用户名: 密码: 验证码:
不同营养水平和EDTA对铅污染土壤植物修复的影响及植物对铅胁迫响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业“三废”和机动车尾气的排放、污水灌溉及农药、除草剂和化肥的使用,污染了土壤,水体和大气,其中土壤中的重金属铅污染更为严重。重金属铅在植物根、茎、叶及籽粒中的大量积累,不仅影响植物的生长和发育,而且会进入食物链,危及人类的健康。存在于土壤中的重金属铅难以被微生物分解和转化,对动植物和人类的危害具有隐蔽性,长期性和不可逆性等特点。目前采用的物理化学方法修复重金属污染土壤,费用昂贵,破坏环境,容易造成二次污染,且往往并不能达到真正清除重金属的目的。近十年出现的植物修复技术在不破坏环境的条件下使土壤重金属得以清除,是一种绿色环保技术。植物修复过程中重金属铅迁移特性在很大程度上取决于土壤的化学特性,其在介质中的存在形态是衡量重金属铅环境效应的关键参量。近年来,EDTA和N、P、K肥等基质在重金属铅污染土地上的植被重建中有着重要的作用,但是,EDTA的添加方式和N、P、K肥如何以及多大程度上影响重金属铅的移动性和植物的重金属吸收研究较少。我们采用中国北方常见的几种植物——菠菜(Spinacia oleracea)、马齿苋(Portulaca oleracea)、苣荬菜(Sonchus arvensis)、向日葵(Helianthus annuus)作为实验材料,通过室内盆栽的实验,运用生理生化等技术分别从个体和器官水平上研究几种植物耐铅和富集铅的生理特性,同时探讨铅污染土壤植物修复过程中土壤营养水平和添加EDTA浓度的不同对几种植物的修复效率的影响及应用前景,以期为深入研究铅污染土壤的植物修复技术的应用等提供科学依据和理论基础。
     现将本研究的主要结果归纳如下:
     1.通过试验比较了不同的无机营养水平下菠菜和苣荬菜对铅污染土壤修复及其对土壤中重金属铅形态改变的影响。结果表明:随着N、P、K浓度的增加两种植物地上和地下部分的铅浓度均增加,且最高的N、P、K浓度与对照相比能够使苣荬菜茎中铅浓度增加23.4%(P=0.0202),氮营养处理也分别能够增加菠菜和苣荬菜地下部根的铅浓度49.4%和57.7%(P=0.0106, P=0.0329),钾、磷营养对菠菜体内的铅浓度几乎没有什么影响。在两种植物比较中发现菠菜体内的铅浓度要低于苣荬菜,但由于菠菜的生物量远远大于苣荬菜,因此,菠菜对铅的植物提取能力反而大于苣荬菜。对土壤中铅形态的研究发现N、P、K营养液的添加能够使铅的非残留态向残留态转化。由此证明,氮和磷营养处理能有效的提高两种植物对铅的吸收,其中磷肥是低有机质铅污染土壤植物修复最有效的修复剂。
     2.通过试验比较了在铅污染土壤上三种植物菠菜、苣荬菜和马齿苋生物量、不同部分铅浓度和铅积聚的量。在三种植物中,菠菜和苣荬菜属于C3型植物种,而马齿苋属于C4型植物种。C4型植物种对热、干旱和盐环境的适应能力比C3型植物种强,同样C4型植物种的马齿苋对重金属Pb的胁迫环境的适应性也强于菠菜和苣荬菜。C4型植物种的马齿苋生物量在生长初期的8月25日达到了最大,而C3型植物种生物量在生长末期9月26日才达到最大。三种植物地上部和地下部的Pb浓度存在着差异,菠菜的地上部Pb浓度小于地下部,马齿苋的两者没有显著差异,而苣荬菜地上部的Pb浓度显著大于地下部,但是由于苣荬菜的生物量较小,因此整个苣荬菜体内富集的Pb总量是三种植物中最低的。体内Pb总量最大是菠菜,因此在中等Pb污染的土壤修复过程中应该选用菠菜。由于C4型植物种的马齿苋具有能够在生长早期就达到构件的成熟,并且有较高的重金属积聚量,因此在短期的修复工程,应该选用C4型植物种修复,这样可以在有限的时间内增加植物修复的次数。
     3.通过试验,比较了有机营养和EDTA对向日葵体内铅积累的影响及其EDTA添加次数对向日葵铅积累和产生的环境威胁进行了研究。结果表明:EDTA对铅的移动性存在着浓度依赖性,随着EDTA的浓度提高增加移动性(P<0.001)。有机营养处理对铅移动性的影响则存在着明显的不同,因为有机营养腐殖质对重金属铅存在移动和固定两种影响,因此中等有机营养对植物修复最为有效(P=0.002)。在低营养土壤中,相同浓度EDTA的单次添加相对于两次添加使植物地上部的铅浓度更低,因此EDTA的分次添加对植物修复更加有效,这是因为低浓度EDTA的分次添加对土壤的影响时效要长于同等浓度EDTA的单次添加(P<0.001)。通过试验也可以观察出向日葵是中等铅污染土壤植物修复非常有推广潜力的植物种。
     根据上述结果,不同营养水平和EDTA对铅污染土壤植物修复的机理及效率可以归纳为:N、P、K的添加能使土壤中的非残留态Pb向残留态转化,因此N、P、K的添加能够增加菠菜和苣荬菜体内的铅积累;与C3型植物菠菜、苣荬菜相比,C4型的植物马齿苋由于构件成熟期短,较为适合作短期内铅污染土壤修复工程;在植物修复过程中,低浓度EDTA的分次添加能够显著提高修复的效率,并且能够减小螯合剂增加产生的二次污染。本文的创新点在于:首次对植物修复过程中无机营养N、P、K元素和低剂量多频次添加EDTA的效果进行了比对研究,特别是研究了N、P、K元素对土壤中Pb形态的影响和土壤的肥力情况与分次添加EDTA的交互作用,初步解决了采用东北地区本地植物种进行植物修复的治理效率问题,避免采用非本地种可能引起的生态入侵等次生环境风险,对面源污染的植物修复的实施提供了科学依据和理论基础。低成本的N、P、K元素和低剂量多频次EDTA的添加也加强了植物修复过程中的成本控制,对在空间尺度较大的中等程度铅污染土壤上实施植物修复的广泛应用具有重要的意义。
Soils contaminated with metals pose a major environmental and human health problem, which is still in need of an effective and affordable technological solution. The phytoremediation is a cost-effective“green”technology based on the use of metal-accumulating plants to remove toxic metals. In phytoremediation process, Pb mobility and the change of Pb fractionations were controlled by the physio-chemical properties of the soils, and Pb fractionations impacted on the toxic levels of heavy metal. The success of reclamation schemes is dependent greatly upon the choice of plant species and their methods of establishment. Mixed substrate of EDTA and NPK fertilizer has been used to restore contaminated soil in recent years, however, little is known about the effect of both major nutrient elements and EDTA on various forms and mobility of Pb and metal extraction. Plant growth