用户名: 密码: 验证码:
离心铸造法制备Mg_2Si(Si)/Al梯度复合材料及其耐磨性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用离心铸造法成功地制备了Mg2Si(Si)/Al梯度复合材料,分析了过共晶Al-Si合金和Mg2Si/Al梯度复合材料的组织形貌,分析了铸型转速对梯度复合材料组织形貌及第二相分布的影响,通过试验研究了铝基梯度复合材料的干滑动磨损性能。
     通过实验研究离心铸造条件下,过共晶Al-Si合金和Mg2Si/Al梯度复合材料及其添加合金元素磷变质后的组织形貌,探讨了初生Mg2Si和初生Si的生长机理,分析了不同成分的Mg2Si/Al梯度复合材料的凝固过程,及磷对初生相的变质作用;通过研究铸型转速对Mg2Si/Al梯度复合材料梯度分布的影响,理论分析了第二相颗粒与合金液密度比大于1和小于1两种情况下,第二相颗粒在离心力场中的受力及运动状态,为离心铸造制备功能梯度复合材料提供了理论支持;通过实验研究了过共晶Al-Si合金和Mg2Si/Al梯度复合材料内侧在不同载荷、不同转速情况下的干滑动磨损性能,得出变质的梯度复合材料内层的耐磨性要比没变质的好,而且Mg2Si/Al梯度复合材料的耐磨性要比离心铸造制备的过共晶铝硅合金内侧、HT200的耐磨性好,进而分析了梯度复合材料变质前后的磨损机理,为其实际应用提供了实验依据。
Functionally gradient materials (FGM) are new kind of composites. They are produced by advanced compound technique, the elements (like constitutes, structure and so on) are continuously varied along the thickness direction, so the properties and functions change gradually. The materials attract interests of scholars at home and broad, and become the hot spot of material research. The principle of FGM produced by centrifugal casting is that solid-liquid two phases with different densities are separated in centrifugal field; solid phase is segregated and deposited at a certain location in the sample and the contents are distributed gradually, so FGM are made when liquid is solidified. The key of this method is designing the compositions, which ensure added particles or primary, secondary phase generated at the initial stage of solidification are presented gradient along the radial in the centrifugal field. The component gradient distribution is controlled by centrifugal velocity, the size of particles, the time of produced, temperature and density. It is well known that centrifugal casting has many advantages in producing FGM: simple device, high efficiency and low cost, moreover, it can make FGM with high relative density and large size, and the production is stable and so on. So centrifugal casting is deemed to be the most efficiency method to produce FGM.
     Due to the reinforced phase of Mg2Si is thermodynamically stable phase produced during solidification process, Mg2Si/Al composites exhibit a simple prepare technology, low cost, uniform distributing reinforced phase, optimized interface and excellent thermodynamically stable systems. In addition, Mg2Si/Al composites have a good machinability in comparison with ceramic particulate reinforced Al composite. Therefore, the Mg2Si/Al composites have high potential and applied prospects as automobile piston-cylinder etc. lightweight component. So it has significance to study on Mg2Si/Al gradient composites.
     In the present thesis, the microstructure of hypereutectic Al-Si alloy and Mg2Si/Al gradient composites produced by centrifugal casting, and the microstructure when alloying element P added were studied, the growth mechanisms of primary Mg2Si and Si, and the mechanism of P effects on primary phase were discussed. The motion state of second phase is analyzed by studying the effect of mold rotation on gradient sate. The dry sliding wear capability of hypereutectic Al-Si alloy and Mg2Si/Al gradient composites are studied. The major research efforts of the present study are as follows:
     (1) The centrifugal casting was used to produce Mg2Si/Al functionally gradient composites with Mg2Si, Si particulates reinforcement in both inside and outside wall and alloy matrix in the centre. The primary Si grow in the mode of facets, and the morphology is hexahedron; the primary Mg2Si is mixed interface, under the condition of negative temperature gradient, primary Mg2Si grows in the way of dendrite, but at the surface of dendrite crystal have facets characteristic.
