用户名: 密码: 验证码:
热带气旋闪电活动特征及其与气旋特性演变的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热带海洋上对流云中由于过冷水和冰晶的缺乏,电化程度很弱,闪电不活跃。然而近些年越来越多的研究发现,热带气旋(TC)中存在一定的闪电活动,特别是气旋特性发生改变的特定阶段,眼壁闪电有突然增多(闪电爆发)的现象。闪电活动与云内动力和微物理过程密切相关,闪电活动的增多表明TC内部对流的增强,因此与气旋结构变化和特性演变(强度变化和路径转向)具有内在联系。本论文以西北太平洋热带气旋为主要研究对象,综合利用WWLLN全球闪电定位资料、我国区域地闪监测资料、热带气旋强度和路径资料、多普勒雷达和TRMM卫星等观测资料,详细分析了热带气旋生命史特别是登陆过程的闪电时空分布特征,研究了闪电活动与TC强度变化之间的相关关系,探讨了眼壁闪电爆发对TC强度和路径的指示作用。论文对一次登陆台风开展观测分析和模拟研究,研究了台风登陆过程中闪电活动的时空变化与TC对流结构的演变关系,并基于WRF模式对动力和微物理过程的模拟,探讨了TC演变过程中闪电时空分布特征的形成原因。研究得到以下主要结论:
     (1)热带气旋的闪电活动强弱与发生闪电时气旋的强度等级不存在明显相关,并不是TC强度等级越强,闪电越活跃。闪电活动易发生在热带低压和热带风暴等级阶段。内核和外雨带闪电活动随TC强度等级的变化表现出的趋势基本一致,均为先增加后减小。热带气旋在海洋上时大部分处于较为稳定的发展状态,较少发生强度突变(迅速加强和迅速减弱)。TC发生迅速加强(RI)和迅速减弱(RW)存在地理位置分布差异,前者发生比例高于后者,且两种突变过程均有闪电活动发生。处于增强过程的热带气旋,其闪电密度在各径向范围均大于减弱过程。
     (2)TC迅速增强时内核区域闪电活动最强,内核闪电活动对气旋强度的迅速加强具有一定的指示作用。气旋发生RI和RW强度突变的前后,内核闪电活动能够提供与气旋强度变化有关的指示信息。迅速加强前24h,内核闪电活动有所增加;当RW发生时内核闪电迅速减少,RW发生12h后内核几乎无闪电发生。气旋迅速加强时,内核区域TBB出现大面积低值区,内核闪电呈现间歇式爆发。RI过程的内核具有最大的云顶高度和最低的云顶亮温,一定程度上揭示了闪电活动在该强度变化过程中增强的原因。
     (3)不同热带气旋之间闪电活动差异较大,不同强度热带气旋的闪电空间分布不同。随着TC强度的增强,闪电分布有从眼壁逐渐向外雨带转移的趋势。热带风暴具有最大的眼壁-外雨带闪电密度比,强台风的眼壁-外雨带闪电密度比最小。眼区和内雨带的正地闪比例大于外雨带。不同强度等级TC登陆前、后闪电空间分布存在差异。热带风暴登陆后外雨带闪电活动比登陆前减弱,眼壁闪电快速增强。强热带风暴登陆后眼壁、内雨带和外雨带闪电频次均减弱。台风登陆前闪电活动主要出现在外雨带,登陆后闪电活动呈现出三圈分布的特性。强台风登陆后整个TC范围内闪电频次减弱。
     (4)眼壁闪电爆发对TC强度和路径变化具有一定指示作用。当气旋处于强度较弱或逐渐加深过程时,闪电爆发预示TC强度的快速增强,闪电爆发提前其达到最大强度约7.1h。当气旋处于较大强度且相对稳定时,闪电爆发表示TC达到最大强度。眼壁闪电爆发且正地闪比例较高时,预示着气旋的强度减弱或即将结束。处于稳定状态下的热带气旋,眼壁闪电活动的突然增多很可能预示其路径将要发生改变。
     (5)“莫拉菲”台风登陆过程的闪电密度径向分布呈现三圈结构特性。闪电密度峰值出现在外雨带,平均闪电密度远高于内雨带和眼壁区域;眼壁区域存在一个较小的闪电密集区;内雨带区域闪电密度接近于零。闪电在空间分布上表现出一定的结构非对称性,主要发生在台风移动方向的左侧。台风处于海上时,具有较为完整的结构,但闪电活动较弱。登陆后外雨带出现强对流核,产生较强的地表降水和闪电活动。螺旋雨带与陆地的摩擦以及环境气流的影响是台风登陆后对流和闪电活动增强的主要原因。
     (6)台风临近登陆时,虽气旋强度逐渐减弱,但仍有较强的闪电活动发生,登陆后闪电活动则迅速减弱。台风眼壁闪电频次峰值提前TC闪电频次峰值出现。在“莫拉菲”登陆增强的过程中,眼壁发生3次闪电爆发现象。台风眼壁闪电的间歇式爆发,预示着气旋的加深和强度的增强。台风达到最大强度前1h,外雨带正地闪活动增强且比例达到最大值,正地闪与总地闪的时序变化具有一定差异。台风登陆后外雨带地闪活动迅速减弱,但正地闪比例上升,特别是消散阶段正地闪平均比例高于20%。
     (7)台风不同区域的对流结构和降水特征,决定了闪电活动特征的差异。与内雨带相比,外雨带具有较强的上升气流、较大的降水粒子浓度,混合相态区具有较高的冰相粒子浓度。外雨带对流云体不仅在垂直方向达到较高高度,而且具有较为广阔的水平分布范围。外雨带相对内雨带具有更强的对流降水特性,因此比内雨带产生更加活跃的闪电活动。
     (8)云中水成物粒子的分布高度依次为冰晶、雪晶、霰和云水,四种物质的浓度中,冰晶混合比含量最小。眼壁闪电爆发并不是出现在台风最强阶段,而是提前于最强强度的发生,对台风增强具有指示作用。眼壁区域霰和云水含量的增大、分布高度的升高以及上升气流面积和速度的增强,是眼壁闪电爆发的主要原因。整个台风的闪电频次峰值出现在台风达到最强强度。外雨带在TC闪电频次变化中起决定作用,外雨带冰相物粒子浓度的增大以及强对流核的出现,是TC闪电频次增加的主要原因。
