学出版社,2007.
    [4]Y.Zhang,J.D.Wilson,E.P.Lozowski.A trajectory simulation model for heavy particle motion in turbulent flow[J].ASME J.Fluids Eng.,1989,111:492-494.
    [5]Y.Tsuji,T.Kawaguchi,T.Tanaka.Discrete particle simulation of 2-dimensional fluidizod bod[J],Powder Tech.,1993,77:79-87.
    [6]T.Kawaguchi,T.Tanaka,Y.Tsuji.Numerical simulation of two-dimensional fluidizod beds using the discrete element method[J].Powder Tech.,1998,96:129-138
    [7]J.N.Chung,T.R.Troutt.Simulation of particle dispersion in an axisymmetric jet[J].J.Fluid Mech.,1988,188:199-222.
    [8]Marc Boivin,Olivier Simonin.On the prediction of gas-solid flows with two-way coupling using large eddy simulation[J].Phys.of Fluids,2000,812:2080-2090.
    [9]D.B.Spalding.Mathematical Models of Continuous Combustion,Emissions from Continuous Combustion Systems[M],Plenum Press,1972.
    [10]D.Gidaspow.Multiphase flow and fluidization-continuum and kinetic theory descriptions[M].Academic Press,1994.
    [11]王维,李佑楚.颗粒流体两相流模型研究进展[J].化学进展,2000,12:208-217.
    [12]刘大有.二相流体动力学[M].高等教育出版社,1993.
    [13]贾卫东.盐析流动理论及管内绿液流动的PDPA实验研究[D].江苏大学博士论文,2006.
    [14]D.A.Drew,L.A.Segel.Averaged equation for two-phase flows[J].Studies in Applied Math,1971,50.
    [15]J.M.Delhaye.Local time-averaged equations in two-phase flow and heat transfer[M].Vol.1,Hemisphere,1977.
    [16]A.Fedyushkin,N.Bourago,V.Polezhaev et al.The influence of vibration on hydrodynamics and heat-mass transfer during crystal growth[J].J.Crystal Growth,2005,275:e1557-e1563.
    [17]F.Wang,Z.S.Mao.Numerical and experimental investigation of liquid-liquid two-phase flow in stirred tanks[J].Indus.& Eng.Chem.Research,2005,44:5776-5787.
    [18]傅旭东,王光谦.低浓度固液两相流颗粒相本构关系的动理学分析[J].清华大学学报(自然科学版),2002,42:560-563.
    [19]边琳,王立,刘传平.颗粒流拟流体的本构关系[J].过程工程学报,2007,7:467-471.
    [20]王光谦,熊刚,方红卫.颗粒流动的一般本构关系[J].中国科学E辑,1998,28:282-288.
    [21]陶文铨.数值传热学(第二版)[M].西安交通大学出版社,2001.
    [22]陶文铨.计算传热学的近代进展[M].科学出版社,2000.
    [23]彭维明,程良骏.叶轮机械中的三元固液两相流动理论研究[J].四川工业学院学报,1996,15:72-80.
    [24]刘佑华,程良骏.水力机械中固液两相流研究-水力机械中固液两相流基本方程组[J].水动力学研究与进展,1993.8:247-252.
    [25]唐学林,唐宏芬,吴玉林.水轮机转轮内固液两相紊流场数值模拟及磨蚀预估[J].工程热物理学报,2001,22:51-54.
    [26]H.L.Cui,Y.Yu,W.C.Chert,et al.Study.on flow characteristics of solid/liquid system in lysozyme crystal growth[J].Chinese Sci.Bulletin,2007,52:1196-1204.
    [27]R.Andersson,B.Andersson,F.Chopard,et al.Development of multiscale simulation method for design of novel multiphase reactors[J].Chem.Eng.Sci,2004,59:4911-4917.
    [28]P.Chen,J.Sanyal,M.P.Dudukovic.Numerical simulation of bubble column flows:effect of different breakup and coalescence closures[J].Chem.Eng.Sci,2005,60:1085-1101.
    [29]J.Sanyal,D.L.Marchisio,R.O.Fox,et al.On the comparison between population balance models for CFD simulation of bubble columns[J].Indus.& Eng.Chem.Research,2005,44:5063-5072.