     (2) According to phase diagram and probative experiment, the solidification process of Mg2Si/Al gradient composites is as follows: the concretionary approach of (Al-20Mg2Si)-9Si:L→L1+Mg2Sip→L2+Mg2Sip+(Al+Mg2Si)e→Mg2Sip+(Al+Mg2Si)e+(Al+Mg2Si+Si)e;the concretionary approach of (Al-20Mg2Si)-14Si: L→L1 + Sip→L2 + Sip +Mg2Sip→L3+Sip+Mg2Sip+(Si+ Mg2Si)e→Sip+Mg2Sip +(Si+Mg2Si)e+(Al+Mg2Si+Si)e. It is found that the secondary Mg2Si of (Al-20Mg2Si)-14Si can attach to the surface of primary Si, nucleating and growing in the way of semi-coherent growth.
     (3) The modification of Al-Si alloys by adding P is refining primary phase, refining primary Si from 100μm to 20μm.The influence of P on Mg2Si/Al mainly is refining the dendrite morphology of primary Mg2Si to little polygon .
     (4) The force condition along radial direction of the reinforcements in the centrifugal field is analyzed theoretically, and found that the displacement of the reinforcements changes exponentially with increasing time; the relation between the motion and the time is deduced, which provides theoretical support for producing gradient composites by centrifugal casting. With the increasing rotate speed of mold, the microstructure of gradient composites becomes much compacter, gradient distribution is more obvious, but the bubbles distribution is more wide and thinner. At the experiment condition, 1000r/min is the best rotate speed.
     (5) The results of dry sliding wear tests show that: under the condition of variable load and rotate speed, the wear capacity of Mg2Si/Al gradient composites are better than hypereutectic Al-Si alloy; the wear capacity of modified composites are better than unmodified ones, because the fined, dense and uniformly distributed primary Mg2Si reinforced phase could restrain the occurring of plastic deformation, enhancing the ability of plastic flow resistance; so the wearability of modified and high rotate seed produced composites are more better. Due to metal intersolubility, Mg2Si/Al gradient comoposites wearabilities are much better than HT200, when they wear against 45 steel.
引文
[1]新野正之,平井敏雄,渡边龙三.倾斜机能材料—宇宙机用超耐热材料应用[J].日本复合材料学会志,1987,13(6):257-264.
    [2]张宇民,赫晓东,韩杰才.梯度功能材料[J].宇航材料工艺,1998,5:5-10.
    [3]郑子樵,梁叔全.梯度功能材料的研究与展望[J].功能材料,1992,10(1):1-5.
    [4]周敬.Mg-W密度梯度材料的制备与性能研究[D].武汉:武汉理工大学材料复合新技术国家重点实验室,2007.
    [5]黄旭涛,严密.功能梯度材料回顾与展望[J].材料科学与工程,1997,15(4):35-38.
    [6] J Rode,l A Neubrand. Research Program on Gradient Materials in Germany[C]// Proc. of the 4th Int. Symposium on Gradient Material, Japan, 1996:9~14.
    [7]徐智谋,郑家举,张联盟.功能梯度材料和低温制备研究现状及展望[J].表面技术,2000,29(2):1-5.
    [8] T.Hirano, T.Yamada, J.Teraki,et. al. Proceedings of the 16th international Symposium on Space Technology and Science, Sapporo, 1988 [C]. Japan, 1988.
    [9] L.M.Zhang, J.Liu, R.Z.Yuan et. al. Properties of TiC-Ni3Al composites and structural optimization of TiC-Ni3Al functionally gradient materials[J]. Materials Science and Engineering A, 1995, 203:272-277.
    [10]赵林瀚.ZrO2-NiCr功能梯度材料制备与力学性能研究[D],哈尔滨:哈尔滨工业大学材料科学与工程学院,2006.
    [11] Wang ruigang, Pan Wei, Chen Jian et. al. Fabrication and characterization of machinable Si3N4/h-BN functionally graded materials[J]. Materials research bulletin, 2002, 37(7):1269-1277.