Due to the lack of supercooled water and ice particles, electrification is inadequate andlightning activity is weak in tropical ocean convections. However, in recent years, more andmore research found that lightning occur in tropical cyclones (TCs), especially in some stages ofTC change, the eyewall lightning had a phenomenon of sudden increase (i.e., eyewall lightningoutbreak). Lightning activity is closely related to the dynamic and microphysical processes incloud. Increased lightning activity indicates the enhanced internal convection in TCs, thuslightning activity and structure changes and characteristics evolution (intensity change andtrajectory turn) of TCs are intrinsically related. Cloud-to-ground (CG) lightning in tropicalcyclones over the Northwest Pacific were investigated in this study. With data from the WorldWide Lightning Location Network (WWLLN), the GuangDong Lightning Locating System(GDLLS), TC intensity and trajectory, Doppler Radar and Tropical Rainfall Measuring Mission(TRMM) satallite, the study firstly analyzsed the spatial and temporal characteristics of lightningactivity in the TC’s life, particularly during the landfall periods, and secondly investigated thestatistical relationship between lightning activity and TC intensity change, and then discussed thepredictive values of eyewall lightning outbreak to TC changes of intensity and trajectory.Moreover, the landfalling Typhoon Molave (0906) was studied with observational data andnumurical model to reveal the relationship between temporal and spatial variation of lightningand TC convection evolution. Based on the results of dynamic and microphysical processesfrom WRF model, the reasons for the formation of the temporal and spatial distribution oflightning during the evolution of TC structure were explored.
     The main conclusions and results from the research are as follows:
     (1) There was no significant correlation between lightning frequency and TC intensity level.Lightning was more likely to occur in intensity level of tropical depression (TD) and tropicalstorm (TS). Lightning activity in the inner core and outer rainband demonstrated consistent trendwith TC intensity levels, with firstly increased and then decreased. When over the water, mostTCs were in a relatively stable state, and less experienced rapid intensity change (i.e., rapidintensification and rapid weaken). There were differences in geographic distribution betweenrapid intensification (RI) and rapid weaken (RW). The former occurred more frequently than thelatter and lightning occurred during both RI and RW periods. Lightning density in TCs duringthe intensify process was greater in radius than that during the weakening process.
