用户名: 密码: 验证码:
华北平原作物产量与土壤氮素淋失对灌溉施肥的响应模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以华北平原典型集约化种植区(北京地区)为研究区域,通过田间试验数据的采取与收集,对根区水质模型(RZWQM2)进行了参数优化估计,分析了模型参数及输出响应的不确定性;采用率定的RZWQM2模型开展了冬小麦—夏玉米轮作系统中农田土壤水氮运移规律的定量研究;建立了基于土壤基本理化性状指标的大兴区土壤饱和导水率传递函数模型,从空间尺度上分析了大兴区农田土壤氮素含量及累积量的影响因子,以及氮素淋失的空间分布特征及其对农田管理措施、气象条件变化的响应。论文的主要研究内容与结论如下:
     (1)通过区域布点取样测定和分析,研究了大兴区农田土壤颗粒组成与硝态氮的空间变异特征,建立了土壤饱和导水率传递函数并应用于大兴区饱和导水率预测中;分析了不同种植类型、土壤质地、作物种植对大兴区不同深度土壤氮素含量及累积量空间分布特征的影响。结果表明,研究区大部分取样点硝态氮在土壤剖面分布上表现为随深度增加而降低;不同的种植类型对土壤中的硝态氮积累影响显著,露地菜田与设施菜田的硝态氮含量及累积量均较高,大兴区长子营、采育镇等果蔬密集种植区是硝态氮淋失污染风险的主要地区。
     (2)基于田间喷灌试验资料,采用PEST对RZWQM2模型进行率定及验证,不同处理模拟值与实测值吻合良好,与传统试错法的对比,该方法具有快速准确的优点,表明RZWQM2模型可以用于冬小麦—夏玉米轮作作物生长与土壤水氮迁移转化过程的模拟。
     (3)应用基于拉丁超立方抽样的普似然参数估计法(GLUE)对RZWQM2模型不确定性进行分析,提出了整合不同观测指标的带权重联合似然函数来确定模型输出响应变量的不确定性范围。结果表明,土壤剖面1m内氮素累积量对硝化反应速率参数、夏玉米苗期生长特性参数、冬小麦春化作用特性及光周期敏感特性参数较敏感;土壤饱和导水率、氮素的硝化、反硝化、水解速率参数对作物的产量起较关键作用;采用联合似然函数的方法计算得到的模型输出结果不确定性范围总体上可更好地包含各输出响应的观测值。
     (4)不同水氮组合对作物产量、根区氮素淋失的影响研究表明,当作物灌水量较小时,作物产量、根区硝态氮淋失量对施氮量并不敏感;硝态氮的淋洗主要发生在夏玉米生育期。高水高肥条件地下水面处土壤硝态氮淋失通量占氮肥施用量的比例较高;中水中肥条件下作物的水氮利用指标总体较高。长系列相同灌水条件不同施肥条件下,土壤中硝态氮运移时间大体一致,淋洗时间随土壤深度增加产生明显滞后;不同灌水条件下,灌水量越大淋洗至深层的时间越短。
     (5)将RZWQM2模型与ArcGIS的结合,对大兴区作物产量和土壤氮素淋失对农田管理措施及气象条件变化的响应进行了分布式模拟。结果表明,水氮量增加、温度升高、降雨增大,都可以不同程度上提高作物产量及土壤硝态氮淋失量;在空间尺度上,地下水面处硝态氮淋失量对不同影响因素的影响因土壤质地的差异表现不同,西部庞各庄等砂性地区地下水的污染风险较高。
Based on the background of typical intensive plant area in the North China Plain, Daxing district of Beijing, the parameters of Root Zone Water quality Model Version2.0(RZWQM2) was estimated by the collected data of field experiment irrigated with sprinkler. The uncertainty of these model input parameters and model outputs were also analyzed. The calibrated RZWQM2model was used to quantify the relevance of the transport of water and nitrogen in agricultural field and the pollution load of nitrate leaching in groundwater. The pedo-transfer function for Daxing district was established based on the soil saturated conductivity and soil physical characteristics. The influence factor of nitrogen content and nitrogen accumulation of soil profile in Daxing district, and the response of spatial distribution of nitrogen leaching to varying agricultural management practices and meteorological conditions were analyzed on a spatial scale. The main objectives and conclusions are as follows:
     (1) Choosing the Daxing district in Beijing as the study area, the spatial variation of particle composition and soil nitrate content were studied based on the measurement and analysis of regional sampling points. Pedo-transfer function of Daxing district was established and applied to predict the saturated hydraulic conductivity other sampling points. The effects of different soil plant types, soil textures and crop plant on the spatial distribution characteristics of soil nitrogen content and accumulation within different soil depth in Daxing district. The results showed that, soil nitrate content of most sampling points was decreased with increasing depth of soil profile. The effect of different plant types on nitrate content was obvious. Outdoor and protected vegetable field contained more nitrate nitrogen in soil profile. The towns of Panggezhuang and Beizangcun where soil contained more sand, and the towns of Zhangziying and Caiyu where planted intensively fruits and vegetables were the main district susceptible to nitrate pollution.
     (2) Based on the data of field experiment, PEST was used to calibrated and validated RZWQM2model. The simulations using PEST optimation showed a good fit with observations, and was obtained in a more efficient and precise way. The results indicated that the RZWQM2model could be used in simulating the crop growth and transport process of water and nitrogen in the double-rotation crop system of waxy maize and winter maize.