    [12]曹文斌,武安华,李江涛等. SiC/C功能梯度材料的制备[J].北京科技大学学报, 2001,23(1):32-34.
    [13] Jung Yeon-Gil, Ha Chang-Gi, Shin Jong-Ha et. al. Fabrication of functionally graded ZrO2/NiCrAlY composites by plasma activated sintering using tape casting and it’s thermal barrier property[J]. Materials Science and Engineering A, 2002,323(31):110-118.
    [14] Jeong-Gu Yeo, Yeon-Gil Jung, Sung-churl Choi. Design and microstructure of ZrO2/SUS316 functionally graded materials by tape casting [J]. Materials Letters, 1998,37(6): 304-311.
    [15] Moya J.S., Sanchez-Herencia A.J., Requena J. et. al. Functionally gradient ceramics by sequential slip casting [J]. Materials Letters, 1992, 14:333-335.
    [16]杨云志,陈治清.梯度材料的设计和展望[J].兵器材料科学与工程,1998 (11):49-55.
    [17] Sivakumar R., Nishikawa T., Honda S. et. al. Processing of mullite-molybdenum graded hollow cylinders by centrifugal molding technique [J]. Journal of the EuropeanCeramic Society,2003,23 (5):765-772.
    [18]陈方明,朱诚意.梯度功能材料的研究现状及发展[J].Electroplating & Finishing,2000,19(6):42-48.
    [19]张幸红,韩杰才,董世运等.梯度功能材料制备技术及发展趋势[J].宇航材料工艺,1999 (2):1-4.
    [20] Z.A. Munir, J.B. Holt, Merzhanov A.G. Self-propagating high-temperature synthesis: Twenty years of search and findings[M]//VCH, Weinheim. Combustion and Plasma Synthesis of High-temperature materials, New York: 1990: 1-53.
    [21] Suresh S, Mortensen A. Functionally graded metals and metal-Ceramic Composites. Part 1: processing [J]. International Materials Reviews, 1995, 40(6):239-265.
    [22] Dumont Anne-Laure,Bonnet Jean-pierre,Chartier Thierry et. al. MoSi2/Al2O3 FGM: Elaboration by tape casting and SHS[J]. Journal of the European Ceramic Society,2001, 21(13):2353-2360.
    [23] E.Parras-Medecigo , M.Ro. Driguez-Reye A.Gorokhovsky. Effect of processing parameters on the production of bilayer-graded Al/SiCp composites by pressureless infiltration [J]. Materials Letters, 2002,56(4): 460-464.
    [24]张晓玲,秦绪波,孟庆华等.无压浸渗法制备铸造表面复合材料[J].复合材料学报,1999,16(3):57-61.
    [25]边洁,王威强,管从胜等.梯度功能材料研究的一些进展[J].金属热处理,2003,28(9):13-19.
    [26] Sampath S., Smith W.C., Jewett T.J. et.al. Synthesis and characterization of grading profiles in plasma sprayed NiCrAlY-Zirconia FGM [J]. Materials science Forum, 1999,308-311: 383-388.
    [27] Hiroshi Takigawa et. al. In:Proc. of the First. Inter .Symp. on FGM, Sedai,1990[C]. Japan, 1990:247.
    [28]北口三郎等.粉体ぉょび[J].粉末冶金,1990,37(7):918.
    [29] Yin Z et al. In: Proc. of the Fourth Inter. Symp. on FGM Tsukuba,1996[C]. Japan, 1996:269
    [30] V. Cannillo, L. Lusvarghi, C. Siligardi, A. Sola. Characterization of glass-alumina functionally graded coatings obtained by plasma spraying [J]. Journal of the European Ceramic Society, 2007,27:1935-1943.
    [31] S Suresh, AMortensen,李守新等.功能梯度材料基础:制备及热机械行为[M].北京:国防工业出版社,2000.
    [32]郑慧雯,茹克也木·沙吾提,章娴君.功能梯度材料的研究进展[J].西南师范大学学报,自然科学版,2002,27(5):788-793.
