用户名: 密码: 验证码:
水泥基材料低温结晶过程孔隙力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冻融破坏是水泥基材料主要耐久性问题之一。量化分析降温过程中孔隙溶液结晶过程以及该过程产生的孔隙压力是尚未解决的理论问题。本文在孔隙介质力学框架下,开展了降温过程中水泥基材料孔隙溶液结晶过程理论与实验研究。
     本文首先研究了孔隙溶液结晶的基本物理化学过程,利用Gibbs-Tomson方程描述了冰晶体随着孔隙尺寸的扩展过程,考虑了溶液中离子对孔隙溶液结冰过程的影响。利用材料的性质以及成核理论,预测孔隙溶液的成核过冷度。论文扩展了非饱和孔隙介质力学理论,考虑了孔隙溶液压力和盐浓度对毛细压力的影响,考虑了压力和浓度梯度形成的水和溶质迁移。最终建立了多孔材料低温结晶过程的温度、压力、水分和离子的孔隙介质力学模型,并通过对经典问题的计算,验证了模型的有效性。论文选定了水泥基材料并特别设计了冻融变形测量装置,系统地研究了复合水泥基材料的孔隙结构,分析了压汞和氮气吸附法的测量特征以及应用范围,表征了水泥基材料的孔隙率、特征孔径、孔隙分布和比表面积,分析了孔隙表面的分形维和孔隙连通度,探讨了不同干燥方法对水泥基材料微结构的影响,测量了不同气泡含量干燥净浆和砂浆试件的温度变形,以及饱盐溶液水泥浆体试件的冻融变形。最后,本文利用建立的孔隙介质力学模型分析了非排水条件下不同浓度孔隙溶液结晶过程产生的变形,以及产生变形的原因,分析了排水和非排水边界条件下引气试件的低温变形。
     研究显示,x冰与孔隙壁的接触角随着盐浓度的增加而降低; y在降温过程中,孔隙水的负压导致引气水泥基材料的持续收缩,而孔隙结晶压力导致非引气水泥基材料的持续膨胀; z过冷水结冰产生的巨大静水压力和瞬时温度升高导致了材料在结冰成核点附近的瞬时膨胀;{水泥基材料的孔隙结构表现出与尺寸相关的性质;|冰冻干燥只能干燥毛细孔水和部分低密度凝胶孔隙水;}材料的热膨胀系数与孔隙率成指数函数关系:α=α0(1)C;~非引气试件的低温膨胀变形与孔隙结构有关,引气试件的膨胀变形与气泡饱和度有关;非排水条件的非引气试件低温膨胀主要取决于结冰形成的静水压,而引气试件的低温变形取决于气泡形成的孔隙水压力边界条件。
Freeze-thaw (F-T) deterioration is one of the most important durability problem-s. Quantitative analysis of the pore pressure when pore solution solidifies, is still anopen question. Within the poromechanical frameworks, the present work studies thecrystallization processes of pore solution confined in cement based materials (CBM)theoretically and experimentally.
     In the present work, the ice formation processes were first studied according tothermodynamic equilibrium, and the penetration of ice into thinner pores with temper-ature was described by Gibbs-Tomson equation. The impact of solutes was retained tomodify the solidification processes of pore solution. By means of material propertiesand heterogeneous nucleation (HN) theory, the relation between supercooled tempera-ture and the salt concentration of pore solution was established. From the poro-elastictheory, a poromechanical model was established to bridge over the crystallization ofpore solution and the macro behaviors of CBM under freezing. The Darciean and Fick-ian transport in porous medium were considered together in the present poromechan-ical model. The conservation equations for ions, water and energy were establishedon the basic variables: liquid pressure, salt concentration and temperature. The classicproblems of air-entrained CBM and the effect of supercooling were analyzed by theestablished model to verify its robustness.
     The CBM samples were prepared and the set-up of deformation measurement ofCBM under F-T loadings was designed specially. The pore structure of samples werecharacterized comprehensively by mercury intrusion porosimetry (MIP) and Nitrogenadsorption/desorption (NAD). The porosity, characteristic pore size (CPS), pore sizedistribution (PSD) and specific surface area (SSA) were evaluated and discussed com-bined with the hydration processes. The fractal dimensions and drying effect of freeze-drying (F-drying) were discussed as well. The F-T deformation of dried pastes andmortars, entrained with different dosages of air-voids, were measured to obtain the ther-mal expansion coefficient (TEC). The F-T deformation of samples saturated with salinesolution were measured comprehensively. Poromechanical analysis was performed onthe sealed pastes saturated with saline solution under F-T loading, where the sources for deformation during freezing were specified in detail. The drained and undrainedconditions, corresponding to the empty and saturated air voids respectively, were usedto analyze the freezing deformation of air entrained CBM.
     The study indicates that: x The contact angle between ice and pore wall decreaseswith salt concentrations; y Continual shrinkage of air-entrained paste (AEP) is dueto the negative liquid pressure and cryo-suction of ice formed on the interface of airvoids, while continual expansion of ordinary paste (OP) is due to the hydraulic pressureinduced by ice formation; z the instantaneous ice formation and the corresponding heatreleasing account for the ice nucleation significant deformation;{The blended cementpastes show the scale related properties;|F-drying only removes capillary water andpartial gel water confined in low density C-S-H;} The TEC of CBM is related to theporosity in form of power law: α=α0(1)C;~The F-T deformation of OP is relatedintimately to the pore structure, while the F-T deformation of AEP highly depends onthe saturation degree of air voids;The deformation of OP under undrained freezingis associated with the amount of ice formation, while the deformation of AEP dependson the boundary conditions charged by the saturation degree of air voids.
引文
[1] cembureau. World cement production2010, by region and main countries.http://www.cembureau.be/about-cement/key-facts-figures,2010.
    [2]水泥网.2000-2010年全国水泥产量. http://www.ccement.com/news/Content/42071.html,2012.
    [3] Oggioni G, Riccardi R, Toninelli R. Eco-efficiency of the world cement industry: A dataenvelopment analysis. Energy Policy,2011,39(5):2842–2854.
    [4] Lei Y, Zhang Q, Nielsen C, et al. An inventory of primary air pollutants and CO2emissionsfrom cement production in China,1990–2020. Atmospheric Environment,2011,45(1):147–154.
    [5]中国气象科学数据共享服务网.中国(1971-2000年)气候标准值,北京市.http://www.cma.gov.cn/2011qxfw/2011qsjcx/,2012.
    [6]水利部水工混凝土调查组.全国水工混凝土建筑耐久性及病害处理调查报告.Technical report,中国水利水电科学院,北京,1987.
    [7]常传利,葛勇,于继寿, et al.路桥混凝土冻融破坏调查与分析.低温建筑技术,2006,114:3–4.
    [8]刘树春,姜志文.柴河水库混凝土工程冻害及其防治.现代农业科技,2011,22:264–265.
    [9]宋恩来.东北地区大坝溢流面混凝土冻融与冻胀破坏.东北水利水电,2000,3:22–26.
    [10]隋丽君,师晓东.参窝水库大坝溢流面混凝土破坏原因分析.东北水利水电,2002,20:19–20.
    [11] Pigeon M, Marchand J, Pleau R. Frost resistant concrete. Cons. Build. Mater.,1996,10:339–348.
    [12] Marchand J, Sellod E J, Pigeon M. The Deicer Salt Scaling Deterioration of Conceret: AnOverview. Proceedings of Proceeding of3rd CAMNET/ACI International Conference, Mice,France,1994.1–46.
    [13] Pigeon M, Pleau R. Durability of concrete in Cold Climates. LONDON: E&FN SPON,1995.
    [14] Wardeh G, Mohamed M A S, Ghorbel E. Analysis of concrete internal deterioration due tofrost action. J. Build. Phys.,2011,35(1):54.
    [15] Perrin B, Vu N, Multon S, et al. Mechanical behaviour of fired clay materials subjected tofreeze-thaw cycles. Constr. Build. Mater.,2011,25(2):1052–1064.
    [16] Yang Z, Weiss W, Olek J. Interaction Between Micro-Cracking, Cracking, and ReducedDurability of Concrete: Developing Methods for Quantifying the Influence of CumulativeDamage in Life-Cycle Modeling. http://docs.lib.purdue.edu/jtrp/132,2005.