and lead accumulation of accumulating and non-accumulating ecotypes of Sedum Spinacia oleracea, Sonchus arvensis, Portulaca olerace, and Helianthus annuus were studied with greenhouse pot experiments. To elucidate the characteristics of Pb tolerance and accumulation in the accumulating ecotype of plants, a series of chemical, biochemical analytic techniques were used to study the absorption, distribution of Pb at tissue and unit in plant, as well its application to phytoremediation. The major results were summarized as follows:
     1. In the greenhouse pot experiments, we studied influences of major nutrient elements on Pb phytoextraction of two crops (S. oleracea and S. arvensis) from a Pb-contaminated soil. Results indicated that the Pb concentrations in both shoots and roots of two crops ascended with increasing nutrient elements, and the highest nutrient treatment had the best effect as compared with other treatments in which the Pb concentrations in shoots of S. arvensis increased 23.4% (P=0.0202), and nitrogenous nutrient treatment had the best effect in which the Pb concentrations in roots of S. oleracea and S. arvensis increased 49.4% and 57.7% respectively (P=0.0106, P=0.0329), as compared with the control treatment. The potassic and phosphorus nutrient treatments had little effect on the Pb concentrations in plant tissues for S. oleracea. Pb concentration in S. oleracea was lower than S. arvensis. Because of the higher total biomass in S. oleracea than S. arvensis, the ability to Pb phytoextraction in S. oleracea was better than S. arvensis. Sequential extraction results indicated that the addition of soil amendments transform soil Pb from nonresidual fractions to residual fraction substantially. The results suggested that nitrogen and phosphorus amendments can effectively increase Pb uptake by two crops, and phosphorus fertilizer is the best amendment to remediate Pb-contaminated soil with low organic matter.
     2. We examined biomass accumulation, tissue concentrations of Pb, and net uptake of Pb in S. oleracea, S. arvensis, and P. olerace grown under greenhouse conditions in soil of middle Pb concentrations. Some physiological differences between S. oleracea, S. arvensis, and P. olerace include photosynthetic pathways (C3, C3, and C4, respectively). The transpiration rates and salt tolerance of C4 plants were greater than C3 plants. Whole plant biomass of P. olerace was significantly greatest on initial period August 25, but the greatest biomass of both S. oleracea and S. arvensis was on harvest period September 26. This difference in allocation was more profound at the middle Pb contaminated soil. In S. oleracea, significantly more of Pb concentration was allocated to belowground biomass (roots) than to aboveground biomass (leaves and stems), but S. arvensis was in reverse. No difference between aboveground and belowground of Pb concentration was in P. olerace. The highest pool of Pb was allocated to aboveground biomass in S. oleracea, so S. oleracea was a potential plant for remediation in middle Pb-contaminated soils. The grown period of tissues in P. olerace was short, so if the time of phytoremediation process was not abundant, the replacement of C4 plants with C3 plants may increase times and efficiency of remediation.