    [33] Y. T. Pei, J Th M. De Husson. Functionally graded materials produced by laser cladding [J]. Acta Materialia, 2000;48(10): 2617-2624.
    [34] M. Riabkina-Fishman, E. Rabkin, P. Levin et. al. Laser produced functionally gradedtungsten carbide coatings on M2 high-speed tool steel[J]. Materials Science and Engineering A, 2001, 302(1):106-114.
    [35]赵涛,陈秋龙,蔡珣等.铝硅合金表面激光Cr/WC梯度层组织及抗微动磨损性能研究[J].金属热处理,2001 (3):30-32.
    [36] K. L.Choy. Chemical vapour deposition of coatings [J]. Progress in Materials Science, 2003,48(2):57-170.
    [37] A. M. Peters, J. J. Moore, I. Reimanis et. al. Cathodic arc evaporation of functionally graded chromium nitride thin films for wear resistant and forming applications[J]. Materials Science Forum, 1999, 308-311:283-289.
    [38] Akihito Sakai, Naoki Kitamori, Kazuhiro Nishi et. al. Preparation and characterization of Sic-coated C/C composites using pulse chemical vapor deposition (pulse-CVD)[J]. Materials Letters, 1995, 25:61-64.
    [39]李碧容,雍岐龙,张国亮.功能梯度材料的发展、制备方法与应用前景综述[J].云南工业大学学报,1999,15(4):56-58.
    [40]袁秦各,胡锐.梯度复合材料制备技术研究进展[J].兵器材料科学与工程,2003,26(6):66-6.
    [41] S. Put, J. Vleugels, O. Van der Biest. Functionally graded WC-Co materials produced by electrophoretic deposition [J]. Scripta Materialia, 2001, 45(10):1139-1145.
    [42] Zhao C., Vleugels J., Vandeperre L. et. al. Graded tribological materials formed by electrophoresis [J]. Materials Science Forum, 1999, 308-311: 95-100.
    [43]中国机械工程学会铸造分会.铸造手册第二版:特种铸造(6)[M].北京:机械工业出版社,2003.
    [44] R.Rodriguez-eastro, M.H.Kelestemur. Processing and microstructural characterization of functionally gradient Al A359/SiCp composite [J]. Journal of Materials Science, 2002, 37:1813-1821.
    [45]谭银元.离心铸造过共晶Al-Si合金自生复合材料及其阻尼性能[J].中国有色金属学报,2002,12(2):353-357.
    [46]曾汉民.高技术新材料要览[M].北京:中国科学技术出版社,1993.
    [47]韩杰才,徐丽,王保林等.梯度功能材料的研究进展及展望[J].固体火箭技术,2004,27(3):27-36.
    [48] Yamada R., Fujii K. Oxidation and thermal shock resistance of SiC compositionally graded carbon fiber-reinforced carbon composite materials [J]. Materials Science Forum, 1999, 308-311:902-907.
    [49]赵军,艾兴,张建华.功能梯度材料的发展及展望[J].材料导报,1997,11(4):57-60.
    [50]张幸红,李亚辉,韩杰才等.TiC-Ni系功能梯度材料的断裂力学有限元分析[J].复合材料学报,2001,18(4):87-92.
    [51]陈东,杨光义,王国元等.功能梯度材料的进展[J].青岛建筑工程学院学报,2001,22(4):1.
    [52]张联盟等.材料学[M].北京:高等教育出版社,2005.
    [53] K Tsuda, A Ikegaya. Development of functionally graded sintered hard materials [J]. Powder Metallurgy, 1996, 39(4):296-300.
    [54]程继贵,雷纯鹏,邓莉萍.梯度功能材料的制备及其应用研究的新进展[J].金属功能材料,2003,10 (1):28-31.
    [55] J. Ma, G. E. B. tan, Zeming HE. Fabrication and characterization of Ti-TiB2 functionally graded material systems [J]. Metallurgical and materials transactions A, 2002, 33: 681-685.