    [17] Kaufmann J P. Experimental identification of ice formation in small concrete pores. Cem.Concr. Res.,2004,34(8):1421–1427.
    [18] Beaudoin J J, MacInnis C. The effect of admixtures on length change anomalies due to slowcooling and warming of hardened cement paste. Cem. Concr. Res.,1974,4(3):347–356.
    [19] Beaudoin J J, MacInnis C. The mechanism of frost damage in hardened cement paste. Cem.Concr. Res.,1974,4(2):139–147.
    [20] Kaufmann J P. Experimental identification of damage mechanisms in cementitious porousmaterials on phase transition of pore solution under frost deicing salt attack[博士学位论文].Lausanne: EPFL,1999.
    [21] Moukwa M. Deterioration of concrete in cold sea waters. Cem. Concr. Res.,1990,20(3):439–446.
    [22] Chandra S, Xu A. Influence of presaturation and freeze-thaw test conditions on lengthchanges of Portland cement mortar. Cem. concr. res.,1992,22(4):515–524.
    [23] Fagerlund G G. Mechanical damage and fatigue effects associated with freeze-thaw of ma-terials. In Setzer M J et al.[324],117–132.
    [24] Wakimoto K, Blunt J, Carlos C, et al. Digital laminography assessment of the damage inconcrete exposed to freezing temperatures. Cem. Concr. Res.,2008,38(10):1232–1245.
    [25] Powers T C, Helmuth R. Theory of volume changes in hardened Portland cement pasteduring freezing. Proc. Highw. Res. Board,1953,32:285–297.
    [26] Sun Z, Scherer G W. Effect of air voids on salt scaling and internal freezing. Cem. Concr.Res.,2010,40(2):260–270.
    [27] Pigeon M, Marchand J, Zuber B. Freeze/thaw resistance. In: Newman J, Choo B S,(eds.).Proceedings of Advanced Concrete Technology: Concrete Properties. Elsivier,2003.11/1–16.
    [28] Valenza J J, Scherer G W. Mechanism for salt scaling of a cementitious surface. Mater.Struct.,2007,40(3):259–268.
    [29] Ronnings T F. Freeze-Thaw Resistance of Concrete Effect of: Curing Conditions, MoistureExchange and Materials[博士学位论文]. Trondheim, Norwegian: The Norwegian Instituteof Technology, Division of Structural Engineering, Concrete Section,2001.
    [30] http://www.cement.org/tech/cct dur freeze-thaw.asp.
    [31] Marchand J, Pigeon M, Bager D, et al. Influnece of Chloride Solution Concentration onDeicer Salt Scaling Deterioration of Concrete. ACI Mater. J.,1999,96(4):429–435.
    [32] Verbeck G J, Klieger P. Studies of’salt’ Scaling of Concrete. Highw. Res. Board Bull.,1957,150:1–17.
    [33] Dipayan J. Concrete scaling-A critical review,. Proceedings of Proceedings of the twenty-ninth conference on cement microscopy, Quebec city, PQ, Canada,2007.
    [34] Sellevold E J, Farstad T. Frost/Salt testing of concrete: Effect of the test parameters andconcrete moisture history. Nordic Concr. Res.,1991,10:121–138.
    [35] Fabbri A, Coussy O, Fen-Chong T, et al. Are Deicing Salts Necessary to Promote Scaling inConcrete? J. Eng. Mech.-ASCE,2008,134:589–601.
    [36] Klieger P. Curing requirements for scale resistance of concrete. Highw. Res. Board Bull.,1956,50:18–31.
    [37] Klieger P, Perenchio W. Silicone Influence on Concrete Resistance to Freeze-Thaw andDeicer Damage. Highw. Res. Rec.,1963,18:33–47.
    [38] Copuroglu O, Schlangen E. Modeling of frost salt scaling. Cem. Concr. Res.,2008,38(1):27–39.
    [39] Fagerlund G G. Absorption and Dilation of Cement Mortar Specimens Exposed to Freezingand Thawing in NaCl Solution. In: Marchand J, MPigeon, Setzer M J,(eds.). Proceedingsof Freezing Thaw Durability of Concrete: Proceedings of the International Workshop in theResistance of Concrete to Scaling Due to Freezing in the Presence of De-icing Salts, Sainte-Foy, Que′bec, Canada,1992.51–66.
    [40] Tang L, Petersson P E. Water uptake, dilation and internal deterioration of concrete due tofreezing-and thawing. In Setzer M J et al.[324],287–294.
    [41] Setzer M J. Micro-ice-Lens Formation in Porous Solid. J. Coll. Inter. Sci.,2001,243(1):193–201.
    [42] Setzer M J. Development of the micro-ice-lens model. In Setzer M J et al.[324],133–142.
    [43] Hammer T A, Sellevold E J. Frost resistance of high strength concrete. ACI special publica-tion SP1521, ACI Detroit,,1990.457–487.
    [44] Valenza J J, Scherer G W. A review of salt scaling: I. Phenomenology. Cem. Concr. Res.,2007,37(7):1007–1021.
    [45] Valenza J J, Scherer G W. Mechanism for salt scaling. J. Am. Ceram. Soc.,2006,89(4):1161–1179.
    [46] Janssen D J. The influence of material parameters on freeze-thaw resistance with and withoutdeicing salt. Proceedings of Frost Resistance of Concrete. Proceedings of the internationalRILEM Workshop on Resistance of Concrete to Freezing ans Thawing With and WithoutDe-icing Chemicals, Essen, Germany,1997.3–10.
    [47] Litvan G G. Frost action in cement paste. Mater. Struct.,1973,6(4):293–298.
    [48] Fu Y, Cai L, Yonggen W. Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete. doi:10.1016/j.conbuildmat.2010.12.006,2011.
    [49] Litvan G G. Phase transitions of adsorbates: V, Aqueous sodium chloride solutions adsorbedof porous silica glass. J. Colloid Interf. Sci.,1973,45(1):154–169.
    [50] Wang K, Nelsen D E, Nixon W A. Damaging effects of deicing chemicals on concretematerials. Cem. Concr. Comp.,2006,28(2):173–188.
    [51] McDonald D, Perenchio W. Effects of salt type on concrete scaling. Concrete International,1997,19:23–26.
    [52] Shi X, Fay L, Peterson M, et al. Freeze–thaw damage and chemical change of a portlandcement concrete in the presence of diluted deicers. Mater. Struct.,2010.1–14.
    [53] Darwin D, Browning J A, Gong L, et al. Effects of deicers on concrete deterioration. ACIMater. J.,2008,105(6):622–627.
    [54] Shi X, Akin M, Pan T, et al. Deicer impacts on pavement materials: Introduction and recentdevelopments. Open Civil Engineering Journal,2009,3:16–27.
    [55] Powers T C. The air requirement of frost resistant concrete. Proc. Highw. Res. Board.,1949,29:183–211.
    [56] http://www.ctu.edu.vn/colleges/tech/bomon/ktxd/baigiang/CONCRETE-/Chap.8./Chap8.pdf,2009.
    [57] Cramer S M, R A Walls J. Strategies for Enhancing the Freeze-Thaw Durability of PortlandCement Concrete Pavements. Technical report, University of Wisconsin-Madison Depart-ment of Civil and Environmental Engineering, Report Number: WI/SPR-06-01, July,2001.
    [58] Corr D J, Juenger M C G, Monteiro P J M, et al. Investigating entrained air voids and Portlandcement hydration with low-temperature scanning electron microscopy. Cem. Concr. Comp.,2004,26(8):1007–1012.
    [59] Coussy O, Monteiro P J M. Poroelastic model for concrete exposed to freezing temperature.Cem. Concr. Res.,2008,38(1):40–48.
    [60] Corr D J, Monterio P J M, Baskacky J. Microscopic Characterization of ice Morphology inEntrained Air Voids. ACI Material Journa,2002,99(2):190–195.
    [61] Coussy O. Poromechanics of Freezing Materials. J. Mech. Phys. Solids,2005,53(8):1689–1718.
    [62] Powers T C, Bronyard T L. Physical properties of cement-paste. Chicago: ACI: Res. Labs.Port. Cem. Ass. Bulletin,1947.
    [63] Pigeon M, Talbot C, Marchand J, et al. Surface Microstructure and Scaling Resistance ofConcrete. Cem. Concr. Res.,1996,26(10):1555–1566.