     (3) The sensitivity and uncertainty of model parameters, the uncertainty of model outputs were analyzed using General Likelihood Uncertainty Estimation (GLUE) method which based on Latin Hypercube Sampling (LHS) method. The weighted combined likelihood function aggregated different observation variables was proposed to determine the uncertainty range of RZWQM2model outputs. The results showed that the nitrogen accumulation with1m depth of soil profile was sensitive to the parameters of nitrification rate coefficient, thermal time of emergence stage for maize, and vernalization and photoperiod coefficients for wheat. The parameters of soil saturated hydraulic conductivity, nitrification and denitrification and hydrolysis of rate coefficient played a key role to crop yield. The uncertainty ranges for different model outputs calculated by combined likelihood function included generally better the observations.
     (4) The research on the effect of different application rate of irrigation and nitrogen fertilizer on crop yield and nitrogen leaching of root zone showed that, the crop yield and nitrate leaching was not sensitive to the fertilizer amount when the irrigation was very less. Nitrate leaching was mainly occurred in the growth period of waxy maize due to more precipitation during this time. When the irrigation and fertilizer for waxy maize and winter wheat were both40cm and400kg ha-1, respectively, the nitrate leaching into groundwater equaled to47.9%of application amount of nitrogen fertilizer. In the condition of normal irrigation and fertilization, NUPE, NUE, NPFP, and Wpi was relatively higher. In the long-term time, the time of nitrate leaching from upper soil (lm) to lower soil (2m) or groundwater (15m) was basically the same under same irrigation condition, but nitrate leaching had a increasing time-lag with soil depth. Under different irrigation conditions, nitrate leaching time was shorter when irrigation amount was larger.
     (5) The responses of nitrogen leaching in different depth and crop yield to varying agricultural management practices and meteorological conditions were simulated by combing the RZWQM2model and ArcGIS software. As the results showed, all the increasing of irrigation and fertilizer, temperature, and precipitation could enhance crop yield and nitrogen leaching. On spatial scale, the effects of different influence factors to nitrate leaching at depth of groundwater lever were not same due to the various soil texture. The groundwater of sandy soil area in the western Daxing district are vulnerable to nitrage pollution.
引文
[1]杨靖民,刘金华,于晓斌,等.长春地区河水和地下水中氮含量的时空变化.水土保持学报,2010,24(6):255-257,262.
    [2]朱兆良,文启孝.中国土壤氮素.南京:江苏科学技术出版社,1992.
    [3]Pena-Haro S, Pulido-Velazquez M, Sahuquillo A. A hydro-economic modelling framework for optimal management of groundwater nitrate pollution from agriculture. Journal of Hydrology,2009,373(1):193-203.
    [4]Cepuder P, Shukla M K. Groundwater nitrate in Austria:a case study in Tullnerfeld. Nutrient Cycling in Agroecosystems,2002,64(3):301-315.
    [5]Townsend M A, Young D P. Assessment of nitrate-nitrogen distribution in Kansas groundwater,1990-1998. Natural Resources Research,2000,9(2):125-134.
    [6]罗阳,张思聪.灌溉施肥条件下田间氮素在土壤中迁移情况的研究.水资源保护,2000,(4):7-11.
    [7]雷志栋,胡和平.土壤水研究进展与评述.水科学进展,1999,10(3):311-318.
    [8]张玉晨,林健.北京市平原区地下水水质概况.北京地质,2000,12(1):8-18.
    [9]胡雪涛,陈吉宁,张天柱.非点源污染模型研究.环境科学,2002,23(3):124-128.
    [10]朱继业,窦贻俭.城市水环境非点源污染总量控制研究与应用.环境科学学报,1999,19(4):415-420.
    [11]Addiscott T M, Wagenet R J. Concepts of solute leaching in soils:a review of modelling approaches. Journal of Soil Science,1985,36(3):411-424.
    [12]Hutson J L, Wagenet R J. Simulating nitrogen dynamics in soils using a deterministic model. Soil Use and Management,1991,7(2):74-78.
    [13]Wolf J, Van Keulen H. Modeling long-term crop response to fertilizer and soil nitrogen. Plant and Soil,1989,120(1):23-38.
    [14]高如泰.黄淮海平原农田土壤水氮行为模拟与管理分析:[博士学位论文].北京:中国农业大学,2005.
    [15]武晓峰,谢森传.冬小麦田间根层中氮素迁移转化规律研究.灌溉排水,1996,15(4):10-15.
    [16]Butters G L, Jury W A, Ernst F F. Field scale transport of bromide in an unsaturated soil:1. Experimental methodology and results. Water Resources Research,1989,25(7):1575-1581.
    [17]任理,李保国,叶素萍,等.稳定流场中饱和均质土壤盐分迁移的传递函数解.水科学进展,1999,10(2):107-112.
    [18]Heng L K, White R E. A simple analytical transfer function approach to modelling the leaching of reactive solutes through field soil. European Journal of Soil Science,1996,47(1): 33-42.
    [19]White R E, Heng L K, Magesan G N. Nitrate leaching from a drained, sheep-grazed pasture. Ⅱ. Modelling nitrate leaching losses. Australian Journal of Soil Research,1998,36(6): 963-977.
    [20]Ersahin S. Assessment of spatial variability in nitrate leaching to reduce nitrogen fertilizers impact on water quality. Agricultural Water Management,2001,48(3):179-189.
    [21]Ersahin S, Rustu Karaman M. Estimating potential nitrate leaching in nitrogen fertilized and irrigated tomato using the computer model NLEAP. Agricultural Water Management,2001, 51(1):1-12.