     (2) Lightning density was the highest in the inner core when the storm experienced RI.Lightning in the inner core had predictive values to TC intensity changes. Lightning activity in the inner core can provide instructions to RI and RW changes. Lightning frequency increased24h before the rapid strengthen happened. When RW occurred, the inner core lightning densitysharply reduced and no lightning occurred12h after RW happening. The TBB values reachedthe lowest when the storm rapidly strengthened, and the inner core lightning showed periodicoutbreaks. The largest cloud top and lowest TBB appeared in the inner core during the RI stages,which gave the reason why lightning frequency increased during the RI stages.
     (3) Lightning activity varied among TCs and the spatial distributions were different amongdifferent TC intensity levels. With the enhancement of TC intensity, lightning distribution hadthe trend of gradually transferring outward from the eyewall to outer rainbands. The highestlightning density ratio of eyewall to outer rainband occurred in TSs and the lowest in strongtyphoon (STY). The positive CG ratio in the eyewall and inner rainband were greater than that inthe outer rainbands. Spatial distributions of lightning differentiated before and after landfall indifferent TC intensity levels. Lightning in the outer rainbands weakened but in the eyewallstrengthened after TSs landed. While lightning in the eyewall, inner raiband and outer rainbandall weakened after strong tropical storms (STSs) landed. Lightning occurred mainly in the outerrainbands during pre-and post-landfall and there were three distinct lightning density regions inradial distribution after the storm landed. Lightning frequency in STY reduced after the stormlanded.
     (4) Lightning outbreaks in the eyewall region had indication information to TC changes ofintensity and path. When storms were during weak or gradually deepened process, lightningoutbreak indicated the coming rapidly intensity increase and the outbreak was ahead of themaximum intensity about7.1hours. When storms were in greater strength and relatively stable,lightning outbreak represent that the storm would reach the maximum intensity. When theeyewall lightning outbreak with high positive CG ratio, it indicated that storm intensity wouldweaken or come to an end. The sudden increase of eyewall lightning in storm of steady statemay indicate the coming change of its trajectory.
     (5) There were three distinct lightning density regions in radial distribution in TyphoonMolave (0906) during its landfall period, with a strong maximum in the outer rainbands, asignificant maximum in the eyewall regions and a minimum in the inner rainbands with nearlyzero. During the period of landfall, lightning activities showed significant spatial asymmetry andoccurred mainly on the left side of typhoon moving direction. When Molave was in the sea, ithad a complete structure but lightning activity was weak. Strong convective core apparent in theouter rainband after it landfall, thus resulted strong surface rainfall and intense lightning activity.When typhoon landed, friction between spiral rainbands and land, and the effects ofenvironmental flow were the main causes of stronger lightning activity and the enhancedconvection in the outer rainbands.
     (6) When Molave was approaching landing, storm intensity gradually weakened, but stronglightning activity still occurred. After the typhoon landing, lightning density rapidly weakened.The maximum lightning frequency in the eyewall region was ahead of that in the whole TCregion. The eyewall lightning outbreak occurred3times during the TC intensification and theoutbreaks of eyewall lightning may indicate deepening of the cyclone and strength enhancement.The ratio of positive to CG lightning reached its maximum one hour before the maximumtyphoon intensity. CG lightning weakened rapidly after the typhoon landed, but the ratio ofpositive lightning increased, especially during the dissipating stage with the average ratio ofabove20%.
     (7) Different characteristics of lightning activity were determined by convective structuresand precipitation features in different regions. Strong lightning activities in the outer rainbandswere caused by the strong updraft, large concentration of precipitable particles, large ice particledensity in mixed region and the large vertical and horizontal distribution of convective cloud.The outer rainbands have stronger convective precipitation characteristics than the innerrainbands, which determine the more active lightning activity in the outer rainbands than in theinner ones.