    [64] Hodgson C, McIntosh R. The freezing of water and benzene in porous Vycor glass. CanadianJournal of Chemistry,1960,38(6):958–971.
    [65] Lide D R. Handbook of chemistry and physics. CRC,2002.
    [66] Linse P. Thermodynamic and structural aspects of liquid and solid benzene. Monte Carlostudy. J. Am. Chem. Soc.,1984,106(19):5425–5430.
    [67] Zeng Q, Li K. Influence of freezing rate on the cryo-deformation and cryo-damage ofcement-based materials during freeze-thaw cycles (in Chinese). J Tsinghua Univ (Sci&Tech),2008,48(9):1390–1394.
    [68] Lothenbach B, Le Saout G, Gallucci E, et al. Influence of limestone on the hydration ofPortland cements. Cem. Concr. Res.,2008,38(6):848–860.
    [69] Everett D H. The thermodynamics of frost damage to porous solids. Trans. Faraday Soc.,1961,57:1541–1551.
    [70] Zeng Q, Fen-Chong T, Dangla P, et al. A study of freezing behaviour of cementitious mate-rials by poromechanical approach. Int. J. Solids Struct.,2011,48:3267–3273.
    [71] Scherer G W. Crystallization in pores. Cem. Concr. Res.,1999,29(8):1347–1358.
    [72] Dash J G, Fu H, Wettlaufer J S. The premelting of ice and its environmental consequences.Rep. Progr. Phys.,1995,58:115–167.
    [73] Fagerlund G G. The significance of critical degrees of saturation at freezing of porous andbrittle materials. Proceedings of Durability of concrete. ACI Publication SP-47, Detroit,USA,1975.13–66.
    [74] Valenza J J, Scherer G W. Mechanisms of salt scaling. Mater, Struct.,2005,38(4):479–488.
    [75] Valenza J J, Scherer G W. A review of salt scaling: II. Mechanisms. Cem. Concr. Res.,2007,37(7):1022–1034.
    [76] Nagornov O V, Chizhov V E. Thermodynamic properties of ice, water, and a mixture of thetwo at high pressures. J. Appl. Mech. Tech. Phys.,1990,31(3):378–385.
    [77] Coussy O. Poromechanics. Second ed., The Atrium, Southern Gate, Chichester, West Sussex:John Wiley&Sons,2004.
    [78] Dullien F. Porous media: fluid transport and pore structure. Academic Press,1992.
    [79] Boer R, Katsube N. Theory of Porous Media: Highlights in Historical Development andCurrent State. Appl. Mech. Rev.,2002,55:B32.
    [80] Coussy O. Mechanics and physics of porous solids. The Atrium, Southern Gate, Chichester,West Sussex: John Wiley&Sons,2010.
    [81] Wardeh G, Perrin B. Freezing-thawing phenomena in fired clay materials and consequenceson their durability. Constr. Build. Mater.,2008,22(5):820–828.
    [82] Sutter L, Peterson K, Touton S, et al. Petrographic evidence of calcium oxychloride for-mation in mortars exposed to magnesium chloride solution. Cem. Concr. Res.,2006,36(8):1533–1541.
    [83] Zuber B, Marchand J. Predicting the volume instability of hydrated cement systems uponfreezing using poro-mechanics and local phase equilibria. Mater. Struct.,2004,37(4):257–270.
    [84] Penttala V, Al-Neshawy F. Stress and strain state of concrete during freezing and thawingcycles. Cem. Concr. Res.,2002,32:1407–1420.
    [85] Penttala V. Surface and internal deterioration of concrete due to saline and non-saline freeze-thaw loads. Cem. Concr. Res.,2006,36(5):921–928.
    [86] Zhou Z, Mihashi H. Micromechanics model to describe strain behavior of concrete in freez-ing process. Journal of Materials in Civil Engineering,2008,20:46.
    [87] Kristensen L, Hansen T. Cracks in concrete core due to fire or thermal heating shock. ACIMater. J.,1994,91(5).
    [88] Peng G F, Bian S H, Guo Z Q, et al. Effect of thermal shock due to rapid cooling on residualmechanical properties of fiber concrete exposed to high temperatures. Constr. Build. Mater.,2008,22(5):948–955.
    [89] Luo X, Sun W, Chan S Y N. Effect of heating and cooling regimes on residual strength andmicrostructure of normal strength and high-performance concrete. Cem. Concr. Res.,2000,30(3):379–383.
    [90]葛勇,杨文萃,袁杰, et al.硫酸盐溶液中混凝土抗冻融干湿循环性能.东南大学学报,2006,36:234–237.
    [91]杨全兵.冻融循环条件下氯化钠浓度对混凝土内部饱水度的影响.硅酸盐学报,2007,35(1):96–100.
    [92]李文利,张鹤,李中华, et al.掺合料及引气剂对混凝土抗盐冻剥蚀性能的影响.工业建筑,2010,40(6):12–15.
    [93] Sun Z. Mechanism of frost damage to concrete[博士学位论文]. Princeton, USA: Depart-ment of civil and environmental engineering, Princeton University,2010.
    [94] Baroghel-Bouny V, Arnaud S, Henry D, et al. Vieillissement des b′tons en milieu naturel:une expe′rimentation pour le XXIe sie`cle. III-Proprie′te′s de durabilite′des be′tons mesure′es sure′prouvettes conserve′es en laboratoir. Bulletin des laboratoires des ponts et chausse′es,2002,241:13–59.
    [95] Fabbri A. Physico-me′canique des mate′riaux cimentares soumis au gel-d’gel[D]. France:Department of civil engineering, Unversite′de Marne-La-Valle′e,2006.
    [96] Atkins P, Paula J. Physical chemistry.8th, ed., Oxford,2006.
    [97] Wilson P W, Heneghan A F, Haymet A D J. Ice nucleation in nature: supercooling point(SCP) measurements and the role of heterogeneous nucleation. Cryobiology,2003,46(1):88–98.
    [98] Speedy R J. Thermodynamic properties of supercooled water at1atm. J. Phys. Chem.,1987,91(12):3354–3358.
    [99] Ge X, Wang X. Estimation of Freezing Point Depression, Boiling Point Elevation, and Vapor-ization Enthalpies of Electrolyte Solutions. Ind. Eng. Chem. Res.,2009,48(4):2229–2235.
    [100] Akyurt M, Zaki G, Habeebullah B. Freezing phenomena in ice-water systems. EnergyConvers. Manage.,2002,43(14):1773–1789.
    [101] Scherer G W. Freezing gels. J. Non-Cryst. Soild.,1993,155:1–25.
    [102] Liu L, Ye G, Schlangen E, et al. Modeling of the internal damage of saturated cement pastedue to ice crystallization pressure during freezing. doi:10.1016/j.cemconcomp.2011.03.001,2011.
    [103] Do¨ppenschmidt A, Butt H J. Measuring the thickness of the liquid-like layer on ice surfaceswith atomic force microscopy. Langmuir,2000,16(16):6709–6714.
    [104] Dunn M, Dore J C,, et al. Structure study of ice formation in porous silics by neutrondiffraction. J. Cryst. Growth.,1988,92:233–238.
    [105] Steytler D C, Dore J C, Wright C J. Neutron diffraction study of cubic ice nucleation in aporous silica network. J. Phys. Chem. B.,1983,87:2458–2459.
    [106] Bellissent-Funel M C, Lal J, Bosio L. Structural study of water confined in porous glass byneutron scattering. J. Chem. Phys.,1993,98:4246–4248.
    [107] Morishige K, Kawano K. Freezing and melting of water in a single cylindrical pore: Thepore-size dependence of freezing and melting behavior. J. Chem. Phys.,1999,110:4687–4872.
    [108] Fletcher N H. Structural aspects of the ice-water system. Rep. Prog. Phys.,1971,34:913–994.
    [109] Swainsona I P, Schulson E M. A neutron diffraction study of ice and water within a hardenedcement paste during freeze-thaw. Cem. Concr. Res.,2001,31:1821–1830.
    [110] Johari G P. Water’s size-dependent freezing to cubic ice. J. Chem. Phys.,2005,122:194504–08.
    [111] Sahin A Z. An analytical study of frost nucleation and growth during the crystal growthperiod. Heat Mass Transfer,1995,30(5):321–330.