    [22]丁园圆.县域农田生态系统土壤氮素平衡模拟及其潜在环境风险评价:[博士学位论文].南京:南京信息工程大学,2009.
    [23]刘秀萍,吴彦霖.基于精细管理地区减少氮淋失的管理模型.水土保持应用技术,2006,(5):7-9.
    [24]房全孝,王建林,于舜章.华北平原小麦-玉米两熟制节水潜力与灌溉对策.农业工程学报,2011,27(7):37-44.
    [25]Cameira M R, Fernando R M, Ahuja L R, et al. Using RZWQM to simulate the fate of nitrogen in field soil-crop environment in the Mediterranean region. Agricultural Water Management,2007,90(1):121-136.
    [26]Li C, Farahbakhshazad N, Jaynes D B, et al. Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecological Modelling, 2006,196(1):116-130.
    [27]Arora V K, Singh H, Singh B. Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model. Agricultural Water Management,2007,94(1):22-30.
    [28]Leone A, Ripa M N, Uricchio V, et al. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models. Journal of Environmental Management,2009,90(10):2969-2978.
    [29]Sohier C, Degre A, Dautrebande S. From root zone modelling to regional forecasting of nitrate concentration in recharge flows-The case of the Walloon Region (Belgium). Journal of Hydrology,2009,369(3):350-359.
    [30]Gardenas A I, Hopmans J W, Hanson B R, et al. Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agricultural Water Management,2005,74(3):219-242.
    [31]李久生,张建君,饶敏杰.滴灌施肥灌溉的水氮运移数学模拟及试验验证.水利学报,2005,36(8):932-938.
    [32]Young R A, Onstad C A, Bosch D D, et al. AGNPS:A nonpoint-source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation,1989,44(2): 168-173.
    [33]Birkinshaw S J, Ewen J. Nitrogen transformation component for SHETRAN catchment nitrate transport modelling. Journal of Hydrology,2000,230(1):1-17.
    [34]Lewis D R, McGechan M B, McTaggart I P. Simulating field-scale nitrogen management scenarios involving fertiliser and slurry applications. Agricultural Systems,2003,76(1): 159-180.
    [35]McGechan M B, Henshall J K, Vinten A. Cultivation and soil organic matter management in low input cereal production following the ploughing out of grass leys. Biosystems Engineering,2005,90(1):85-101.
    [36]Thorsen M, Refsgaard J C, Hansen S, et al. Assessment of uncertainty in simulation of nitrate leaching to aquifers at catchment scale. Journal of Hydrology,2001,242(3):210-227.
    [37]王吉苹,曹文志.应用GLEAMS模型评估我国东南地区农业小流域硝态氮的渗漏淋 失.生态与农村环境学报,2007,23(1):28-32.
    [38]王吉苹,曹文志,李大朋,等.GLEAMS模型在我国东南地区模拟硝氮淋失的检验.水土保持通报,2007,(2):61-66.
    [39]张东升.南京市城乡交错区蔬菜生态系统氮磷循环的数值模拟研究:[硕士学位论文].南京:南京农业大学,2007.
    [40]张思聪,吕贤弼.灌溉施肥条件下氮素在土壤中迁移转化的研究.水利水电技术,1999,30(5):6-8.
    [41]高海鹰,黄丽江,张奇,等.不同降雨强度对农田土壤氮素淋失的影响及LEACHM模型验证.农业环境科学学报,2008,27(4):1346-1352.
    [42]李彬,王志春,迟春明.LEACHC模型及其在土壤盐碱化预测预报研究中的应用.安徽农业科学,2006,33(12):2385-2387.
    [43]Aparicio V, Costa J L, Zamora M. Nitrate leaching assessment in a long-term experiment under supplementary irrigation in humid Argentina. Agricultural Water Management,2008, 95(12):1361-1372.
    [44]Roelcke M, Han Y, Cai Z, et al. Nitrogen mineralization in paddy soils of the Chinese Taihu Region under aerobic conditions. Nutrient Cycling in Agroecosystems,2002,63(2-3): 255-266.
    [45]Ju X, Liu X, Zhang F, et al. Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China. AMBIO:A Journal of the Human Environment,2004,33(6):300-305.
    [46]Wang X, Huang G. Evaluation on the irrigation and fertilization management practices under the application of treated sewage water in Beijing, China. Agricultural Water Management, 2008,95(9):1011-1027.
    [47]Moreno F, Cayuela J A, Fernandez J E, et al. Water balance and nitrate leaching in an irrigated maize crop in SW Spain. Agricultural Water Management,1996,32(1):71-83.
    [48]Fang Q X, Yu Q, Wang E, et al. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant and Soil,2006,284(1-2):335-350.
    [49]Zhang W L, Tian Z X, Zhang N, et al. Nitrate pollution of groundwater in northern China. Agriculture, Ecosystems and Environment,1996,59(3):223-231.
    [50]Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems,2002,63(2-3):117-127.
    [51]李强坤,胡亚伟,孙娟,等.不同水肥条件下农业非点源田间产污强度.农业工程学报,2011,27(2):96-102.
    [52]Ju X T, Kou C L, Zhang F S, et al. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environmental Pollution,2006,143(1):117-125.
    [53]Song X, Zhao C, Wang X, et al. Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China. Comptes Rendus Biologies,2009,332(4): 385-392.
    [54]Nendel C, Kersebaum K C. A simple model approach to simulate nitrogen dynamics in vineyard soils. Ecological Modelling,2004,177(1):1-15.