    [30]J.B.McCoy.A population balance framework for nucleation growth and aggregation[J].Chem.Eng.Sci,2002,57:2279-2285.
    [31]I.Nopens,C.A.Biggs.Advances in population balance modeling[J].Chem.Eng.Sci,2006,61:1-2.
    [32]M.J.Hotmslow.Population balance modeling of particulate systems[J].Chem.Eng.Sci,2002,57:2123.
    [33]D.L Marchisio,J.T.Pikturna,R.O.Fox,et al.Quadrature method of moments for population-balance equations[J].A.I.Ch.E.Journal,2003,49:1266-1276.
    [34]C.Drumm,M.M.Attarakih,Hans-Jorg Bart.Coupling of CFD with DPBM for an RDC extractor[J].Chem.Eng.Sci,2009,64:721-732.
    [35]M.J.Hounslow,H.S.Mumtaz,A.P.Collier,et al.A micro-mechanical model for the rate of aggregation during precipitation from solution[J].Chem.Eng.Sci,2001,56:2543-2552.
    [36]E.D.Hollander,J.J.Derksen,L.M.Portela,et al.Numerical scale-up study for orthokinetic agglomeration in stirred vessels[J].A.I.Ch.E.Journal,2001,47:2425-2440.
    [37]T.Kramer,M.M.Clark.Incorporation of aggregate breakup in the simulation of orthokinetic coagulation[J].J.of Colloid and Inter.Sci,1999,216:116-126.
    [38]F.E.Kruis,K.A.Kusters.The collision rate of particles in turbulent flow[J].Chem.Eng.Comm,1997,158:201-230.
    [39]Ten Cate,A.Derksen,J.J.Kramer,et al.The microscopic modeling of hydridynamics in industrial crystallizers[J].Chem.Eng.Sci,2001,56:2495-2509.
    [40]D.Ilievski,I.Live An agglomeration efficiency model for gibbsite precipitation in a turbulently stirred vessel[J].Chem.Eng.Sci.,2006,61:2010-2022.
    [41]C.A.Coulaloglou,L L.Tavlaridcs.Description of interaction process in agitated liquid-liquid dispersions[J].Chem.Eng.Sci.,1997,32:1289-1297.
    [42]C.Martínez-Bazán,J.L.Montanes,J.C.Lasheras.On the breakup of an air bubble injected into a fully devoloped turbulent flow.Part 1.Breakup frequency[J].J.Fluid Mech,1999,401:157-182.
    [43]A.N.Sathyagal,D.Ramkrishna.Droplet breakage in stirred dispersions.Breakage function from experimental drop-size distributions[J].Chem.Eng.Sci.,1996,51:1377-1391.
    [44]S.Qamar,A.Ashfaq,I.Angelov,ct al.Numerical solutions of population balance models in preferential crystallization[J].Chem.Eng.Sci.,2008,63:1342-1352.
    [45]S.Kumar,D.Ramkristma.On the solution of population balance equations by discretization-1.A fixed pivot technique[J].Chem.Eng.Sci.,1996,51:1311-1332.
    [46]苏军伟,顾兆林,李云.以体积为内部坐标数量平衡模型的矩直接积分方法[J].西安交通大学学报,2007,41:621-624.
    [47]K.Sabelfeld,S.Rogasinsky,A.Kolodko,et al.Stochastic algorithms for solving the smolouchovsky coagulation equation and applications to aerosol growth simulation[J].Monte Carlo Methods and Appl.,1996,2:41-87.
    [48]M.Nicmanis,M.J.Hounslow.Finite-Element methods for steady-state population balance equations[J].A.I.Ch.E Journal,1998,44:2258-2272.
    [49]R.McGraw.Description of aerosol dynamics by quadrature method of moments[J].Aerosol Sci.and Tech.,1997,27:255-265.
    [50]R.Fan,D.L.Marchisio,R.C.Fox.Application of the direct quadrature method of moments to polydispcrse gas-solid fluidized beds[J].Powder Tech.,2004,139:7-20.
    [51]D.L.Marchisio,R.D.Vigil,R.O.Fox.Implementation of the quadrature method of moments in CFD codes for aggregation-brcakage problems[J].Chem.Eng.Sci.,2003,58:3337-3351.