    [112] Schulson E M, Swainson I P, Holden T M, et al. Hexagonal ice in hardened cement. Cem.Concr. Res.,2000,30:191–196.
    [113] Grosse K, Ratke L, Feuerbacher B. Solidification and melting of succinonitrile within theporous network of an aerogel. Phys. Rev. B.,1997,55:2894–2902.
    [114] Vanfleet R R, Mochel J. Thermodynamics of melting and freezing in small particles. Surf.Sci.,1995,341:40–50.
    [115] Schreiber A, Ketelsen I, Findenegg G H. Melting and freezing of water in ordered meso-porous silica materials. Phys. Chem. Chem. Phys.,2001,3:1185–1196.
    [116] Morishige K, Kawano K. Freezing and melting of water in a single cylindrical pore: Dynam-ical supercooling and vitrification of methanol. J. Chem. Phys.,2000,112:11023–11029.
    [117] Petrov O V, Furo′I. Curvature-dependent metastability of the solid phase and the freezing-melting hysteresis in pores. Phys. Rev. E.,2006,73:011608–619.
    [118] Denoyel R, Pellenq R J M. Simple phenomenological models for phase transitions in aconfined geometry.1: Melting and solidification in a cylindrical pore. Langmuir,2002,18(7):2710–2716.
    [119] Pellenq R J M, Coasne B, Denoyel R O, et al. Simple phenomenological model for phasetransitions in confined geometry.2. Capillary condensation/evaporation in cylindrical meso-pores. Langmuir,2009,25(3):1393–1402.
    [120] Lipowsky R. Upper critical dimension for wetting in systems with long-range forces. Phys.Rev. Lett.,1984,52:1429–1432.
    [121] Petrov O V, Furo′I. A joint use of melting and freezing data in NMR cryoporometry. Micro-porous Mesoporous Mater.,2010..
    [122] Petrov O V, Vargas-Florencia D, Furo′I. Surface melting of octamethylcyclotetrasiloxaneconfined in controlled pore glasses: curvature effects observed by1H NMR. J. Phys. Chem.B.,2007,111(7):1574–1581.
    [123] Brun M, Lallement A J, Quinson F, et al. A New Mehtod for The Simultaneous Determina-tion of the size And The Shape of Pores:The Thermoporometry. Thermochimica Acta,1977,21:59–88.
    [124] Khvorostyanov V I, Curry J A. Thermodynamic theory of freezing and melting of water andaqueous solutions. J. Phys. Chem. A.,2004,108(50):11073–11085.
    [125] Sun Z, Scherer G W. Pore Size and Shape in Mortar by Thermoporometry. Cem. Concr.Res.,2010,40(5):740–751.
    [126] Kondrashova D, Reichenbach C, Valiullin R. Probing pore connectivity in random porousmaterials by scanning freezing and melting experiments. Langmuir,2010,26(9):6380–6385.
    [127] Debye P, Hu¨ckel E. The theory of electrolytes. I. Lowering of freezing point and relatedphenomena. Zeitschrift fu¨r Physik,1923,24:304–324.
    [128] Pitzer K S, Kim J J. Thermodynamics of electrolytes. IV. Activity and osmotic coefficientsfor mixed electrolytes. J. Am. Chem. Soc.,1974,96(18):5701–5707.
    [129] Lin C, Lee L. A two-ionic-parameter approach for ion activity coefficients of aqueous elec-trolyte solutions. Fluid phase equilibria,2003,205(1):69–88.
    [130] Lin H, Lee L. Estimations of activity coefficients of constituent ions in aqueous electrolytesolutions with the two-ionic-parameter approach. Fluid phase equilibria,2005,237(1-2):1–8.
    [131] Khoshkbarchi M K, Vera J H. Measurement and correlation of ion activity in aqueous singleelectrolyte solutions. AIChE J.,1996,42(1):249–258.
    [132] Khoshkbarchi M K, Vera J H. Measurement and correlation of ion activity coefficients inaqueous solutions of mixed electrolyte with a common ion. Fluid phase equilibria,1996,121(1-2):253–265.
    [133] Pazuki G R, Rohani A A. A new model for the activity coefficients of individual ions inaqueous electrolyte solutions. Fluid phase equilibria,2006,242(1):65–71.
    [134] Pitzer K S. Activity coefficients in electrolyte solutions.2ed, ed., CRC,1991.
    [135] Rodil E, Persson K, Vera J H, et al. Determination of the activity of H+ions within andbeyond the pH meter range. AIChE J.,2001,47(12):2807–2818.
    [136] Guendouzi M, Dinane A, Mounir A. Water activities, osmotic and activity coefficients inaqueous chloride solutions atT298.15K by the hygrometric method. J. Chem. Thermodyn.,2001,33(9):1059–1072.
    [137] Ge X, Wang X. Calculations of Freezing Point Depression, Boiling Point Elevation, Va-por Pressure and Enthalpies of Vaporization of Electrolyte Solutions by a Modified Three-Characteristic Parameter Correlation Model. J. Solution Chem.,2009,38(9):1097–1117.
    [138] Gru¨bl P, Sotkin A. Rapid ice formation in hardened cement paste, mortar and concrete dueto supercooling. Cem. Concr. Res.,1980,10(3):333–345.
    [139] Hare D E, Sorensen C M. The density of supercooled water. II. Bulk samples cooled to thehomogeneous nucleation limit. J. Chem. Phys.,1987,87:4840.
    [140] Heneghan A F, Haymet A D J. Liquid-to-crystal nucleation: A new generation lag-timeapparatus. J. Chem. Phys.,2002,117:5319–5327.
    [141] Inada T, Zhang X, Yabe A, et al. Active control of phase change from supercooled waterto ice by ultrasonic vibration1. Control of freezing temperature. Int. J. Heat Mass Transfer,2001,44(23):4523–4531.
    [142] Zhang X, Inada T, Yabe A, et al. Active control of phase change from supercooled water toice by ultrasonic vibration2. Generation of ice slurries and effect of bubble nuclei. Int. J.Heat Mass Transfer,2001,44(23):4533–4539.
    [143] Litvan G G. Phase Transitions of Adsorbates: VI, Effect of Deicing Agents on the Freezingof Cement Paste. J. Am. Ceram. Soc.,1975,58(1-2):26–30.
    [144] Seeley L H, Seidler G T. Two-dimensional nucleation of ice from supercooled water. Phys.Rev. Lett.,2001,87(5):55702–55705.
    [145] Shaw R A, Lamb D. Homogeneous freezing of evaporating cloud droplets. Geophys. Res.Lett.,1999,26(8):1181–1184.
    [146] Shaw R A, Konitinski A B, Larson M L. Towards quantifying droplet clustering in clouds.Q. J. R. Meteorol. Soc.,2002,128:1043–1057.
    [147] Shaw R A, Durant A J, Mi Y. Heterogeneous surface crystallization observed in undercooledwater. J. Phys. Chem. B.,2005,109(20):9865–9868.
    [148] Mehta P K, Monteiro P J M. Concrete: microstructure, properties, and materials. McGraw-Hill New York,2006.
    [149] McDonald P J, Mitchell J, Mulheron M, et al. Two-dimensional correlation relaxometry stud-ies of cement pastes performed using a new one-sided NMR magnet. Cement and ConcreteResearch,2007,37(3):303–309.
    [150] Benzarti K, Perruchot C, Chehimi M M. Surface energetics of cementitious materials andtheir wettability by an epoxy adhesive. Colloids Surf., A,2006,286(1-3):78–91.
    [151] Li Y, Somorjai G A. Surface premelting of ice. J. Phys. Chem. C.,2007,111(27):9631–9637.
    [152] Petrov O V, Furo′I. NMR cryoporometry: Principles, applications and potential. Prog. Nucl.Magn. Reson. Spectrosc.,2009,54(0):97–122.
    [153] Goertz M P, Zhu X Y, Houston J E. Exploring the Liquid-like Layer on the Ice Surface.Langmuir,2009,25(12):6905–6908.
    [154] Wettlaufer J S, Worster M G, Wilen L A, et al. A theory of premelting dynamics for allpower law forces. Phys. Rev. Lett.,1996,76(19):3602–3605.
    [155] Zuber B, Marchand J. Modeling the deterioration of hydrated cement systems exposedto frost action Part1: Description of the mathematical model. Cem. Concr. Res.,2000,30(12):1929–1939.