    [55]孙美,毛晓敏,陈剑,等.夹砂层状土条件下渠道渗漏的室内试验和数值模拟.农业工程学报,2010, (8):33-38.
    [56]李久生,杨风艳,栗岩峰.层状土壤质地对地下滴灌水氮分布的影响.农业工程学报,2009,25(7):25-31.
    [57]廖谦,沈珍瑶.农业非点源污染模拟不确定性研究进展.生态学杂志,2011,30(7):1542-1550.
    [58]Wagener T, Gupta H V. Model identification for hydrological forecasting under uncertainty. Stochastic Environmental Research and Risk Assessment,2005,19(6):378-387.
    [59]Yang J, Reichert P, Abbaspour K C, et al. Hydrological modelling of the Chaohe Basin in China:Statistical model formulation and Bayesian inference. Journal of Hydrology,2007, 340(3):167-182.
    [60]宋晓猛,占车生,孔凡哲,等.大尺度水循环模拟系统不确定性研究进展.地理学报,2011,66(3):396-406.
    [61]Butts M B, Payne J T, Kristensen M, et al. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. Journal of Hydrology,2004, 298(1):242-266.
    [62]王书功.水文模型参数估计方法及参数估计不确定性研究.黄河水利出版社,2010.
    [63]林凯荣,陈晓宏,江涛.基于Copula-Glue的水文模型参数不确定性研究.中山大学学报:自然科学版,2009,48(3):109-115.
    [64]Beven K, Binley A. The future of distributed models:Model calibration and uncertainty prediction. Hydrological Processes,1992,6(3):279-298.
    [65]Ni G H, Wang L, Hu H P. Identification of uncertainty of a physically-based Hydrological model. The 2nd Asia Pacific Association of Hydrology and Water Resources,2004,2: 633-640.
    [66]Neumann M B, Gujer W. Underestimation of uncertainty in statistical regression of environmental models:influence of model structure uncertainty. Environmental Science & Technology,2008,42(11):4037-4043.
    [67]Beven K. Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources,1993,16(1):41-51.
    [68]Tiwari J L, Hobbie J E, Peterson B J. Random differential equations as models of ecosystems-Ⅲ. bayesian inference for parameters. Mathematical Biosciences,1978,38(3-4):247-258.
    [69]Kuczera G, Kavetski D, Franks S, et al. Towards a Bayesian total error analysis of conceptual rainfall-runoff models:Characterising model error using storm-dependent parameters. Journal of Hydrology,2006,331(1):161-177.
    [70]Thyer M, Renard B, Kavetski D, et al. Critical evaluation of parameter consistency and predictive uncertainty in hydrological modelin:A case study using Bayesian total error analysis. Water Resources Research,2009,45(12):W14B.
    [71]Krzysztofowicz R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resources Research,1999,35(9):2739-2750.
    [72]Thiemann M, Trosset M, Gupta H, et al. Bayesian recursive parameter estimation for hydrologic models. Water Resources Research,2001,37(10):2521-2535.
    [73]Tierney L. Markov chains for exploring posterior distributions. The Annals of Statistics,1994, 22(4):1701-1728.
    [74]Spear R C, Hornberger G M. Eutrophication in Peel Inlet-Ⅱ. Identification of critical uncertainties via generalized sensitivity analysis. Water Research,1980,14(1):43-49.
    [75]Montanari A, Brath A. A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research,2004,40(1):W1106.
    [76]Freer J, Beven K, Ambroise B. Bayesian estimation of uncertainty in runoff prediction and the value of data:An application of the GLUE approach. Water Resources Research,1996,32(7): 2161-2173.
    [77]Zak S K, Beven K J. Equifinality, sensitivity and predictive uncertainty in the estimation of critical loads. Science of the Total Environment,1999,236(1):191-214.
    [78]Vazquez R F, Beven K, Feyen J. GLUE based assessment on the overall predictions of a MIKE SHE application. Water Resources Management,2009,23(7):1325-1349.
    [79]Gong Y, Shen Z, Hong Q, et al. Parameter uncertainty analysis in watershed total phosphorus modeling using the GLUE methodology. Agriculture, Ecosystems & Environment,2011, 142(3):246-255.
    [80]Ahmed I, Rudra R, McKague K, et al. Evaluation of the Root Zone Water Quality Model (RZWQM) for Southern Ontario:Part I. Sensitivity analysis, calibration, and validation. Water Quality Research Journal of Canada,2007,42(3):202-218.
    [81]Pohlert T, Huisman J A, Breuer L, et al. Integration of a detailed biogeochemical model into SWAT for improved nitrogen predictions-Model development, sensitivity, and GLUE analysis. Ecological Modelling,2007,203(3):215-228.
    [82]Rankinen K, Karvonen T, Butterfield D. An application of the GLUE methodology for estimating the parameters of the INCA-N model. Science of the Total Environment,2006, 365(1):123-139.
    [83]Viola F, Noto L V, Cannarozzo M, et al. Daily streamflow prediction with uncertainty in ephemeral catchments using the GLUE methodology. Physics and Chemistry of the Earth, 2009,34(10):701-706.
    [84]Shen Z Y, Chen L, Chen T. Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method:a case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrology and Earth System Sciences,2012,16(1):121-132.
    [85]Xiong L, O Connor K M. An empirical method to improve the prediction limits of the GLUE methodology in rainfall-runoff modeling. Journal of Hydrology,2008,349(1):115-124.