     (8) The vertical distributions of ice and water particles in cloud were ice, snow, graupel andcloud water. Among the concentrations of the four particles, the mixing ratio of ice was thelowest. The eye wall lightning outbreaks did not occur during the maximum wind spend stage,but in advance of the occurrence of the strongest intensity, and had predictive value to typhoon’sintensify. The increased content density and distribution height of graupel and cloud water, andthe enlarged area and speed of updraft were the main reasons for the eyewall lightning outbreak.The peak of TC lightning frequency reached its maximum during the strongest strength oftyphoon. The outer rainbands played an important role in TC lightning frequency changes. Theincreased density of ice-phase particles and the emergence of strong convective core were themain reasons for the increase of TC lightning frequency.
引文
Abarca S F, and K L Corbosiero.2011. The World Wide Lightning Location Network and convective activityin tropical cyclones. Mon. Wea. Rev.,139:175-191.
    Abarca S F, K L Corbosiero, and T J Galarneau Jr.2010. An evaluation of the Worldwide Lightning LocationNetwork (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J.Geophys. Res.,115, D18206, doi:10.1029/2009JD013411.
    Benedetti A, P Lopez, E Moreau, and P Bauer.2005. Verification of TMI-adjusted rainfall analyses of tropicalcyclones at ECMWF using TRMM precipitation radar. J. Appl. Meteor.,44:1677-1690.
    Black RA, and J Hallett.1986. Observation of the distribution of ice in hurricanes. J. Atmos. Sci.,43:802-822.
    Black RA, and J Hallett.1999. Electrification of the hurricane. J. Atmos. Sci.,56:2004-2028.
    Boccippio D J, K Driscoll, J Hall, and D Buechler. LIS/OTD Software Guide (Eds.). Global Hydrology andClimate Center, Huntsville. June2,1998.
    Boccippio D J, W J Koshak, and R J Blakeslee.2002. Performance assessment of the optical transient detectorand lightning imaging sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol.,19(9):1318-1332.
    Brand S.1973. Rapid intensification and low-latitude weakening of tropical cyclones of the Western NorthPacific Ocean. J. Appl. Meteor.,12:94-103.
    Cecil D J, and E J Zipser.1999. Relationships between tropical cyclone intensity and satellite-based indicators ofinner core convection:85-GHz ice-scattering signature and lightning. Mon. Wea. Rev.,127:103-123.
    Cecil D J, E J Zipser, and S W Nesbitt.2002a. Reflectivity, ice scattering, and lightning characteristics ofhurricane eye-walls and rainbands. Part I: Quantitative description. Mon. Wea. Rev.,130:769-784.
    Cecil D J, E J Zipser, and S W Nesbitt.2002b. Reflectivity, ice scattering, and lightning characteristics ofhurricane eye-walls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev.,130:785-801.
    Cecil D J, S J Goodman, D J Boccippio, E J Zipser, and S W Nesbitt.2005. Three years of TRMM precipitationfeatures. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev.,133:543-566.
    Chen L W, Y J Zhang, W T Lu, D Zheng, Y Zhang, S D Chen, and Z H Huang.2012. Performance Evaluationfor a Lightning Location System Based on Observations of Artificially Triggered Lightning and NaturalLightning Flashes. J Atmos Ocean Tech,29:1835-1844.
    Chen S M, Y Du, and L M Fan.2004. Lightning data observed with lightning location system in Guang-dongprovince, China. IEEE Trans. Power Delivery,19(3):11481153.
    Chen S M, Y Du, L M Fan, H M He, and D Z Zhong.2002. Evaluation of the Guang dong lightning locationsystem with transmission line fault data. IEE Proc.-Sci. Meas. Technol.,149(1):9-16.
    Christian H J, and J Latham.1998. Satellite measurements of global lightning. Q. J. R. Meteorol. Soc.,124:1771-1773.
    Christian H J, R J Blakeslee, S J Goodman, and D M Mach (Eds.). Algorithm theoretical basis document(ATBD) for the Lightning Imaging Sensor (LIS). NASA/Marshall Space Flight Center. February1,2000.
    Corbosiero K L, and J Molinari.2002. The effects of vertical wind shear on the distribution of convection intropical cyclones. Mon. Wea. Rev.,130:2110-2123.