    [156] Fagerlund G. Determination of pore size distribution by suction porosimetry. Mater. Structr.,1973,6(3):191–201.
    [157] Fletcher N H. Surface structure of water and ice. Philos. Mag.,1968,18:1287–1300.
    [158] Ishikiriyama K, Todoki M, Motomura K. Pore Size Distribution Measurements of Silica Gelsby Means of Differential Scanning Calorimetry I:Optimization for determination of DSC. J.Colloid Interf. Sci.,1995,171:92–102.
    [159] Ishikiriyama K, Todoki M, Motomura K. Pore Size Distribution Measurements of Silica Gelsby Means of Differential Scanning Calorimetry II:Thermoporosimetry. J. Colloid Interf. Sci.,1995,171:103–111.
    [160] Schmelzer J W P, Boltachev G S, Baidakov V G. Classical and generalized Gibbs’ ap-proaches and the work of critical cluster formation in nucleation theory. J. Chem. Phys.,2006,124:194503.
    [161] Wettlaufer J S. Impurity effects in the premelting of ice. Phys. Rev. Lett.,1999,82(12):2516–2519.
    [162] Engemann S, Reichert H, Dosch H, et al. Interfacial Melting of Ice in Contact with SiO2.Phys. Rev. Lett.,2004,92(20):205701–704.
    [163] Allen A J, Thomas J J, Jennings H M. Composition and density of nanoscale calcium–silicate–hydrate in cement. Nat. Mater.,2007,6(4):311–316.
    [164] Thomas J J, Jennings H M, Allen A J. Relationships between Composition and Densi-ty of Tobermorite, Jennite, and Nanoscale CaO-SiO2-H2O. J. Phys. Chem. C.,2010,114(17):7594–7601.
    [165] Coussy O, Monteiro P J M. Unsaturated poroelasticity for crystallization in pores. Comput.Geotech.,2007,34(4):279–290.
    [166] Taylor H F W. Cement chemistry. Thomas Telford Services Ltd,1997.
    [167] Bentz D P, Jensen O M, Coats A M, et al. Influence of silica fume on diffusivity in cement-based materials:: I. Experimental and computer modeling studies on cement pastes. Cem.Concr. Res.,2000,30(6):953–962.
    [168] Archer D G. Thermodynamic Properties of the NaCl+H2O System. I. ThermodynamicProperties of NaCl (cr). J. Phys. Chem. Ref. Data,1992,21(1):1–21.
    [169] Archer D G. Thermodynamic Properties of the NaCl+H2O System. II. ThermodynamicProperties of NaCl (aq), NaCl·2H2O, and Phase Equilibria. J. Phys. Chem. Ref. Data,1992,21(4):793–829.
    [170] Archer D G, Carter R W. Thermodynamic properties of the NaCl+H2O system.4. Heatcapacities of H2O and NaCl (aq) in cold-stable and supercooled states. J. Phys. Chem. B,2000,104(35):8563–8584.
    [171] Tanger J C, Helgeson H C. Calculation of the thermodynamic and transport properties ofaqueous species at high pressures and temperatures; revised equations of state for the stan-dard partial molal properties of ions and electrolytes. Am J Sci,1988,288:19–98.
    [172] Nokken M R, Hooton R D. Using pore parameters to estimate permeability or conductivityof concrete. Mater. Struct.,2008,41(1):1–16.
    [173] Tsivilis S, Tsantilas J, Kakali G, et al. The permeability of Portland limestone cement con-crete. Cem. Concr. Res.,2003,33(9):1465–1471.
    [174] Samson E, Marchand J, Snyder K A, et al. Modeling ion and fluid transport in unsaturatedcement systems for isothermal conditions. Cem. Concr. Res.,2005,35(1):141–153.
    [175] Bockris J O M, Reddy A K N. Modern electrochemistry.2nd, eds. ed., Springer Us,2001.
    [176] Revil A. Thermodynamics of ions and water transport in porous media. J. Colloid Interf.Sci.,2007,307(1):254–264.
    [177] Incropera F P, De Witt D P. Fundamentals of heat and mass transfer.3rd ed., John Wiley andSons Inc., New York, NY,2006.
    [178] Speedy R J, Angell C A. Isothermal compressibility of supercooled water and evidence fora thermodynamic singularity at45°C. J. Chem. Phys.,1976,65:851–858.
    [179] Xu Y, Chung D D L. Effect of sand addition on the specific heat and thermal conductivity ofcement. Cem. Concr. Res.,2000,30(1):59–61.
    [180] Ulm F J, Constantinide G, Heukamp F H. Is Concrete a Poromechanics Material?-A Mul-tiscale Investigation of Poroelastic Properties. Mater. Struct.,2004,37(1):43–58.
    [181] Landry M R. Thermoporometry by differential scanning calorimetry: experimental consid-erations and applications. Thermochimica acta,2005,433(1-2):27–50.
    [182] Nokken M R, Hooton R D, Roger C R. Measured internal temperature in concrete exposedto outdoor cyclic freezing. Cem. Concr. Aggr.,2004,26(1):26–32.
    [183] Meyers S L. Thermal expansion characteristics of hardened cement paste and of concrete.Hig. Res. Board Proc.,1950,30:193–200.
    [184] Bentz D P. Internal Curing of High-Performance Blended Cement Mortars. ACI MaterialsJournal,2007,104(4):408–414.
    [185] Li X, Yan P. Microstructural variation of hardened cement-fly ash pastes leached by softwater. SCIENCE CHINA Technological Sciences,2010,53:3033–3038.10.1007/s11431-010-4107-0.
    [186] Aligizaki K K. Pore structure of cement-based materials: testing, interpretation and require-ments. Spon Press,2006.
    [187] Moro F, Bo¨hni H. Ink-bottle effect in mercury intrusion porosimetry of cement-based mate-rials. J. Colloid Interf. Sci.,2002,246(1):135–149.
    [188] Beaudoin J J, Gu P, Marchand J, et al. Solvent Replacement Studies of Hydrated PortlandCement Systems: The Role of Calcium Hydroxide. Advanced Cement Based Materials,1998,8(2):56–65.
    [189] Galle′C. Effect of drying on cement-based materials pore structure as identified by mercuryintrusion porosimetry:: A comparative study between oven-, vacuum-, and freeze-drying.Cem. Concr. Res.,2001,31(10):1467–1477.
    [190] Collier N, Sharp J, Milestone N, et al. The influence of water removal techniques on thecomposition and microstructure of hardened cement pastes. Cement and Concrete Research,2008,38(6):737–744.
    [191] Korpa A, Trettin R. The influence of different drying methods on cement paste microstruc-tures as reflected by gas adsorption: Comparison between freeze-drying (F-drying), D-drying, P-drying and oven-drying methods. Cem. Concr. Res.,2006,36(4):634–649.
    [192] Gillott J. Importance of specimen preparation in microscopy, Soil Specimen Preparation forLaboratory Testing. Montreal, Canada: American Society for Testing and Materials,1976:289–307.
    [193] Hover K C. The influence of water on the performance of concrete. Construction andBuilding Materials,2011,25(7):3003–3013.
    [194] Zhou Q, Glasser F. Thermal stability and decomposition mechanisms of ettringite at <120°C.Cement and Concrete Research,2001,31(9):1333–1339.
    [195] Sha W, O’Neill E, Guo Z. Differential scanning calorimetry study of ordinary Portlandcement. Cement and Concrete Research,1999,29(9):1487–1489.
    [196] Zeng Q, Li K, Fen-chong T, et al. Determination of cement hydration and pozzolanic reactionextents for fly-ash cement pastes. Construction and Building Materials,2012,27(1):560–569.
    [197] Lam L, Wong Y L, Poon C S. Degree of hydration and gel/space ratio of high-volume flyash/cement systems. Cem. Concr. Res.,2000,30(5):747–756.
    [198] Marsh B K, Day R L. Pozzolanic and cementitious reactions of fly ash in blended cementpastes. Cem. Concr. Res.,1988,18(2):301–310.
    [199] Suprenan B, Papadopoulos G. Selective dissolution of Portland-fly-ash cements. J Mater inCivil Eng,1991,3:48–59.
    [200] Kocaba V, Gallucci E, Scrivener K L. Methods for determination of degree of reaction ofslag in blended cement pastes. Cement and Concrete Research,2012,(0):–.