    [86]Blasone R S, Vrugt J A, Madsen H, et al. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances in Water Resources, 2008,31(4):630-648.
    [87]卫晓婧,熊立华,万民,等.融合马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法在流域水文模型中的应用.水利学报,2009,40(4):464-473.
    [88]Dotto C, Mannina G, Kleidorfer M, et al. Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. Water Research,2012,46(8):2545-2558.
    [89]Freni G, Mannina G. Uncertainty estimation of a complex water quality model:The influence of Box-Cox transformation on Bayesian approaches and comparison with a non-Bayesian method. Physics and Chemistry of the Earth,2012,42-44:31-41.
    [90]Freni G, Mannina G, Viviani G. Uncertainty in urban stormwater quality modelling:The influence of likelihood measure formulation in the GLUE methodology. Science of the Total Environment,2009,408(1):138-145.
    [91]He J, Jones J W, Graham W D, et al. Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agricultural Systems,2010,103(5):256-264.
    [92]Vrugt J A, Gupta H V, Bastidas L A, et al. Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research,2003,39(8):1214.
    [93]Vrugt J A, Robinson B A. Treatment of uncertainty using ensemble methods:Comparison of sequential data assimilation and Bayesian model averaging. Water Resources Research,2007, 43(1):W1411.
    [94]Huang Y, Chen X, Li Y P, et al. A fuzzy-based simulation method for modelling hydrological processes under uncertainty. Hydrological Processes,2010,24(25):3718-3732.
    [95]McKay M D, Beckman R J, Conover W J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics,1979,21(2): 239-245.
    [96]Confalonieri R. Monte Carlo based sensitivity analysis of two crop simulators and considerations on model balance. European Journal of Agronomy,2010,33(2):89-93.
    [97]Lo-Pelzer E, Bousset L, Jeuffroy M H, et al. SIPPOM-WOSR:a simulator for integrated pathogen population management of phoma stem canker on winter oilseed rape:I. Description of the model. Field Crops Research,2010,118(1):73-81.
    [98]Lamboni M, Makowski D, Lehuger S, et al. Multivariate global sensitivity analysis for dynamic crop models. Field Crops Research,2009,113(3):312-320.
    [99]吴锦,余福水,陈仲新,等.基于EPIC模型的冬小麦生长模拟参数全局敏感性分析.农业工程学报,2009, (7):136-142.
    [100]Ziehn T, Tomlin A S. Global sensitivity analysis of a 3D street canyon model-Part Ⅰ:The development of high dimensional model representations. Atmospheric Environment,2008, 42(8):1857-1873.
    [101]Meszaros R, Zsely I G, Szinyei D, et al. Sensitivity analysis of an ozone deposition model. Atmospheric Environment,2009,43(3):663-672.
    [102]Tang Y, Reed P, Van Werkhoven K, et al. Advancing the identification and evaluation of distributed rainfall-runoff models using global sensitivity analysis. Water Resources Research, 2007,43(6):W6415.
    [103]Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT cropping system model. European Journal of Agronomy,2003,18(3):235-265.
    [104]Ma L, Hoogenboom G, Ahuja L R, et al. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production. Agricultural Systems,2006,87(3):274-295.
    [105]Ma L, Trout T J, Ahuja L R, et al. Calibrating RZWQM2 model for maize responses to deficit irrigation. Agricultural Water Management,2012,103:140-149.
    [106]Fang Q, Ma L, Yu Q, et al. Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain. Agricultural Water Management, 2010,97(8):1165-1174.
    [107]Fang Q X, Green T R, Ma L, et al. Optimizing soil hydraulic parameters in RZWQM2 under fallow conditions. Soil Science Society of America Journal,2010,74(6):1897-1913.
    [108]Ma Q, Wauchope R D, Rojas K W, et al. The pesticide module of the Root Zone Water Quality Model (RZWQM):Testing and sensitivity analysis of selected algorithms for pesticide fate and surface runoff. Pest Management Science,2004,60(3):240-252.
    [109]朱国威,任理.根系带水质量模型参数灵敏度分析与标定的研究.灌溉排水学报,2011,30(2):5-9.
    [110]张芊,任理.应用根系层水质模型分析冬小麦—夏玉米轮作体系的农田水氮利用效率Ⅰ:模型参数的灵敏度分析与标定.水利学报,2012,43(01):84-90.
    [111]Ma L, Ascough J C, Ahuja L R, et al. Root zone water quality model sensitivity analysis using Monte Carlo simulation. Transactions of the Asae,2000,43(4):883-896.
    [112]姜志伟,陈仲新,周清波,等.CERES-Wheat作物模型参数全局敏感性分析.农业工程学报,2011,27(1):236-242.
    [113]Patel H R, Shekh A M. Sensitivity analysis of CERES-Wheat model to various weather and non-wheather parameters for wheat. The Journal of Agricultural Science,2005,1(2):21-30.
    [114]Yang Z, Wilkerson G G, Buol G S, et al. Estimating genetic coefficients for the CSM-CERES-Maize Model in North Carolina environments. Agronomy Journal,2009, 101(5):1276-1285.
    [115]Bert F E, Laciana C E, Podesta G P, et al. Sensitivity of CERES-Maize simulated yields to uncertainty in soil properties and daily solar radiation. Agricultural Systems,2007,94(2): 141-150.
    [116]He J, Dukes M D, Hochmuth G J, et al. Identifying irrigation and nitrogen best management practices for sweet corn production on sandy soils using CERES-Maize model. Agricultural Water Management,2012,109:61-70.