     3. Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels. The main aims of this paper were to investigate whether a combination of nutrients and ethylenediaminetetraacetic acid (EDTA) enhanced Pb uptake of sunflower (Helianthus annuus) plants, and if timing of EDTA application altered Pb uptake and environmental persistence. Plants were grown in greenhouse pot experiments. Pb distributions and uptake of the whole plant were studied using chemical and flame atomic absorption spectrometry analyses. Pb mobilization by EDTA appeared to be dose dependent (P<0.001), with more mobilization for the high than the low dose. There were distinct differences in mobilization patterns of various nutrient amendments. EDTA mobilized Pb more in the medium than the highest and lowest nutrient levels. Heterogeneous soil humus components exerted mobilizing and stabilizing effects, so the medium nutrition was most effective for phytoextraction (P=0.002). At low nutrient levels, Pb concentration in the shoot with one low EDTA application was less than two applications to the same total EDTA dosage. So in the poor soil, two applications of EDTA was more effective than once. The half-life of two low EDTA treatment applications was longer than for one application, to the same total dosage (P<0.001). In general, sunflower was suited to phytoremediation of moderately Pb-contaminated soil by phytoextraction.
     The result mentioned above showed that the main reasons that nutrient and EDTA could impact on phytoremediation efficiency was these as below: firstly, the addition of soil amendments (N, P, and K) transform soil Pb from nonresidual fractions to residual fraction substantially. Secondly, the grown period of tissues in C4 plants was short, so the replacement of C4 plants with C3 plants may increase times and efficiency of remediation. Finally, two applications of low dose EDTA were more effective than once, and decreased secondary pollution. The innovative points of the study were that the phytoremediation efficiency with twice addition of low dose EDTA and nutrients (N, P, and K) were studied for the first time, the interaction of soil characters and EDTA addition and the affection of nutrients (N, P, and K) on soil Pb fractions were concerned emphatically, secondary environmental risk of ecological invasion was avoided, and scientific basis and theoretical foundation were supplied for non-point source phytoremediation. Addition of low cost nutrients and low dose EDTA in the process of phytoremediation was adopted in order to achieve goal to better control cost, hence which had important significance to wide application of phytoremediation on large area middling Pb polluted soil.
引文
[1]NATO/CCMS Pilot Study. Evaluation of Demonstrated and Emerging Technologies for the Treatment of Contaminated Land and Groundwater (Phase III)[R]. 2003.
    [2]EPA's Draft Report on the Environment- Better Protected Land[EB/OL]. http://nlquery.epa.gov/epasearch/epasearch, 2003-06-25.
    [3]State of the Environment Australia. Australia State of the Environment Report 2001[EB/OL]. http://www.deh.gov.au/soe/2001/glossary.html, 2004-06-20.
    [4]Treasury Board of Canada Secretariat. Federal Contaminated Site Inventory[EB/OL]. http://www.tbs-sct.gc.ca/dfrp-rbif/cs-sc/home-accueil.asp, 2005-01-04.
    [5]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社, 2001. 265-298.
    [6]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态, 1999, 10(3): 21-27.
    [7]ETCS (European Topic Centre Soil). Topic Report-Contaminated Sites[R]. European Environment Agency. 1998. 142.
    [8]周启星,林海芳.污染土壤及地下水修复的PRB技术及展望[J].环境污染治理技术与设备, 2001, 2(5): 48-53.
    [9]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报, 2001, 21(7): 1197-1203.
    [10]孙波.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学报, 2003, 22(2): 248-251.
    [11]徐应明,李军幸.新型功能膜材料对污染土壤铅汞镉钝化作用研究[J].农业环境科学学报, 2003, 22(1): 86-89.
    [12]王凯荣.我国农业重金属污染现状及其治理利用对策[J].农业环境保护, 1997, 16(6): 174-178.
    [13]张春兴.利用树木叶片铅含量指示大气铅污染状况的研究[J].生态学杂志, 1984, 23: 5-9.
    [14]李丽光,何兴元,曹志强, et al.土壤-作物系统中铅的研究进展[J].生态学杂志, 2004, 23(1): 78-82.
    [15]杨卓亚,张福锁.土壤-植物体系中的铅[J].土壤学进展, 1993, 21(5): 1-10.
    [16]欧阳喜辉.绿色食品生产基地环境质量监测与评价探讨[J].农业环境保护, 1999, 18(6): 281-282.
    [17]周海红,张志杰,王士龙.重金属在农田生态系统中迁移的建模研究[J].农业环境保护, 2001, 20(5): 315-318.
    [18]周鸿.防治铅污染的土壤改良措施的初步研究[J].农业环境保护, 1986, 6(6): 18-20.
    [19]周泳.铅在紫色土-水稻体系中的植物效应及形态[J].农村生态环境, 1993, 2: 54-57.
    [20]Schmidt U. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals[J]. J Environ Qual, 2003, 32: 1939-1954.
    [21]State Environmental Protection Administration of China. Chinese Environmental Quality Standard for Soils (GB 15618-1995)[EB/OL]. http://www.zhb.gov.cn/image20010518/4573.pdf, 2006.
    [22]缪天成,王惠琪,郑春江.环境背景值研究[J].中国环境科学, 1990, 10(4): 255-262.
    [23]夏时雨,刘清.土壤中不同形态铅的提取及其深度[J].环境污染与防治, 1994, 16(4): 27-29.
    [24]顾淑华,旭军.红壤性水稻土铅环境容量研究[J].环境科学学报, 1989, 9(1): 27-36.