    [201] Koster A J, Ziese U, Verkleij A J, et al. Three-Dimensional Transmission Electron Mi-croscopy:? A Novel Imaging and Characterization Technique with Nanometer Scale Resolu-tion for Materials Science. The Journal of Physical Chemistry B,2000,104(40):9368–9370.
    [202] Kaufmann J, Loser R, Leemann A. Analysis of cement-bonded materials by multi-cyclemercury intrusion and nitrogen sorption. J. Colloid Interf. Sci.,2009,336(2):730–737.
    [203] Kaufmann J P. Pore space analysis of cement-based materials by combined Nitrogensorption-Wood’s metal impregnation and multi-cycle mercury intrusion. Cem. Concr. Com-pos.,2010,32(7):514–522.
    [204] P Rigby S, S Fletcher R, N Riley S. Characterisation of porous solids using integratednitrogen sorption and mercury porosimetry. Chem. Eng. Sci.,2004,59(1):41–51.
    [205] Jennings H M, Bhatty J I, Hodson S K. Towards establishing relationships between mi-crostructure and properties of cement-based materials. Ceram. Trans.,1990,16:289–317.
    [206] Washburn E W. Note on a method of determining the distribution of pore sizes in a porousmaterial. Proc. Natl. Acad. Sci. U.S.A.,1921,7(4):115–116.
    [207] Giesche H. Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact.,2006,23(1):9–19.
    [208] Diamond S. A critical comparison of mercury porosimetry and capillary condensation poresize distributions of portland cement pastes. Cement and Concrete Research,1971,1(5):531–545.
    [209] Kadlec O, Dubinin M. Comments on the limits of applicability of the mechanism of capillarycondensation. Journal of Colloid and Interface Science,1969,31(4):479–489.
    [210] R ubner K, Hoffmann D. Characterization of Mineral Building Materials by Mercury-Intrusion Porosimetry. Particle&Particle Systems Characterization,2006,23(1):20–28.
    [211] Murray K L, Seaton N A, Day M A. Use of Mercury Intrusion Data, Combined with Nitro-gen Adsorption Measurements, as a Probe of Pore Network Connectivity. Langmuir,1999,15(23):8155–8160.
    [212] Diamond S. Mercury porosimetry:: An inappropriate method for the measurement of poresize distributions in cement-based materials. Cem. Concr. Res.,2000,30(10):1517–1525.
    [213] Wild S. A discussion of the paper “Mercury porosimetry—an inappropriate method for themeasurement of pore size distributions in cement-based materials” by S. Diamond. Cementand Concrete Research,2001,31(11):1653–1654.
    [214] Tumidajski P J, Lin B. On the validity of the Katz-Thompson equation for permeabilities inconcrete. Cem. Concr. Res.,1998,28(5):643–647.
    [215] Christensen B J, Mason T O, Jennings H M. Comparison of measured and calculated per-meabilities for hardened cement pastes. Cem. Concr. Res.,1996,26(9):1325–1334.
    [216] El-Dieb A, Hooton R. Water-permeability measurement of high performance concrete usinga high-pressure triaxial cell. Cem. Concr. Res.,1995,25(6):1199–1208.
    [217] Rootare H M, Prenzlow C F. Surface areas from mercury porosimeter measurements. J.Phys. Chem.,1967,71(8):2733–2736.
    [218] Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributionsin porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc.,1951,73(1):373–380.
    [219] De Boer J H, Lippens B C, Linsen B G, et al. Thet-curve of multimolecular N2-adsorption.J. Colloid Interf. Sci.,1966,21(4):405–414.
    [220] Garci Juenger M C, Jennings H M. The use of nitrogen adsorption to assess the microstruc-ture of cement paste. Cem. Concr. Res.,2001,31(6):883–892.
    [221] Thomas J J, Jennings H M, Allen A J. The surface area of hardened cement paste as measuredby various techniques. Concr. Sci. Eng,1999,1:45–64.
    [222] Mikhail R S, Copeland E, Brunauer S. Pore structure and surface areas of hardened Portlandcement pastes by Nitrogen adsorption. Can. J. Chem.,1964,42:426–438.
    [223] Fagerlund G. Determination of specific surface by the BET method. Materials and Structures,1973,6:239–245.10.1007/BF02479039.
    [224] Oh J E, Clark S M, Wenk H R, et al. Experimental determination of bulk modulus of14Atobermorite using high pressure synchrotron X-ray diffraction. Cement and Concrete Re-search,2012,42(2):397–403.
    [225] Richardson I. Tobermorite/jennite-and tobermorite/calcium hydroxide-based models forthe structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalciumsilicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin,or silica fume. Cement and Concrete Research,2004,34(9):1733–1777.
    [226] Bishop M, Bott S G, Barron A R. A New Mechanism for Cement Hydration Inhibition:?Solid-State Chemistry of Calcium Nitrilotris(methylene)triphosphonate. Chemistry of Ma-terials,2003,15(16):3074–3088.
    [227] Jennings H M. Refinements to colloid model of C-S-H in cement: CM-II. Cem. Concr. Res.,2008,38(3):275–289.
    [228] Powers T C. Structure and physical properties of hardened Portland cement paste. J. Am.Ceram. Soc.,1958,41(1):1–6.
    [229] Feldman R F, Sereda P J. A model for hydrated Portland cement paste as deduced fromsorption-length change and mechanical properties. Mater. Struct.,1968,1(6):509–520.
    [230] WINSLOW D N, DIAMOND S. Specific Surface of Hardened Portland Cement Paste asDetermined by Small-Angle X-Ray Scattering. Journal of the American Ceramic Society,1974,57(5):193–197.
    [231] Halamickova P, Detwiler R J, Bentz D P, et al. Water permeability and chloride ion diffusionin Portland cement mortars: relationship to sand content and critical pore diameter. Cem.Concr. Res.,1995,25(4):790–802.
    [232] Neimark A V. Calculating surface fractal dimension of adsorbents. Adv. Sci. Techn.,1990,7:210–219.
    [233] Wang Y, Diamond S. A fractal study of the fracture surfaces of cement pastes and mortarsusing a stereoscopic SEM method. Cement and Concrete Research,2001,31(10):1385–1392.
    [234] Ji X, Chan S, Feng N. Fractal model for simulating the space-filling process of cementhydrates and fractal dimensions of pore structure of cement-based materials. Cement andConcrete Research,1997,27(11):1691–1699.
    [235] Heinemann A, Hermann H, Wetzig K, et al. Fractal microstructures in hydrating cementpaste. J. Mater. Sci. Lett.,1999,18(17):1413–1416.
    [236] Rieu M, Sposito G. Fractal Fragmentation, Soil Porosity, and Soil Water Properties: II.Application. SOIL SCI. SOC.AM. J,1991,55:1239–1244.
    [237] Issa M A, Issa M A, Islam M, et al. Fractal dimension––a measure of fracture roughness andtoughness of concrete. Engineering Fracture Mechanics,2003,70(1):125–137.
    [238] VE Saouma C B. Fractals, fractures, and size effects in concrete. J. Eng. Mech.,1994,120:835–854.
    [239] Chiaia B, Mier J, Vervuurt A. Crack Growth Mechanisms in Four Different Concretes:Microscopic Observations and Fractal Analysis. Cement and Concrete Research,1998,28(1):103–114.
    [240] Sen D, Mazumder S, Tarafdar S. Pore morphology and pore surface roughening in rocks:a small-angle neutron scattering investigation. Journal of Materials Science,2002,37:941–947.10.1023/A:1014391629262.
    [241] Lange D. Relationship between microstructure, fracture surfaces and material properties ofportland cement. Northwestern University,1991.
    [242] Blinc R, Lahajnar G, Zumer S, et al. NMR study of the time evolution of the fractal geometryof cement gels. Phys. Rev. B,1988,38:2873–2875.
    [243] Papavassiliou G, Fardis M, Laganas E, et al. Role of the surface morphology in cementgel growth dynamics: A combined nuclear magnetic resonance and atomic force microscopystudy. Journal of Applied Physics,1997,82(1):449–452.
    [244] Heinemann A, Hermann H, H aussler F. SANS analysis of fractal microstructures in hydrat-ing cement paste. Physica B: Condensed Matter,2000,276–278(0):892–893.