    [117]Doherty J. PEST-ASP user's manual. Brisbane, Australia:Watermark Numerical Computing, 2004.
    [118]Malone R W, Jaynes D B, Ma L, et al. Soil-test N recommendations augmented with PEST-optimized RZWQM simulations. Journal of Environmental Quality,2010,39(5): 1711-1723.
    [119]Fang Q X, Malone R W, Ma L, et al. Modeling the effects of controlled drainage, N rate and weather on nitrate loss to subsurface drainage. Agricultural Water Management,2012,103: 150-161.
    [120]Goegebeur M, Pauwels V. Improvement of the PEST parameter estimation algorithm through Extended Kalman Filtering. Journal of Hydrology,2007,337(3):436-451.
    [121]Bahremand A, De Smedt F. Predictive analysis and simulation uncertainty of a distributed hydrological model. Water Resources Management,2010,24(12):2869-2880.
    [122]董艳辉,李国敏,徐海珍.应用PEST及GIS的北山区域地下水流动模型校正:第二届废物地下处置学术研讨会, 中国甘肃敦煌,2008,51-58.
    [123]Al Abed N A, Whiteley H R. Calibration of the Hydrological Simulation Program Fortran (HSPF) model using automatic calibration and geographical information systems. Hydrological Processes,2002,16(16):3169-3188.
    [124]Govender M, Everson C S. Modelling streamflow from two small South African experimental catchments using the SWAT model. Hydrological Processes,2005,19(3):683-692.
    [125]Wang X, Melesse A M. Evaluation of the SWAT model's snowmelt hydrology in a northwestern Minnesota watershed. Transactions of the Asae,2005,48(4):1359-1376.
    [126]Rose K A, Megrey B A, Werner F E, et al. Calibration of the NEMURO nutrient-phytoplankton-zooplankton food web model to a coastal ecosystem:Evaluation of an automated calibration approach. Ecological Modelling,2007,202(1):38-51.
    [127]Nolan B T, Puckett L J, Ma L, et al. Predicting unsaturated zone nitrogen mass balances in agricultural settings of the United States. Journal of Environmental Quality,2010,39(3): 1051-1065.
    [128]房全孝.根系水质模型中土壤与作物参数优化及其不确定性评价.农业工程学报,2012,28(10):118-123.
    [129]Godwin D C, Jones C A. Nitrogen dynamics in soil-plant systems. In:Hanks J, Ritchie J T, eds. Modeling plant and soil systems. Madison, Wisconsin USA:American Society of Agronomy Incorporation, Crop Science Society of America, Soil Science Society of America, 1991,287-321.
    [130]房全孝,王建林,于舜章.华北平原小麦-玉米两熟制节水潜力与灌溉对策.农业工程学报,2011,(7):37-44.
    [131]Zhang X, Chen S, Sun H, et al. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. Irrigation Science,2008,27(1):1-10.
    [132]Fang Q X, Chen Y, Yu Q, et al. Much improved irrigation use efficiency in an intensive wheat-maize double cropping system in the North China Plain. Journal of integrative plant biology,2007,49(10):1517-1526.
    [133]张永丽,于振文.灌水量对小麦氮素吸收、分配、 利用及产量与品质的影响.作物学报,2008,34(5):870-878.
    [134]赵久然,郭强,郭景伦,等.北京郊区粮田化肥投入和产量现状的调查分析.北京农业科学,1997,15(2):36-38.
    [135]马文奇.山东省作物施肥现状与评价:[博士学位论文].北京:中国农业大学,1999.
    [136]高旺盛,黄进勇.黄淮海平原典型集约农区地下水硝酸盐污染初探.生态农业研究,1999,7(4):41-43.
    [137]Chen X. Optimization of the N fertilizer management of a winter wheat/summer maize rotation system in the Northern China Plain:[PhD thesis]. Stuttgart, Germany:University of Hohenheim,2003.
    [138]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,2008,45(5):915-924.
    [139]Hu C, Saseendran S A, Green T R, et al. Evaluating nitrogen and water management in a double-cropping system using RZWQM. Vadose Zone Journal,2006,5(1):493-505.
    [140]武继承,朱洪勋,杨占平.不同水肥条件下旱地小麦水肥利用率研究.华北农学报,2003,18(4):95-98.
    [141]温利利,刘文智,李淑文,等.水肥耦合对夏玉米生物学特性和产量的影响.河北农业大学学报,2012,35(3):14-19.
    [142]Rasmussen P E, Rohde C R. Tillage, soil depth, and precipitation effects on wheat response to nitrogen. Soil Science Society of America Journal,1991,55(1):121-124.
    [143]田德龙.河套灌区盐分胁迫下水肥耦合效应响应机理及模拟研究:[博士学位论文].呼和浩特:内蒙古农业大学,2011.
    [144]王喜庆,李生秀.土壤水分在提高氮肥肥效中作用机制.西北农业大学学报,1997,25(1):15-19.
    [145]Sun H, Liu C, Zhang X, et al. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agricultural Water Management,2006,85(1):211-218.
    [146]吴海卿,杨传福.应用15N示踪技术研究土壤水分对氮素有效性的影响.土壤肥料,2000,(1):16-18.
    [147]Liao C, Bartholomew W V. Relation between nitrate absorption and water transpiration by corn. Soil Science Society of America Journal,1974,38(3):472-477.
    [148]潘晓丽.不同水肥措施对小麦玉米水氮吸收与利用的影响:[硕士学位论文].北京:中国农业科学院,2012.