    [56]王渠东,丁文江,金俊泽.离心铸造复合材料的研究与发展[J].材料导报,1998,12(6):61-64.
    [57] G. Chirita, D. Soares, F.S. Silva. Advantages of the centrifugal casting technique for the production of structural components with Al-Si alloys [J]. Materials and Design, 2008, 29:20-27.
    [58]秦孝华,韩维新,戎利建等.离心铸造法制备陶瓷颗粒增强Al合金基功能梯度复合管.金属学报,2001,37(10):1117-1120.
    [59]于思荣,任露泉,张新平等.过共晶Al-16%Si合金梯度功能材料的组织与性能.吉林工业大学自然科学学报,2001,31(1):10-13.
    [60] Qudong Wang, Yinhong Wei, Wenzhou Chen et. al. In situ surface composites of (Mg2Si+Si) /ZA27 fabricated by centrifugal casting [J]. Materials Letters, 2003, 57: 3851-3858.
    [61] Yoshimi Watanabe, Shin Oike. Formation mechanism of graded composition in Al-Al2Cu functionally graded materials fabricated by a centrifugal in situ method [J]. Acta Materialia, 2005, 53: 1631-1641.
    [62] Yoshimi Watanabe, Noboru Yamanaka, Yasuyoshi Fukui. Wear Behavior of Al-Al3Ti Composite Manufactured by a Centrifugal Method [J]. Metallurgical and Materials Transactions A, 1999, 30:3253-3261.
    [63] A. Velhinho,P.D. Sequeira,Rui Martins,G. Vignoles et. al. X-ray tomographic imaging of Al/SiCp functionally graded composites fabricated by centrifugal casting[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 200:295-302.
    [64] Z. Humberto Melgarejo, O. Marcelo Sua′rez, Kumar Sridharan. Wear resistance of a functionally-graded aluminum matrix composite [J]. Scripta Materially, 2006, 55(1): 95-98.
    [65] Eberhard E. Schmid, Kerster von Oldenburg, Georg Frommeyer. Micorstructure and properties of as-cast intermetallic Mg2Si-Al alloys [J]. Z. Metallkid, 1990, 81: 809-815.
    [66]张健.Al-Mg2Si原位内生复合材料:组织,性能及功能梯度材料的制备[D].沈阳:中国科学院沈阳金属研究所,1999.
    [67] P. Villars, L.D. Calvert, W. B. Pearson. Pearson’s handbook of crystallographic data for intermetallic phases [M]. US: Metals Park, oh: ASM, 1985.
    [68] J. Zhang, Z. Fan, Q. Y. Wang, B.L. Zhou. Microstructural evolution of the in situ Al-15wt.%Mg2Si composite with extra Si contents[J], Scripta Materialia, 2000,42(11): 1101-1106.
    [69] G.H. Li, H.S. Gill, R.A. Varin. Magnesium silicide intermetallic alloys [J]. Metallurgical and Materials Transactions A, 1993, 24: 2383-2391.
    [70] I. Barin, O. Knacke. Thermochemical properties of inorganic substances [M]. Berlin: Springer verlag, 1977.
    [71] R.J. Labota, D.R. Mason. The thermal conductivities of Mg2Si and Mg2Ge [J]. J. Electrochem. Soc., 1963, 110: 121-126.
    [72]崔忠圻.金属学与热处理[M].北京机械工业出版社,2000.
    [73]李庆春.铸件形成理论基础[M].哈尔滨:哈尔滨工业大学出版社,1980.
    [74] X.F. Bian, W.M. Wang. Thermal-rate treatment and structure transformation of Al-13wt.%Si alloy melt[J]. Materials Letters, 2000.44(1): 54-58.
    [75] F.C. Robles Hern′andez, J.H. Sokolowski. Thermal analysis and microscopical characterization of Al–Si hypereutectic alloys [J]. Journal of Alloys and Compounds, 2006, 419: 180-190.