    [245] Harkins W D, Jura G. Surfaces of Solids. XII. An Absolute Method for the Determination ofthe Area of a Finely Divided Crystalline Solid. J. Am. Chem. Soc.,1944,66(8):1362–1366.
    [246] De Boer J H, Linsen B G, Osinga T J. Studies on pore systems in catalysts:: VI. The universalt curve. J. Cata.,1965,4(6):643–648.
    [247] Hunt C. Nitrogen Sorption Measurements and Surface Areas of Hardened Cement Paste.Proceedings of Symposium on Structure of Portland Cement Paste and Concrete, HighwayResearch Board Special Report, volume90,1966.112–122.
    [248] Khalil K A. Pore structure and surface area of hardened cement pastes containing silicafume. Mater. Lett.,1996,26(4-5):259–264.
    [249] Katz A J, Thompson A H. Quantitative prediction of permeability in porous rock. Phys. Rev.B.,1986,34(11):8179–8181.
    [250] Winslow D N, Diamond S. A mercury porosimetry study of the evaluation of porosity inPortland cement. ASTM. J. Mater.,1970,5:564–585.
    [251] II J J V, Thomas J J. Permeability and elastic modulus of cement paste as a function of curingtemperature. Cement and Concrete Research,2012,42(2):440–446.
    [252] Tennis P D, Jennings H M. A model for two types of calcium silicate hydrate in the mi-crostructure of Portland cement pastes. Cem. Concr. Res.,2000,30(6):855–863.
    [253] Feldman R. Diffusion measurements in cement paste by water replacement using Propan-2-OL. Cement and Concrete Research,1987,17(4):602–612.
    [254] Feldman R F, Cheng-Yi H. Microstructural properties of blended cement mortars and theirrelation to durability. Proceedings of Proceedings of the RILEM Seminar on the Durabilityof Concrete Structures under Normal Outdoor Exposure, Hannover, FRG.,1984.133–140.
    [255] Cyr M, Lawrence P, Ringot E. Mineral admixtures in mortars:: Quantification of the physicaleffects of inert materials on short-term hydration. Cem. Concr. Res.,2005,35(4):719–730.
    [256] Robens E, Benzler B, Bu¨chel G, et al. Investigation of characterizing methods for the mi-crostructure of cement. Cement and Concrete Research,2002,32(1):87–90.
    [257] Zeng Q, Li K, Fen-chong T, et al. Pore structure characterization of cement pastes blendedwith high-volume fly-ash. Cement and Concrete Research,2012,42(1):194–204.
    [258] Neimark A. A new approach to the determination of the surface fractal dimension of poroussolids. Physica A,1992,191(1-4):258–262.
    [259] Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and three:: I. Fractaltheory of heterogeneous surfaces. J. Chem. Phys.,1983,79:3558–3565.
    [260] Zhang B, Li S. Determination of the surface fractal dimension for porous media by mercuryporosimetry. Ind. Eng. Chem. Res.,1995,34(4):1383–1386.
    [261] Zhang B, Liu W, Liu X. Scale-dependent nature of the surface fractal dimension for bi-andmulti-disperse porous solids by mercury porosimetry. Appl. Surf. Sci.,2006,253(3):1349–1355.
    [262] Sahouli B, Blacher S, Pirard R, et al. Fractal analysis of mercury porosimetry data in theframework of the thermodynamic method. J. Colloid Interf. Sci.,1999,214(2):450–454.
    [263] Zeng Q, Li K, Fen-Chong T, et al. Surface fractal analysis of pore structure of high-volumefly-ash cement pastes. Appl. Surf. Sci.,2010,257(3):762–768.
    [264] Ficker T, Len A, Chmel′k R, et al. Fracture surfaces of porous materials. EPL (EurophysicsLetters),2007,80(1):16002.
    [265] Zhang J, Scherer G W. Comparison of methods for arresting hydration of cement. Cementand Concrete Research,2011,41(10):1024–1036.
    [266] Vandamme M, Ulm F J. Nanogranular origin of concrete creep. Proc. Nat. Acad. Sci.,2009,106(26):10552.
    [267] Kwame O S. Assessment of the coefficient of thermal expansion of Alabama concrete[硕士学位论文]. USA: Auburn University,2008.
    [268] Ghabezloo S. Micromechanics analysis of thermal expansion and thermal pressurization ofa hardened cement paste. doi:10.1016/j.cemconres.2011.01.023,2011.
    [269] Xu S, Scherer G W, Mahadevan T S, et al. Thermal expansion of confined water. Langmuir,2009,25(9):5076–5083.
    [270] Sellevold E J, Bj ntegaard. Coefficient of thermal expansion of cement paste and concrete:Mechanisms of moisture interaction. Mater. Struct.,2006,39(9):809–815.
    [271] Bazant Z P. Delayed thermal dilatations of cement paste and concrete due to mass transport.Nucl. Eng. Des.,1970,14(2):308–318.
    [272] Rice R W. Porosity of Ceramics. New York: Marcel Dekker Inc.,1999.
    [273] Hirose Y, Doi H, Kamigaito O. Thermal expansion of hot-pressed cordierite glass ceramics.J. Mater. Sci. Lett.,1984,3(2):153–155.
    [274] Shui Z, Zhang R, Chen W, et al. Effects of mineral admixtures on the thermal expansionproperties of hardened cement paste. Constr. Build. Mater.,2010,24(9):1761–1767.
    [275] Ghabezloo S. Association of macroscopic laboratory testing and micromechanics modellingfor the evaluation of the poroelastic parameters of a hardened cement paste. Cem. Concr.Res.,2010,40(8):1197–1210.
    [276] Antonyraj A, Park S J, German R. Thermal expansion and viscoelastic properties of sinteredporous compact. Proceedings of the2007International Conference On Powder Metallurgy&Particulate Materials: Part I, Design&Modeling of PM Materials, Components&Processes,Denver, Colorado, USA,2007.
    [277] Odelson J B, Kerr E A, Vichit-Vadakan W. Young’s modulus of cement paste at elevatedtemperatures. Cem. Concr. Res.,2007,37(2):258–263.
    [278] Ghabezloo S, Sulem J, Saint-Marc J. The effect of undrained heating on a fluid-saturatedhardened cement paste. Cem. Concr. Res.,2009,39(1):54–64.
    [279] Khalili N, Uchaipichat A, Javadi A A. Skeletal thermal expansion coefficient and thermo-hydro-mechanical constitutive relations for saturated homogeneous porous media. Mech.Mater.,2010,42(6):593–598.
    [280] Scrivener K L. Backscattered electron imaging of cementitious microstructures: understand-ing and quantification. Cem. Concr. Compos.,2004,26(8):935–945.
    [281] Muskhelishvili N I. Some basic problems of the mathematical theory of elasticity. TheNetherlands: Springer,1977.
    [282] Ley M T, Chancey R, Juenger M C G, et al. The physical and chemical characteristics of theshell of air-entrained bubbles in cement paste. Cem. Concr. Res.,2009,39(5):417–425.
    [283] Atahan H N, Carlos Jr C, Chae S, et al. The morphology of entrained air voids in hardenedcement paste generated with different anionic surfactants. Cem. Concr. Compos.,2008,30(7):566–575.
    [284] Luke K, Lachowski E. Internal Composition of20-Year-Old Fly Ash and Slag-BlendedOrdinary Portland Cement Pastes. J. Am. Ceram. Soc.,2008,91(12):4084–4092.
    [285] Powers T C. The thermodynamics of volume change and creep. Mater. Struct.,1968,1(6):487–507.
    [286] Ruedrich J, Siegesmund S. Salt and ice crystallization in porous sandstones. Environ Geol,2007,52:225–249.
    [287] Matubayasi N, Matsuo H, Yamamoto K, et al. Thermodynamic Quantities of Surface For-mation of Aqueous Electrolyte Solutions: I. Aqueous Solutions of NaCl, MgCl2, and LaCl3.J. Colloid Interf. Sci.,1999,209(2):398–402.
    [288] Ozbek H, Phillips S L. Thermal conductivity of aqueous sodium chloride solutions from20to330°C. J. Chem. Eng. Data,1980,25(3):263–267.
    [289] Abdulagatov I M, Magomedov U B. Thermal conductivity of aqueous solutions of NaCl andKCl at high pressures. Int. J. Thermophys.,1994,15(3):401–413.