    [25]Czuba M, Hutchinson T C. Copper and Lead Levels in Crops and Soils of the Holland Marsh Area-Ontario[J]. J Environ Qual, 1980, 9(4): 565-575.
    [26]Mortvedt J J. Plant uptake of heavy metals zinc fertilizers made from industrial by-products[J]. J Environ Qual, 1985, 14(3): 424-427.
    [27]符建荣.土壤中铅的积累及污染的农业防治[J].农业环境保护, 1993, 12(5): 223-226
    [28]苏以荣,向万胜,何电源.炉渣硅肥的肥效及重金属对土壤和水稻的影响[J].农业现代化研究, 1995, 16(5): 321-324.
    [29]张学询,熊先哲.辽河下游草甸棕壤重金属环境容量极其应用[J].环境科学学报, 1988, 8(3): 295-306.
    [30]Smith W H, Thomas G S. The hubbard ecosystem study: biogeochemistry of lead in the Northern Hardwood Forest [J]. J Environ Qual, 1981, 10: 323-333.
    [31]Turner R S, Johnson A H, Wang D. Biogeochemistry of lead in McDonalds Branch Watershed, New Jersey Pine[J]. J Environ Qual, 1985, 14(3): 305-314.
    [32]蒋彬,张慧萍.稻精米中铅镉砷含量基因型差异的研究[J].云南师范大学学报, 2002, 22(3): 37-40.
    [33]Allen P D, Mohammad S, Shubei N. Loading estimates of lead ,copper ,cadmium ,and zinc in urban runoff from specific sources[J]. Chemosphere, 2001, 44(5): 997-1009.
    [34]Tiller K G.土壤中的主要重金属和有毒重金属及其生态关系[J].土壤学进展, 1987, 15(2): 37-43.
    [35]陈维新,张玉龙,陈中赫, et al.沈阳东郊沈抚公路两侧土壤铅含量分布规律的初步研究[J].农业环境保护, 1990, 9(2): 10-13.
    [36]刘玉萃,李保华,吴明作.大气-土壤-小麦生态系统中铅的和迁移规律研究[J].生态学报, 1997, 17(4): 418-425.
    [37]张义贤.汞、镉、铅胁迫对油菜的毒害效应[J].山西大学学报(自然科学版), 2004, 27(4): 410-413.
    [38]秦天才,吴玉树,王焕校.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994, 14(1): 46-50.
    [39]马文丽,王转花.铅胁迫对乌麦及普通小麦抗氧化酶的影响[J].山西农业科学, 2004, 32(2): 8-12.
    [40]庞欣,王东红,彭安.铅胁迫对小麦幼苗抗氧化酶活性的影响[J].环境科学, 2001, 22(5): 108-111.
    [41]江行玉,赵可夫.铅污染下芦苇体内铅的分布和铅胁迫相关蛋白[J].植物生理与分子生物学学报, 2002, 28(3): 169-174.
    [42]周希琴,莫灿坤.植物重金属胁迫及其抗氧化系统[J].新疆教育学院学报,植物重金属胁迫及其抗氧化系统, 19(2): 103-108.
    [43]匡少平,徐仲,张书圣.水稻对土壤中环境重金属激素铅的吸收效应及污染防治[J].环境科学与技术, 2002, 25(2): 32-34.
    [44]宋玉芳,徐华夏,任丽萍.土壤重金属污染对蔬菜生长的抑制作用及其生态毒性[J].农业环境科学学报, 2003, 22(1): 13-15.
    [45]张晓枫.微量元素铅与人体健康的关系[J].数理医药学杂志, 2004, 17(5): 473-474.
    [46]赵进沛,李清亚.铅与人体健康贵州环保科技[J].贵州环保科技, 1998, 4(3): 25-27.
    [47]华珞,陈承慈,刘全义.土壤污染的治理方法研究[J].农业工程学报, 1992, 8: 90-99.
    [48]Sav H, Christopher J. Intergrated in situ soil remediation technology: The Lasagna Proces[J]. Environ Sci Technol, 1995, 29: 2528-2534.
    [49]Naidu R, Kookana R S, Sumner M E. Cadmium sorption and transport in variable charge soil[J]. J Environ Qual, 1997, 26: 602-617.
    [50]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报, 2001, 38(2): 212-218.
    [51]余贵芬,蒋新,孙磊.有机物质对土壤镉有效性的影响研究综述[J].生态学报, 2002, 22(5): 770-776.
    [52]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志, 2004, 23(1): 65-72.
    [53]周启星,宋玉芳,于颖, et al.污染土壤修复原理与方法[M].北京:科学出版社, 2004. 22-42.
    [54]Salt D E, Smith R D, Raskin I. Phytoremediation[J]. Ann Rev Plant Physio Plant Molec Biol, 1998, 49: 643-668.
    [55]姜理英,杨肖娥,石伟勇, et al.植物修复技术中有关土壤重金属活化机制的研究进展[J].土壤通报, 2003, 34(2): 154-157.
    [56]杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制[J].植物营养与肥料学报, 2002, 8(1): 8-15.
    [57]Meers E, Ruttens A, Hopgood M J, et al. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals[J]. Chemosphere, 2005a, 58: 1011-1022.