    [149]Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agronomy Journal,1999,91(3):357-363.
    [150]串丽敏,赵同科,安志装,等.土壤硝态氮淋溶及氮素利用研究进展.中国农学通报,2010,26(11):200-205.
    [151]彭琳,彭祥林,卢宗藩.埂土旱地土壤硝态氮季节性变化与夏季休闲的培肥增产作用.土壤学报,1981,18(3):212-222.
    [152]李金才,魏凤珍,余松烈,等.孕穗期湿害对小麦灌浆特性及产量的影响.安徽农业大学学报,1999,26(1):89-94.
    [153]李桂花,张艳萍,胡克林.不同降雨和灌溉模式对作物产量及农田氮素淋失的影响.中国农业科学,2013,46(3):545-554.
    [154]Pang X P, Gupta S C, Moncrief J F, et al. Evaluation of nitrate leaching potential in Minnesota glacial outwash soils using the CERES-Maize model. Journal of Environmental Quality,1998,27(1):75-85.
    [155]袁新民,杨学云,同延安,等.不同施氮量对土壤N03-N累积的影响.干旱地区农业研究,2001,19(1):8-13.
    [156]Cadahia C, Masaguer A, Vallejo A, et al. Pre-plant slow-release fertilization of strawberry plants before fertigation. Fertilizer Research,1993,34(3):191-195.
    [157]Theocharopoulos S P, Karayianni M, Gatzogiani P, et al. Nitrogen leaching from soils in the Kopais area of Greece. Soil Use and Management,1993,9(2):76-84.
    [158]Pang X P, Letey J. Organic farming challenge of timing nitrogen availability to crop nitrogen requirements. Soil Science Society of America Journal,2000,64(1):247-253.
    [159]王晓英,贺明荣,刘永环,等.水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响.生态学报,2008,28(2):685-694.
    [160]宫辉力,赵文吉,李小娟,等.地下水地理信息系统——设计、开发与应用.北京:科学出版社,2006.
    [161]张秋玲,陈英旭,俞巧钢,等.非点源污染模型研究进展.应用生态学报,2007,18(8):1886-1890.
    [162]Borah D K, Bera M. Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. Transactions of the Asae,2003,46(6):1553-1566.
    [163]Saadi Z, Maslouhi A. Modeling nitrogen dynamics in unsaturated soils for evaluating nitrate contamination of the Mnasra groundwater. Advances in Environmental Research,2003,7(4): 803-823.
    [164]Srinivasan R, Arnold J G. Integration of a basin-scale water quality model with GIS. Journal of the American Water Resources Association,1994,30(3):453-462.
    [165]Wylie B K, Shaffer M J, Hall M D. Regional assessment of NLEAP NO3-N leaching indices. Journal of the American Water Resources Association,1995,31(3):399-408.
    [166]Liao H H, Tim U S. An interactive modeling environment for non-point source pollution control. Journal of the American Water Resources Association,1997,33(3):591-603.
    [167]Navulur K, Engel B A. Groundwater vulnerability assessment to non-point source nitrate pollution on a regional scale using GIS. Transactions of the Asae,1998,41(6):1671-1678.
    [168]Tim U. Coupling vadose zone models with GIS:Emerging trends and potential bottlenecks. Journal of Environmental Quality,1996,25(3):535-544.
    [169]Fedra K. Distributed models and embedded GIS:Integration strategies and case studies. In: Goodchild M F, Steyaert L T, Parks B O, et al, eds. GIS and environmental modeling: Progress and research issues. Hoboken, USA:John Wiley and Sons,1996,413-417.
    [170]Pierce F J, Shaffer M J, Brodhal M K. Spatial distribution of NO3 leaching risk to water supplies under cropland using NLEAP and GRASS GIS:International Annual Meetings of American Society of Agronomy, Soil Science Society of America, Crop Science Society of America, Madison, USA,1991.
    [171]Shaffer M J, Wylie B K, Hall M D. Identification and mitigation of nitrate leaching hot spots using NLEAP-GIS technology. Journal of Contaminant Hydrology,1995,20(3):253-263.
    [172]黄元仿,李韵珠,李保国,等.区域农田土壤水和氮素行为的模拟.水利学报,2001,11:87-92.
    [173]Li Y. A spatially referenced model for identifying optimal strategies for managing water and fertiliser nitrogen under intensive cropping in the North China Plain:[PhD thesis]. Melbourne: The University of Melbourne,2002.
    [174]Wang X, Cui P. Linkage of ArcView GIS with the RZWQM model. Journal of Spatial Hydrology,2004,4(2):1-16.
    [175]甄兰.应用DNDC模型和GIS技术研究区域氮肥管理的环境效应:[博士学位论文].北京:中国农业大学,2007.
    [176]李长生,肖向明,Frolking S.,等.中国农田的温室气体排放.第四纪研究,2003,23(5):493-503.
    [177]冯加根.基于组件式GIS的县域水稻精确施氮决策支持系统的开发与应用:[硕士学位论文].扬州:扬州大学,2007.
    [178]Almasri M N, Kaluarachchi J J. Modeling nitrate contamination of groundwater in agricultural watersheds. Journal of Hydrology,2007,343(3):211-229.
    [179]Hartkamp A D, White J W, Rossing W, et al. Regional application of a cropping systems simulation model:Crop residue retention in maize production systems of Jalisco, Mexico. Agricultural Systems,2004,82(2):117-138.
    [180]刘宏斌,李志宏,张云贵,等.北京市农田土壤硝态氮的分布与累积特征.中国农业科学,2004,37(5):692-698.