    [290] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and relatedproblems. Proc. Roy. Soc. A.,1957,241(1226):376–392.
    [291] Constantinides G, Ulm F J. The effect of two types of CSH on the elasticity of cement-basedmaterials: Results from nanoindentation and micromechanical modeling. Cem. Concr. Res.,2004,34(1):67–80.
    [292] Manzano H, Dolado J S, Ayuela A. Elastic properties of the main species present in Portlandcement pastes. Acta Mater.,2009,57(5):1666–1674.
    [293] Acker P. Micromechanical analysis of creep and shrinkage mechanisms. Proceedings ofCreep, Shrinkage and Durability Mechanics of Concrete and other quasi-brittle Materials:Proc. Int. Conf. CONCREEP, Cambridge, MA, UAS,2001.15–25.
    [294] Velez K, Maximilien S, Damidot D, et al. Determination by nanoindentation of elastic mod-ulus and hardness of pure constituents of Portland cement clinker. Cem. Concr. Res.,2001,31(4):555–561.
    [295] Haecker C J, Garboczi E J, Bullard J W, et al. Modeling the linear elastic properties ofPortland cement paste. Cem. Concr. Res.,2005,35(10):1948–1960.
    [296] Beaudoin J J. Comparison of mechanical properties of compacted calcium hydroxide andPortland cement paste systems. Cem. Concr. Res.,1983,13(3):319–324.
    [297] Wittmann F H. Estimation of the modulus of elasticity of calcium hydroxide. Cem. Concr.Res.,1986,16(6):971–972.
    [298] Monterio P J M, Chang C T. The elastic moduli of calcium hydroxide. Cem. Concr. Res.,1995,25(8):1605–1609.
    [299] Constantinides G. The elastic properties of calcium-leached cement pastes and mortars:amulti-scale investigation[M]. Cambridge, MA, USA: Massachusetts Institute of Technology,2002.
    [300] Constantinides G, Ulm F J, Van Vliet K. On the use of nanoindentation for cementitiousmaterials. Mater. Struct.,2003,36(3):191–196.
    [301] Bary B, Be′jaoui S. Assessment of diffusive and mechanical properties of hardened cementpastes using a multi-coated sphere assemblage model. Cem. Concr. Res.,2006,36(2):245–258.
    [302] Sun G, Zhang Y, Sun W, et al. Multi-scale prediction of the effective chloride diffusioncoefficient of concrete. doi:10.1016/j.conbuildmat.2011.03.041.,2011.
    [303] Sant G, Bentz D, Weiss J. Capillary porosity depercolation in cement-basedmaterials: Measurement techniques and factors which influence their interpretation.doi:10.1016/j.cemconres.2011.04.006,2011.
    [304] Oh B H, Jang S Y. Prediction of diffusivity of concrete based on simple analytic equations.Cem. Concr. Res.,2004,34(3):463–480.
    [305] Bentz D P. Influence of silica fume on diffusivity in cement-based materials:: II. Multi-scalemodeling of concrete diffusivity. Cem. Concr. Res.,2000,30(7):1121–1129.
    [306] Powers T C, Copeland L E, Mann H M. Capillary continuity or discontinuity in cementpastes. PCA Bull.,1959,1(110):2–12.
    [307] Ye G. Percolation of capillary pores in hardening cement pastes. Cem. Concr. Res.,2005,35(1):167–176.
    [308] Tumidajski P J, Schumacher A S, Perron S, et al. On the relationship between porosity andelectrical resistivity in cementitious systems. Cem. Concr. Res.,1996,26(4):539–544.
    [309] Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsat-urated soils. Soil Sci. Soc. Am. J,1980,44(5):892–898.
    [310] Martys N S. Diffusion in partially-saturated porous materials. Mater. Struct.,1999,32(8):555–562.
    [311] Nguyen T Q. Mode′lisations physico-chimiques de la pe′ne′tration des ions chlorures dans lesmate′riaux cimentaires[D]. France: Civil Engineering, Ecole des Ponts ParisTech,2007.
    [312] Vera G, Climent M A, Viqueira E, et al. A test method for measuring chloride diffusion coef-ficients through partially saturated concrete. Part II: The instantaneous plane source diffusioncase with chloride binding consideration. Cem. Concr. Res.,2007,37(5):714–724.
    [313] Ababneh A, Benboudjema F, Xi Y. Chloride penetration in nonsaturated concrete. J. Mater.Civil Eng.-ASCE,2003,15(2):183–191.
    [314] Samson E, Marchand J. Modeling the transport of ions in unsaturated cement-based materi-als. Comput. Struct.,2007,85(23-24):1740–1756.
    [315] Guzman J J M, Braga S L. Supercooling water in cylindrical capsules. Int. J. Thermophys.,2005,26(6):1781–1802.
    [316] Herve′E. Thermal and thermoelastic behaviour of multiply coated inclusion-reinforced com-posites. Int. J. Solids Struct.,2002,39(4):1041–1058.
    [317] Brailsford A D, Major K G. The thermal conductivity of aggregates of several phases, in-cluding porous materials. Br. J. Appl. Phys.,1964,15:313.
    [318] Harlan J E, Picot D, Loll P J, et al. Calibration of size-exclusion chromatography: useof a double Gaussian distribution function to describe pore sizes. Anal. Biochem.,1995,224(2):557–563.
    [319] Weissenberger J, Dieckmann G, Gradinger R, et al. Sea Ice: A Cast Technique to Examineand Analyze Brine Pockets and Channel Structure. Limnology and Oceanography,1992,37(1).
    [320] Mironenko M, Boitnott G, Grant S, et al. Experimental determination of the volumetricproperties of NaCl solutions to253K. J. Phys. Chem. B,2001,105(41):9909–9912.
    [321] Fabbri A, Fen-Chong T, Azouni A, et al. Investigation of Water to Ice Phase Change inPorous Media by Ultrasonic and Dielectric Measurements. J. Cold Reg. Engrg.,2008,23:69–90.
    [322] Boukpeti N. One-dimensional analysis of a poroelastic medium during freezing. Int. J. Num.Anal. Met. Geom.,2008,32(13):1661–1691.
    [323] Coussy O, Monteiro P J M. Errata to “Poroelastic model for concrete exposed to freezingtemperatures”[Cement and Concrete Research38(2008)40-48]. Cem. Concr. Res.,2009,39:371–372.
    [324] Setzer M J, Auberg R, Keck H J,(eds.). Frost Resistance of Concrete-From Nano-Structureand Pore Solution to Macroscopic Behaviour and Testing, Essen, Germany,2002. RILEMPublications.
    [325] Pitzer K S. Electrolytes. From dilute solutions to fused salts. J. Am. Chem. Soc.,1980,102(9):2902–2906.
    [326] Kondepudi D K, Prigogine I. Modern thermodynamics: from heat engines to dissipativestructures. Wiley New York,2002.
    [327] Pitzer K S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J.Phys. Chem.y,1973,77(2):268–277.
    [328] Pitzer K S, Mayorga G. Thermodynamics of electrolytes. II. Activity and osmotic coefficientsfor strong electrolytes with one or both ions univalent. J. Phys. Chem.,1973,77(19):2300–2308.
    [329] Pitzer K S, Simonson J M. Thermodynamics of multicomponent, miscible, ionic systems:Theory and equations. J. Phys. Chem.,1986,90(13):3005–3009.
    [330] Akinfiev N N, Mironenko M V, Grant S A. Thermodynamic properties of NaCl solutions atsubzero temperatures. J. Solut. Chem.,2001,30(12):1065–1080.
    [331] Kirkwood J G. The dielectric polarization of polar liquids. J. Chem. Phys.,1939,7:911–919.
    [332] Archer D G, Wang P. The Dielectric Constant of Water and Debye-Hu¨ckel Limiting LawSlopes. J. Phys. Chem. Ref. Data,1990,19(2):371–411.
    [333] Mironenko M V, Grant S A, Marion G M. Calculation of densities of aqueous electrolytesolutions at subzero temperatures. J. Solut. Chem.,1997,26(5):433–460.
    [334] Speedy R J. Limiting forms of the thermodynamic divergences at the conjectured stabilitylimits in superheated and supercooled water. J. Phys. Chem.,1982,86(15):3002–3005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700