    [58]杨兵,蓝崇钰,束文圣.香根草在铅锌尾矿上生长及其对重金属的吸收[J].生态学报, 2005, 25(1): 45-50.
    [59]Zhu Y G, Chen S B, Yang J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China[J]. Environ Int, 2004, 30: 351-356.
    [60]Hong J, Pintauro P N. Selective removal of heavy metals from contaminated kaolin by chelators[J]. Water Air Soil Poll, 1996, 87: 73-91.
    [61]Krishnamurti G S R, Cielinski G, Huang P M, et al. Kinetics of cadmium release from soils as influenced by organic acids: Implementation in cadmium availability[J]. J Environ Qual, 1998, 26: 271-277.
    [62]Evangelou M W H, Ebel M, Schaeffer A. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum[J]. Chemophere, 2006, 63: 996-1004.
    [63]Wu J, Hsu F C, Cunningham S D. Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints[J]. Environ Sci Technol, 1999, 33: 1898-1904.
    [64]Harter R D, Naidu R. Role of metal-organic complexation in metal sorption by soils[J]. Adv Agron, 1995, 55: 219-263.
    [65]涂从,郑春荣,郑怀满.土壤-植物系统中重金属与养分元素交互作用[J].中国环境科学, 1997, 17(6): 526-529.
    [66]Liphadzi M S, Kirkham M B. Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids[J]. S Afr J Bot, 2006, 72: 391-397.
    [67]Vassil A D, Kapulnik Y, Raskin I, et al. The role of EDTA in lead transport and accumulation in Indian mustard[J]. Plant Physiol, 1998, 117: 447-453.
    [68]Huang J W, Chen J, Berti W R, et al. Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextracion[J]. Environ Sci Technol, 1997, 31: 800-805.
    [69]Shen Z G, li X D, Wang C C, et al. Lead phytoextraction fromcontaminated soil with high-biomass plant species[J]. J Environ Qual, 2002, 31: 1893-1900.
    [70]Cooper E M, Sims J T, Cunningham S D, et al. Chelate-assisted phytoextraction of lead from contaminated soils[J]. J Environ Qual, 1999, 28: 1709-1719.
    [71]Chen Y, Li X, Shen Z. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process[J]. Chemophere, 2004, 57: 187-196.
    [72]Meers E, Ruttens A, Hopgood M J, et al. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils[J]. Chemosphere, 2005b, 61: 561-572.
    [73]Grcman H, Velikonja-Bolta S, Vodnik D, et al. EDTA enhanced heavy metal phytoextraction: Metal accumulation, leaching, and toxicity[J]. Plant Soil, 2001, 235: 105-114.
    [74]Blaylock M J, Salt D E, Dushenkov S, et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environ Sci Technol, 1997, 31: 860-865.
    [75]Albasel N, Cottenie A. Heavy metals uptake from contaminated soils as affected by peat, lime, and chelates[J]. Soil Sci Soc Am J, 1985, 49: 386-390.
    [76]Kayser A, Wenger K, Keller A, et al. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments[J]. Environ Sci Technol, 2000, 34: 1778-1783.
    [77]翁高艺,孙小峰,吴龙华, et al.铜锌铅复合污染土壤上香薷植物的生长和重金属吸收动态[J].土壤, 2006, 38(5): 602-608.
    [78]Ehsan S, Prasher S O, Marshall W D. Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture[J]. Chemophere, 2007, 68: 150-158.
    [79]杨仁斌,曾清如,周细红, et al.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J].农业环境保护, 2000, 19(3): 152-155.
    [80]李瑛,张桂银,李洪军, et al.有机酸对根际土壤中铅形态及其生物毒性的影响[J].生态环境, 2004, 13(2): 164-166.
    [81]Peters R W. Chelant extraction of heavy metals from contaminated soils[J]. J Hazard Mater, 1999, 66: 151-210.
    [82]Narwal R P, Singh B R. Effect fo organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil[J]. Water Air Soil Poll, 1998, 103: 405-421.
    [83]GRauret. Extraction procedures for the determination of heavy metals in contaminated soil and sediment[J]. Talanta, 1998, 46: 449-455.
    [84]王吉中,李胜荣,刘宝林, et al.国内矿物治理重金属废水研究进展与展望[J].矿物岩石地球化学通报, 2005, 24(2): 159-165.
    [85]Gray C W, McLaren R G, Roberts A H C, et al. Solubility, sorption and desorption of native added cadmium in relation to properties of soils in New Zealand[J]. Eur J Soil Sci, 1999, 50: 127-137.
    [86]安志装,王校常,施卫明, et al.重金属与营养元素交互作用的植物生理效应[J].土壤与环境, 2002, 11(4): 392-396.
    [87]Tu C, Zheng C R, Chen H M. Effect of applying chemical fertilizers on forms of lead and cadmium in red soil[J]. Chemosphere, 2000, 41: 133-138.
    [88]Doner H E. Chloride as a factor in mobilities of Ni (II), Cu (II), and Cd (II) in soil[J]. Soil Sci Soc Am J, 1978, 42: 882-885.
    [89]Tang X Y, Zhu Y G, Chen S B, et al. Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test[J]. Environ Int, 2004, 30: 531-537.