    [76] C.L. Xu, Q.C. Jiang. Morphologies of primary silicon in hypereutectic Al-Si alloys with melt overheating temperature and cooling rate [J]. Materials Science and Engineering A, 2006, 437: 451-455.
    [77] K.F. Kobayashi, L.M. Hogan. The crystal growth of silicon in Al-Si alloys [J]. Journal of Materials Science, 1985, 20:1961-1975.
    [78] K. Kobayashi, L.M. Hogan. Five-fold twinned silicon crystals grown in an Al-16wt.%Si melt[J]. Philosophical Magazine A, 1979, 40: 399-407.
    [79]陈晓,原位自生颗粒增强镁基复合材料的研究[D].长沙:中南大学材料科学与工程学院,2005.
    [80]潘义川.镁合金中α-Mg、Mg2Si相的异质形核机制与相关中间合金研究[D].济南:山东大学材料科学与工程学院,2006.
    [81] Grob E, Neu V, Stohrer. U. Procddedings of the 11th international conference on thermoelectric energy conversion[C]. Texas: IEEE, 1992.
    [82] R.G. Morris, R.D. Redin, G.C. Danielson. Semiconducting properties of Mg2Si single crystals [J]. Physical Review, 1958, 109(6): 1909-1915.
    [83] J. Zhang, Z.Fan, Y,Q.Wang et. al. Effect of cooling rate on the microstructure of hypereutectic Al-Mg2Si alloys [J]. Journal of materials science letters, 2000, 19:1825-1828.
    [84]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,1998.
    [85]许长林.变质对过共晶铝硅合金中初生硅的影响及其作用机制[D].长春:吉林大学材料科学与工程学院,2007.
    [86] A. Knuutinen, K. Nogita, S. D. McDonald, A. K. Dahle. Modification of Al-Si alloys with Ba, Ca, Y and Yb [J]. Journal of Light Metals, 2001,1(4):229-240.
    [87] A.K. Dahle, K. Nogita, J.W. Zindel et. al. Eutectic nucleation and growth in hypereutectic Al-Si alloys at different strontium levels [J]. Metallurgical and Materials Transactions A, 2001, 32:949-960.
    [88]秦庆东.Mg2Si/Al复合材料组织与性能的研究[D].长春:吉林大学材料科学与工程学院,2008.
    [89]徐自立,魏伯康,林汉同.离心铸造Al-Fe-Si合金自生FGM的研究[J].特种铸造及有色合金,2002,3:16-17.
    [90]张先棹.冶金传输原理[M].北京:冶金工业出版社,2004.
    [91]徐自立,魏伯康,蔡启舟.离心铸造梯度功能材料凝固过程中第二相的迁移行为[J].热加工工艺,1995,3:13-15.
    [92] Jian Zhang, Zhouyun Fan, Yuqing Wang et. al. Hypereutectic aluminium alloys tubes with graded distribution of Mg2Si particles prepared by centrifugal casting[J]. Materials and Design, 2000,21(3):149-153.
    [93]倪锋,杨涤心,张明柱.卧式离心铸造浇注过程中气体侵入机制的探讨[J].铸造设备研究,1999,1:4-7.
    [94]修坤.TiC/AZ91镁基复合材料组织及耐磨性的研究[D].长春:吉林大学材料科学与工程学院,2006.
    [95] Q.D. Qin, Y.G. Zhao, W. Zhou. Dry sliding wear behavior of Mg2Si/Al composites against automobile friction material [J]. Wear, 2008, 264: 654-661.
    [96]李俊宪,孙保良,邵光杰. SiC颗粒增强铝基复合材料的摩擦磨损性能[J].机械工程材料,2006,30(5):62-65.
    [97]任波.原位合成Mg2Si/Al复合材料微观组织及力学性能研究[D].郑州:郑州大学物理工程学院,2007.
    [98]何奖爱,王玉伟.材料磨损与磨损材料[M].沈阳:东北大学出版社,2001.
    [99]高彩桥.摩擦金属学.哈尔滨:哈尔滨工业大学出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700