    [52]D.Ramkrishna.Population balance:Theory and applications to particulate systems in engineering[M].Academic Press,2000.
    [53]M.Smith,T.Matsoukas.Constant-Number Monte Carlo simulation of population balances[J].Chem.Eng.Sci.,1998,53:1777-1786.
    [54]V.Alopaeus,J.Koskinen,K.I.Keskinen.Simulation of the population balances for liquid-liquid systems in nonideal stirred tank.Part 1 description and qualitative validation of the model[J].Chem.Eng.Sci.,1999,54:5887-5899.
    [55]S.Schlauch.Numerical simulation of stirred liquid-liquid systems[J].Proc.Appl.Math.Mech.,2006,6:541-542.
    [56]S.Lo.Application of population balance to CFD modeling of gas-liquid reactors.In:Proceeding of the Trends in Numerical and Physical Modeling for Industrial Multiphase Flows,2000.
    [57]H.A.Jakobsen,H.Lindborg,C.A.Dorao.Modeling of bubble column reactors:progress and limitations[J].Indus.& Eng.Chem.Research,2005,44:5107-5151.
    [58]F.Lehr,M.Millies,D.Mewes.Bubble-size distributions and flow field in bubble column[J].A.I.Ch.E Journal,2002,48:2426-2442.
    [59]P.Moilanen,M.Laakonen,O.Visuri,et al.Modeling local gas-liquid mass transfer in agitated viscous shear-thinning dispersions with CFD[J].Indus.& Eng.Chem.Research,2007,46:7289-7299.
    [60]T.Wang,J.Wang,Y.Lin.A CFD-PBM coupled model for gas-liquid flows[J].A.I.Ch.E Journal,2006,52:125-140.
    [61]A.Vikhansky,Kraft.Modeling of a RDC using a combined CFD-population balance approach[J].Chem.Eng.Sci.,2004,59:2597-2606.
    [62]J.W.Su,Z.L.Gu,Y.Li,et al.Solution of population balance equation using quadrature method of moments with an adjustable factor[J].Chem.Eng.Sci.,2007,62:5897-5911.
    [63]苏军伟,焦建英,顾兆林等.颗粒系统成核、长大、聚并微观行为的模拟[J].中国科学B 辑,2008,38.844-850.
    [1]Chen Hongxun.Research on turbulent flow within the vortex pump[J].Journal of Hydrodynamics,Set B,2004,16(6):701-707.
    [2]Schivley G P.Analytical and experimental study of a vortex pump[J].Trans ASME,Ser D,1970,92(4):889-900.
    [3]Hideki OHBA,Yukitoshi NAKASHIMA,Kazuaki SHIRAMOTO,et al.A study on performance and internal flow pattern of a vortex pump[J].Bulletin of the JSME,1978,21(162):1741-1749.
    [4]Masanori AOKI.Studies on the vortex pump(1st report)[J].Bulletin of the JSME,1983,26(213):387-393.
    [5]Masanori AOKI.Studies on the vortex pump(2nd report)[J].Bulletin of the JSME,1983,26(213):394-398.
    [6]Masanori AOKI.Studies on the vortex pump(3rd report)[J].Bulletin of the JSME,1983,26(216):1014-1019.
    [7]Masanori AOKI.Studies on the vortex pump(4nd report)[J].Bulletin of the JSME,1983,26(216):1020-1025.
    [8]沙毅,杨敏官等.旋流泵的特性分析与设计方法探讨[J].农业工程学报,2004,20(1):124-128.
    [9]施卫东等.旋流泵内部流动的研究[J].农业机械学报,2006,37(1):66-70.
    [10]汪永志,施卫东,董颖.旋流泵的研究现状与展望[J].排灌机械,2004,22(2):8-11.
    [11]全诚.旋流泵设计理论及试验研究[D].江苏工学院硕士论文,1990.
    [12]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995.
    [13]林清安.Pro/ENGINEER Wildfire2.0零件设计基础篇(上)[M].北京:清华大学出版社,2006.
    [14]林清安.Pro/ENGINEER Wildfire 2.0零件设计基础篇(下)[M].北京:清华大学出版社,2006.
    [15]林清安.Pro/ENGINEER Wildfire 2.0零件设计高级篇(上)[M].北京:清华大学出版社,2006.