    [90]Merry R H, Tiller K G, Alston A M. The effects of contamination of soil with copper lead and arsenic on the growth and composition of plants[J]. Plant Soil, 1986, 91: 115-128.
    [91]Brooks R R, Lee J, Reeves R D. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. J Geochem Explor, 1977, 7: 49-57.
    [92]Brown S L, Chaney R L, Angle J S, et al. Zinc and cadmium uptake by hyperaccumulator Thlaspi Caerulescens and metal tolerant Silene Vulgaris grown on sludge-amended soils[J]. Environ Sci Technol, 1995, 29: 1581-1585.
    [93]McGrath S P, Shen Z G, Zhao F J. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucm grown in contaminated soils[J]. Plant Soil, 1997, 188: 153-159.
    [94]Romheld V. The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: An ecological approach[J]. Plant Soil, 1991, 130: 127-134.
    [95]Robinson N J, Tommey A M, Kuske C, et al. Plant metallothioneins[J]. Biochem J, 1993, 295: 1-10.
    [96]罗春玲,沈振国.植物对重金属的吸收和分布[J].植物学通报, 2003, 20(1): 59-66.
    [97]李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制[J].应用生态学报, 2003, 14(4): 627-631.
    [98]武正华.土壤重金属污染植物修复研究进展[J].盐城工学院学报, 2002, 15(2): 53-57.
    [99]魏树和,周启星,王新, et al.农田杂草的重金属超积累特性研究[J].中国环境科学, 2004, 24(1): 105-109.
    [100]祝鹏飞,宁平,曾向东, et al.矿区土壤Pb的分布特征及植物修复应用性研究[J].工业安全与环保, 2006, 32(5): 4-6.
    [101]何红蓼,倪哲明,李冰, et al.环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析[J].岩矿测试, 2005, 24(2): 118-128.
    [102]Rauret G. Extraction procedures for the determination of heavy metals in contaminated soil and sediment[J]. Talanta, 1998, 46: 449-455.
    [103]Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem, 1979, 51: 844-851.
    [104]Zhao A Z, Zhang X N. Effect of phosphate adsorption on positive and negative charges of variable charge soils[J]. Acta Pedol Sin, 1997, 34: 123-129.
    [105]Ownby D R, Galvan K A, Lydy M J. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils[J]. Environ Pollut, 2005, 136: 315-321.
    [106]Xian X, Shokohifard G I. Effect of pH on chemical forms and plant availability of cadmium, zinc and lead in polluted soil[J]. Water Air Soil Poll, 1989, 45: 265-273.
    [107]Sauerbeck D R, Hein A. The nickel uptake from different soils and its predication by chemical extractants[J]. Water Air Soil Poll, 1991, 57: 861-871.
    [108]魏树和,周启星,王新, et al.杂草中具重金属超积累特征植物的筛选[J].自然科学进展,2003, 13(12): 1259-1265.
    [109]Allison L E. Organic carbon[M]: American Society of Agronomy, Madison, WI, USA, 1965. 1367-1378.
    [110]Vandecasteele B, De Vos B, Tack F M G. Heavy metal contents in surface soils along the Upper Scheldt river (Belgium) affected by historical upland disposal of dredged materials[J]. Sci Total Environ, 2002, 290: 1-14.
    [111]Olsen S R, Sommers L E. Phosphorus[M]: ASA, SSSA, Madison, USA, 1982. 403-430.
    [112]Meagher R B. Phytoremediation of toxic elemental and organic pollutants[J]. Curr Opin Biotech, 2000, 3: 153-162.
    [113]Cao R X, Ma L Q, Chen M, et al. Phosphate-induced metal immobilization in a contaminated site[J]. Environ Pollut, 2003, 122: 19-28.
    [114]Yang B, Lan C Y, Shu W S. Growth and heavy metal accumulation of Vetiveria zizanioides grown on lead/zinc mine tailings[J]. Acta Ecol Sin, 2005, 25: 45-50.
    [115]Xie R J, MacKenzie A F. The pH effect on sorption-desorption and fractions of zinc in phosphate treated soils[J]. Commun Soil Sci Plant Anal, 1988, 19: 873-886.
    [116]Katyal J C, Carter M F, Vlek P L G. Nitrification activity in submerged soils and its relation to denitrification loss[J]. Biol Fert Soils, 1988, 7: 16-22.
    [117]Eriksson J E. Effect of nitrogen-containing fertilizer on solubility and plant uptake of cadmium[J]. Water Air Soil Poll, 1990, 49: 355-368.
    [118]Lorenz S E, Hamon R E, McGrath S P, et al. Applications of fertilizer cations affect cadmium and zinc concentrations in soil solutions and uptake by plants[J]. Eur J Soil Sci, 1994, 45: 159-165.
    [119]Liu F, Liu S L, Jie X L, et al. Influence of P and Cd interaction on spinach growth and uptake P and Cd in calcareous soil[J]. Chin Agr Sci Bull, 2005, 21: 310-315.
    [120]Li S Q, Wu D M, Zhang J T. Effects of vegetation and fertilization on weathered particles of coal gob in Shanxi mining areas, China[J]. J Hazard Mater, 2005, 124: 209-216.