    [181]刘宏斌.施肥对北京市农田土壤硝态氮累积与地下水污染的影响:[博士学位论文].北京:中国农业科学院,2002.
    [182]陈梁擎.北京市大兴区水环境现状评价与保护对策研究:[硕士学位论文].北京:中国农业大学,2004.
    [183]王相平.区域农田水氮利用效率及氮素淋失风险研究:[博士学位论文].北京:中国农业大学,2010.
    [184]Li Y, Chen D, White R E, et al. Estimating soil hydraulic properties of Fengqiu County soils in the North China Plain using pedo-transfer functions. Geoderma,2007,138(3-4):261-271.
    [185]Schaap M G, Leij F J, van Genuchten M T. ROSETTA:a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 2001,251(3):163-176.
    [186]Tietje O, Hennings V. Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes. Geoderma, 1996,69(1-2):71-84.
    [187]Yu Q, Saseendran S A, Ma L, et al. Modeling a wheat-maize double cropping system in China using two plant growth modules in RZWQM. Agricultural Systems,2006,89(2):457-477.
    [188]Hu C, Saseendran S A, Green T R, et al. Evaluating nitrogen and water management in a double-cropping system using RZWQM. Vadose Zone Journal,2006,5(1):493-505.
    [189]宿梅双.喷灌均匀系数对土壤水氮淋失及作物生长影响的田间试验研究:[硕士学位论文].北京:中国农业大学,2005.
    [190]Green W H, Ampt G A. Studies on soil physics,1. The flow of air and water through soils. Journal of Agricultural Science,1911,4(1):1-24.
    [191]Brooks R H, Corey A T. Hydraulic properties of porous media. Colorado:Colorado State University,1964.
    [192]Jones C A, Kiniry J R. CERES-Maize:A simulation model of maize growth and development. Texas:Texas A&M University Press,1986.
    [193]王建梅,覃文忠.基于LM算法的BP神经网络分类器.武汉大学学报:信息科学版,2005,30(10):928-931.
    [194]伏燕军,杨坤涛,邹文栋,等.基于Levenberg-Marquardt算法的图像拼接.激光杂志,2007,28(5):46-48.
    [195]Bahremand A, De Smedt F. Distributed hydrological modeling and sensitivity analysis in Torysa Watershed, Slovakia. Water Resources Management,2008,22(3):393-408.
    [196]于利鹏.华北平原典型种植区农业面源污染风险评价:[博士学位论文].北京:中国农业大学,2012.
    [197]He J, Dukes M D, Jones J W, et al. Applying GLUE for estimating CERES-Maize genetic and soil parameters for sweet corn production. Transactions of the ASABE,2009,52(6): 1907-1921.
    [198]Dean S, Freer J, Beven K, et al. Uncertainty assessment of a process-based integrated catchment model of phosphorus. Stochastic Environmental Research and Risk Assessment, 2009,23(7):991-1010.
    [199]Box G E P, Tiao G C. Bayesian inference in statistical analysis. Reading, Massachusetts: Addison-Wesely Publishing Company,1993.
    [200]Vachaud G, Chen T. Sensitivity of a large-scale hydrologic model to quality of input data obtained at different scales; distributed versus stochastic non-distributed modelling. Journal of Hydrology,2002,264(1):101-112.
    [201]Hornberger G M, Spear R C. Approach to the preliminary analysis of environmental systems. Journal Environmental Management,1981,12(1):7-18.
    [202]王蕾.小麦—玉米合理施肥及土壤养分运移规律研究:[硕士学位论文].保定:河北农业大学,2007.
    [203]孙文涛,孙占祥,王聪翔,等.滴灌施肥条件下玉米水肥耦合效应的研究.中国农业科学,2006, (3):563-568.
    [204]张洁,姚宇卿,吕军杰,等.水肥耦合对小麦产量及淀粉特性的影响.中国粮油学报,2011,(12):1-4.
    [205]郑志松.氮磷营养及水分对冬小麦产量和品质的调控效应究:[博士学位论文].兰州:甘肃农业大学,2012.
    [206]郑志松,王建敏.水肥耦合对冬小麦产量及其构成因素的影响.河南农业科学,2012,41(8):26-33.
    [207]杨蕊菊,柴守玺,马忠明,等.水肥耦合对小麦玉米带田产量效应及土壤水分动态研究.核农学报,2011,25(5):1004-1009.
    [208]张礼军,张恩和,郭丽琢,等.水肥耦合对小麦/玉米系统根系分布及吸收活力的调控.草业学报,2005,14(2):102-108.
    [209]张玉铭,张佳宝,胡春胜,等.水肥耦合对华北高产农区小麦-玉米产量和土壤硝态氮淋失风险的影响.中国生态农业学报,2011, (3):532-539.
    [210]Zhang W L, Tian Z X, Zhang N, et al. Nitrate pollution of groundwater in northern China. Agriculture, Ecosystems and Environment,1996,59(3):223-231.
    [211]王改玲,陈德立,李勇.土壤温度、水分和NH4+-N浓度对土壤硝化反应速度及N20排放的影响.中国生态农业学报,2010,18(1):1-6.
    [212]刘艳.模拟增温对农田土壤呼吸、硝化及反硝化作用的影响:[硕士学位论文].南京:南京信息工程大学,2013.
    [213]李毅,邵明安,王文焰,等.质地对土壤热性质的影响研究.农业工程学报,2003,19(4):62-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700