    [16]高波.旋流泵内部液固两相流场的计算及PDPA实验研究[M].江苏大学硕士论文,2006.
    [17]Zhang M.L.,Shen Y.M.Three-Dimensional simulation of meandering river based on 3-D RNG κ-ε turbulence model[J].Journal of Hydrodynamics,2008,20(4):448-455.
    [18]Shum Y.K.P,Tan C.S.,Cumpsty N.A.Impeller-diffuser interaction in a centrifugal compressor[J].J.Turbo.,2000,122(4):777-786.
    [19]Kreuz-Lhli T,Fiisinger D,Schulz A,et al.Numerical and experimental study of unsteady flow field and vibration in radial inflow turbines[J].J.Turbo.,2000,122(2):247-254.
    [20]贾卫东,杨敏官,高波等.管内绿液输送过程中结盐机理[J].江苏大学学报(自然科学版),2005,26(6):514-517.
    [21]许洪元,吴玉林,戴江等.离心式叶轮中低浓度固体颗粒分布的研究[J].工程热物理学报,1994,15(3):288-291.
    [22]许洪元,吴玉林,高志强等.稀相同粒在离心泵轮中的运动实验研究和数值分析[J].水利学报.1997,9:12-18.
    [23]M.Forster,W.Augustin,M.Bohnet.Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation[J].Chem.Eng.and Proc.,1999,38:449-461.
    [24]刘栋,杨敏官,董祥等.盐析液固两相流对化工泵性能的影响[J].排灌机械,2008,26:61-64.
    [25]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,2006.
    [26]王明杰,雷志军,朱俊强.压气机叶片附面层转捩的试验研究[J].工程热物理学报,2008,29(3):419-422.
    [27]张克危.流体机械原理(上)[M].北京:机械工业出版社,2000.
    [28]钱忠东,杨建东.湍流模型对水轮机压力脉动数值预测的比较[J].水力发电学报,2007,26(12):111-115.
    [29]聂磊,史玉升,魏青松,等.基于灌水器流量的湍流模型适应性研究[J].节水灌溉,2008,(1):13-17.
    [1]Adiran R.J.Particle-imaging techniques for experimental fluid mechanics[J].Annu.Rev.Fluid Mech.,1991,23:261-304.
    [2]Dudderar T.D.,Meynart R.,Simpkins P.G.Full-Field laser metrology for fluid velocity measurement[J].Optics and Laser in Eng.,1988,9:163-199.
    [3]Post M.E.,Trump D.D.,Goss L.P.,et al.Two-color particle-imaging velocimetry using a single argon-ion laser[J].Exp.in Fluid,1994,16:263-272.
    [4]Keane R.D.,Adrian R.J.Theory of cross-correlation analysis of PlY images[J].Applied Sci.Research,1992,49:191-215.
    [5]TSL Particle Image Velocimetry(PIV):Operations Manual[M].1995.
    [6]高波,刘栋,康灿等.300MW轴流式核主泵模型内流测量方案探讨[J].流体机械,2009,37:20-23.
    [7]杨敏官,刘栋,顾海飞等.盐析液固两相流场的PIV测量方法[J].江苏大学学报(自然科学版),2007,28:324-327.
    [1]杨敏官,王军锋,罗惕乾等.流体机械内部流动测量技术[M].北京:机械工业出版社,2005.
    [2]盛森芝,沈熊,舒玮.流速测量技术[M].北京:北京大学出版社,1987.
    [3]沈熊,许宏庆,周作元.激光多普勒测速技术的原理和实践[M].北京:科学出版社,1992.
    [4]VAN de Hulst.Light scattering by small particle[M].W'dey,New York,1957.
    [5]Zhang Zh.,Ziada S.PDA measurement of droplet size and mass flus in the three-dimensional atomization region of water jet in air cross-flow[J].Exper.In Fluids,2000,28:29-35.
    [6]Bates C.J.,Ayob R.Annular two-phase flow measurements using phase Doppler anemometry with scattering angles of 30° and 70°[J].Flow Meas.Instrum.,1995,6:21-28.
    [7]DUALPDA reference Guide[M],Dantec Measurement Technique,1997.