    [121]Bulut Y, Baysal Z. Removal of Pb (II) from wastewater using wheat bran[J]. J Hazard Mater, 2006, 78: 107-113.
    [122]徐厚恩.中国有毒污染物有毒危险性评价[M].北京:北京医科大学中国协和医科大学联合出版社, 1997. 29-58.
    [123]Ikeda M, Zhang Z W, Shimbo S, et al. Urban population exposure to lead and cadmium in east and south-east Asia[J]. Sci Total Environ, 2000, 249: 373-384.
    [124]Zimdahl R L. Entry and movement in vegetation of lead derived from air and soil sources[M]. Boston: 68th Annu. Meeting of thr Air Pollution Control Association, 1975.
    [125]Malone C, Koeppe D E, Miller R J. Localization of lead accumulated in corn plants[J]. Plant Physiol, 1974, 53: 388-394.
    [126]Eltrop L, Brown G, Joachim O, et al. Lead tolerance of Betula and Salix in the mining area of Mechernich/Germany[J]. Plant Soil, 1991, 131: 275-285.
    [127]Zhang Z W, Takao W, Shinichiro S, et al. Lead and cadmium contents in cereals and pulses in north-eastern China[J]. Sci Total Environ, 1998, 220: 137-145.
    [128]Wilson D O, Cline J F. Removal of plutonium-239, Tungsten-185, and lead-210 from soil[J]. Nat Biotechnol, 1966, 209: 941-945.
    [129]刘云惠,魏显有,王秀敏, et al.土壤中铅福的作物效应研究[J].河北农业大学学报, 1999, 22(1): 24-28.
    [130]康立娟,赵成爱,李呐.铅在砂壤水稻土/水稻体系中污染效应及累积规律的研究[J].吉林农业大学学报, 2000, 22(2): 68-70.
    [131]王新,吴燕玉.不同作物对金属复合污染物吸收特性的研究[J].农业环境保护, 1998, 17(5): 193-196.
    [132]Li Y M, Channey L R, Schneiter A A, et al. Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax[J]. Euphytica, 1997, 94: 23-30.
    [133]Florijn P J, Beusicbem M L V. Uptake and Distribution of Cadmium in Maze Inbred Lines[J]. Plant Soil, 1993, 150: 25-32.
    [134]杨居荣,鲍子平,张素芹.镉、铅在植物细胞内的分布及其可溶性结合形态[J].中国环境科学, 1993, 13(4): 263-268.
    [135]许嘉琳,鲍子平,杨居荣, et al.农作物体内铅、镉、铜的化学形态研究[J].应用生态学报, 1991, 2(3): 244-248.
    [136]朱志红,刘建秀,王孝安.克隆植物的表型可塑性与等级选择[J].植物生态学报, 2007, 31(4): 588-598.
    [137]孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能[J].植物生态学报, 2007, 31(1): 150-165.
    [138]李明财,易现峰,张晓爱, et al.青海高原高寒地区C4植物名录[J].西北植物学报, 2005, 25(5): 1046-1050.
    [139]殷立娟,王萍.中国东北草原植物中的C3和C4光合作用途径[J].生态学报, 1997, 17(2): 113-124.
    [140]Li M. Leaf pho to synthetic nitrogen use efficiency of C3 and C4 Cyperus species[J]. Photosynthetica, 1993, 29(1): 117-130.
    [141]Brennan M A, Shelley M L. A model of the uptake, translocation, and accumulation of lead (Pb) by maize for the purpose of phytoextraction[J]. Ecol Eng, 1999, 12: 271-297.
    [142]Purvis O W, Williamson B J, Bartok K, et al. Bioaccumulation of lead by the lichen Acarospora smaragdula from smelter emissions[J]. New Phytol, 2000, 147: 591-599.
    [143]Ryan J A, Scheckel K G, Berti W, et al. Reducing children's risk from lead in soil[J]. Environ SciTechnol, 2004, 38: 18-24.
    [144]吴春华,陈欣,王兆骞.铅污染土壤中杂草对铅的吸收[J].应用生态学报, 2004, 15(8): 1451-1454.
    [145]Singh R P, Tripathi R D, Sinha S K, et al. Response of higher plants to lead contaminated environment[J]. Chemosphere, 1997, 34: 2467-2493.
    [146]Xiong Z T. Lead uptake and effects on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Pupi[J]. Bull. Environ. Contam. Toxicol., 1998, 60: 285-291.
    [147]Gandley R, Anderson L, Silbergeld E K. Lead: Male-mediated effects on reproduction and development in the rat[J]. Environ Res, 1999, 80: 255-363.
    [148]Wierzbicka M. Comparison of lead tolerance in Allium cepa with other plant species[J]. Environ Pollut, 1999, 104: 41-52.
    [149]Windham L, Weis J S, Weis P. Lead uptake, distribution, and effects in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed)[J]. Mar Pollut Bull, 2001, 42: 811-816.
    [150]Chen Y H, Li X D, Shen Z G. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process[J]. Chemosphere, 2004, 57: 187-196.
    [151]Pan X L, Wang J L, Zhang D Y. Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel[J]. Process Biochem., 2005, 40: 2799-2803.
    [152]Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and groundwater, an evaluation[J]. Eng Geol, 2001, 60: 193-207.
    [153]Cao X, Ma L Q, Chen M, et al. Impacts of phosphate amendments on lead biogeochemistry in a contaminated site[J]. Environ Sci Technol, 2002, 36: 5296-5304.
    [154]Yoon J, Cao X D, Zhou Q X, et al. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site[J]. Sci Total Environ, 2006, 368: 456-464.
    [155]Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409: 579.
    [156]Romkens P, Bowman L, Japenga J, et al. Potentials and drawbacks of chelate-enhanced phytoremediation of soils[J]. Environ Pollut, 2002, 116: 109-121.
    [157]Marchiol L, Assolari S, Sacco P, et al. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil[J]. Environ Pollut, 2004, 132: 21-27.
    [158]López M L, Peralta-Videa J R, Benitez T, et al. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter[J]. Chemosphere, 2005, 61: 595-598.
    [159]Peralta-Videa J R, Gardea-Torresdey J L, Gomez E, et al. Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake[J]. Environ Pollut, 2002, 119: 291-301.
    [160]Meers E, Hopgood M, Lesage E, et al. Enhanced phytoextraction: in search of EDTA alternatives[J]. Internat J Phytorem, 2004, 6: 95-110.
    [161]Arazi T, Kaplan B, Sunkar R, et al. Cyclicnucleotide and Ca2+/calmodulin- regulated channels in plants: Targets for manipulating heavy-metal tolerance, and possible physiological roles[J]. Biochem Soc Trans, 2000, 28: 471-475.
    [162]Liu J G, Li K Q, Xu J K, et al. Lead toxicity, uptake, and translocation in different rice cultivars[J]. Plant Sci, 2003, 165: 793-802.
    [163]Piechalak A, Tomaszewska B, Baralkiewicz D, et al. Accumulation and detoxification of lead ions in legumes[J]. Phytochemistry, 2002, 60: 153-162.
    [164]Sahi S V, Bryant N L, Sharma N C, et al. Characterization of a lead hyperaccumulator shrub, Sesbania drummondii[J]. Environ Sci Technol, 2002, 36: 4676-4680.
    [165]Athalye V V, Ramachandran V, D'Souza T J. Influence of chelating agents on plant uptake of 51Cr, 210Pb, and 210Po[J]. Environ Pollut, 1995, 89: 47-53.
    [166]Jarvis M D, Leung D W M. Chelated lead transport in Chamaecytisus proliferus (L.f.) link ssp. Proliferus var. Palmensis (H.Christ): An ultrastructural study[J]. Plant Sci, 2001, 161: 433-441.
    [167]Piechalak A, Tomaszewska B, Baralkiewicz D. Enhancing phytoremediative ability of Pisum sativum by EDTA application[J]. Phytochemistry, 2003, 64: 1239-1251.
    [168]Lin C, Liu J, Liu L, et al. Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels[J]. Environ Exp Bot, 2009, 65(2-3): 410-416.
    [169]Wu L H, Luo Y M, Xing X R, et al. EDTA enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk[J]. Agric Ecosyst Environ, 2004, 102: 307-318.
    [170]Madejon P, Murillo J M, Maranon T, et al. Trace element and nutrient accumulation in sunflower plants two years after the Aznalcollar mine spill[J]. Sci Total Environ, 2003, 307: 239-257.
    [171]Cantamutto M, Poverene M. Genetically modified sunflower release: Opportunities and risks[J]. Field Crop Res., 2007, 101: 133-144.
    [172]Deram A, Petit D, Robinson B H, et al. Natural and induced heavy-metal accumulation by Arrhenatherum elatius: Implications for phytoremediation[J]. Soil Sci Plant Anal, 2000, 31: 413-421.
    [173]Basta N T, Sloan J J. Bioavailability of heavy metals in strongly acidic soils treated with exceptional quality biosolids[J]. J Environ Qual, 1999, 28: 633-638.
    [174]McLaughlin M J, Hamon R E, McLaren R G, et al. Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand[J]. Aust J Soil Res, 2000, 38: 1037-1086.
    [175]Logan E M, Pulford I D, Cook G T, et al. Complexation of Cu2+and Pb2+ by peat and humic acid[J]. Eur J Soil Sci, 1997, 48: 685-696.
    [176]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报, 2003, 11(2): 143-151.
    [177]王发园,林先贵.丛枝菌根在植物修复重金属污染土壤中的作用[J].生态学报, 2007, 27(2): 793-802.
    [178]Arriagada C A, Herrera M A, Ocampo J A. Contribution of arbuscular mycorrhizal and saprobe fungi to the tolerance of Eucalyptus globulus to Pb[J]. Water Air Soil Poll, 2005, 166: 31-47.
    [179]Schat H, Vooijs R. Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: a co-segregation analysis[J]. New Phytol, 1997, 136: 489-496.
    [180]刘强,郑绍建,林咸永.植物适应铝毒胁迫的生理及分子生物学机理[J].应用生态学报, 2004, 15(9): 1641-1649.
    [181]周启星,孙铁珩.土壤-植物系统污染生态学研究与展望[J].应用生态学报, 2004, 15(10): 1698-1702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700