    [8]Damaschke N,Gouesbet G,Grehan G,et al.Response of phase Doppler anemometer systems to nonsphedcal droplets[J].Applied Optics,1998,37:1752-1760.
    [9]Naqwi A A.Sizing of irregular particles using a phase Doppler system[I].Part.Part.Syst. Charact.1996,13:343-349.
    [10]Gauchet N,Girasole T,Ren K E Application of generalized Lorenz-Mie theory for cylinders to cylindrical particle characterization by phase-Doppler anemonetry[J].Optical Diagno.In Eng.1997,2:1-6.
    [11]Black D.L,MeQuay M O.Laser-based particle measurements of spherical and nonspherieal particles[J].Int.J.Multiphase Flow,2001,27:1333-1362.
    [12]Zeng Z M,Zhang B M,Yang Q.Identification and quantification of non-spherical particles[J].Trans.Tianjin Univ.,2002,8:75-78.
    [13]Prevost P,Borce J,Nugliseh H J,et al.Measurement of fluid/particle correlated motion in the far field of an axisymmetrie jet[J].Int.J.Multiphase Flow,1996,22:685-701.
    [14]Yang M G,Gao B,Jia W D,et al.Experimental study on internal rotational flow field of vortex pump[J].9~(th) AICFM,Korea,2007,10.
    [15]竺晓程,赵岩,杜朝辉.PDA和PIV在旋转叶轮测量中的周向定位[J].流体机械,2003,31:1-4.
    [16]Ubaldi M,Zunino P,Ghiglionc A.Detailed flow measurements within the impeller and the vaneless diffuser of a centrifugal turbomachine[J].Exp.Therm.Fluid Sci.,1998,17:147-155.
    [17]Cader T,Masbernat O,Roco M C.LDV measurements in a centrifugal slurry pump:water and dilute slurry flows[J].J Fluids Eng,ASME.1992,114:606-615.
    [18]Zhang Zh.Optical guidelines and signal quality for LDA applications in circle pipes[J].Exp.in Fluids,2004,37:29-39.
    [19]徐祥开,刘应征,罗次中等.有机玻璃板对PDA测量结果的研究[J].激光技术,2003,27:268-270.
    [20]贾卫东,杨敏官,高波等.水平圆管内盐析湍流流动特性的实验研究[J].过程工程学报,2008,8:1075-1079.
    [21]Mergheni M A,Sautet J C,Godard G,et al.Experimental investigation of turbulence modulation in particle-laden coaxial jets by phase Doppler anemometry[J].Exp.Therm.Fluids Sci.,2009,33:517-526.
    [22]Gillandt I,Fritsching U,Bauckhage K.Measurement of phase interaction in dispersed gas/particle two-phase flow[J].Int.J.Muitiphase Flow,2001,27:1313-1332.
    [23]Ooms G,Gunning J,Poelma C,et al.On the influence of the particles-fluid interaction on the turbulent diffusion in a suspension[J].Int.J.Multiphasc Flow,2002,28:177-197.
    [24]Gore R.,Crowc C T.Effects of particle size on modulating turbulent intensity[J].Int.J.Multiphase Flow,1989,15:279-285.
    [25]陈立,林鹏,叶小云.泥沙对挟杂水流流动结构影响的研究[J].水利学报,2003,9:39-43.
    [26]李玲,徐忠.颗粒浓度及颗粒尺寸对管内气固两相流动速度结构的影响[J].水动力学研究与进展,1999,14:154-161.
    [27]路展民,刘清泉,刘大有,等.水平液·固流中颗粒抑制湍流的行为和条件[J].力学学报,1996,28:291-197.
    [28]刘大有,路展民.竖置管流中液固两相脉动特性和颗粒浓度分布[J].力学学报,2000'32:552-558.
    [29]刘大有.二相流体动力学[M].北京:高等教育出版社,1993.
    [30]Sommerfcld M,Qiu H H.Particle congcentration measurements by phase-Doppler anemometry in complex dispersed two-phase flows[J].Exp.In Fluids,1995,18:187-198.
    [31]李文广.离心泵输送粘油时叶轮内部流动模型[J].水动力学研究与进展,2003,18:450-454.
    [32]董祥.离心泵叶轮叶片出口安放角对盐析流动影响的研究[D].江苏大学硕士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700