    Corbosiero K L, and J Molinari.2003. The relationship between storm motion, vertical wind shear, andconvective asymmetries in tropical cyclones. J. Atmos. Sci.,60:366-376.
    Cummins K L, M J Murphy, E A Bardo, W L Hiscox, R B Pyle, and A E Pifer.1998. A combined TOA/MDFtechnology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res.,103(D8):9035-9044.
    Daniel J S, and L K Shay.2003. The Role of oceanic mesoscale features on the tropical cyclone-induced mixedlayer response:Acase study. J. Phys. Oceanogr.,33:649-676.
    Defronzo A M.2004. A study of eyewall lightning in seven recent Atlantic hurricanes. Master thesis, Universityof Massachusetts Lowell.
    DeMaria M, and J Kaplan.1999. An updated statistical hurricane intensity prediction scheme (SHIPS) for theAtlantic and Eastern North Pacific basins. Wea. Forecasting,14:326-337.
    DeMaria M, and R T DeMaria.2009. Applications of lightning observations to tropical cyclone intensityforecasting. Sixteenth Conference on Satellite Meteorology and Oceanography,Amer. Meteor. Soc,6pp.
    DeMaria M, R T DeMaria, J A Knaff, and D Molenar.2012. Tropical cyclone lightning and rapid intensitychange. Mon. Wea. Rev.,140:1828-1842.
    Demetriades N W S, J Molinari, and R L Holle. Long rang lightning nowcasting applications for tropicalcyclones. Proceedings of the19th International Lightning Detection Conference,2006, April24-25,Tucson,Arizona.
    Donaldson R J.1991. A proposed technique for diagnosis by radar of hurricane structure. J. Appl. Meteor.,30(12):1636-1645.
    Dowen R L, J B Brundell, and C J Rodger.2002. VLF lightning location by time of group arrival (TOGA) atmultiple sites. J. Atmos. Sol. Terr. Phys.,64:817-830.
    Dye J E, W P Winn, J J Jones, and D W Breed.1989. The electrification of New Mexico thunderstorms.1:Relationship between precipitation development and the onset of electrification. J. Geophys. Res.,94(D6):8643-8656.
    Fierro A O, L Leslie, E Mansell, J Straka, D MacGorman, and C Ziegler.2007. A high resolution simulation ofthe microphysics and electrification in an idealized hurricane-like vortex. Meteorol. Atmos. Phys.,98:13-33.
    Fierro A O, X Shao, T Hamilin, and J M Reisner.2010. Evolution of eyewall convective events as indicated byintra-cloud and cloud-to-ground lightning activity during the rapid intensification of hurricanes Rita andKatrina. Mon. Weather Rev., doi:10.1175/2010MWR3532.1.
    Frank D M, K S Lynn, and PDT-5.1998. Landfalling tropical cyclones: Forecast problems and associatedresearch opportunities. Bull. Amer. Meteor. Soc.,79(2):305-323.
    Gauthier M L, W A Petersen, L D Carey, and H J Christian Jr.2006. Relationship between cloud-to-groundlightning and precipitation ice mass: A radar study over Houston. Geophys. Res. Lett.,33: L20803,doi:10.1029/2006GL027244.
    Goerss J S, C R Sampson, and J M Gross.2004. A history of Western North Pacific tropical cyclone trackforecast skill. Wea. Forecasting,19:633-638.
    Heymsfield G M, J B Halverson, J Simpson, L Tian, and T P Bui.2001. ER-2Doppler radar investigations ofthe eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor.,40:1310-1330.
    Holler H, H D Betz, and K Schmidt.2010. Comparison of LINET and LIS lightning characteristics. EGUGeneral Assembly,2-7May,2010in Vienna,Austria, p.7086.
    Houze RA.1993. Cloud dynamics.Academic Press, pp612.
    Jacobson A R, R Holzworth, J Harlin, R Dowden, and E Lay.2006. Performance assessment of the WorldWide Lightning Location Network (WWLLN), using the Los Alamos Sferic Array (LASA) as groundtruth, J. Atmos. and Oceanic Tech.,23:1082-1092.
    Jiang H Y.2012. The relationship between tropical cyclone intensity change and the strength of inner-coreconvection. Mon. Wea. Rev.,140:1164-1176.
    Kaplan J, and M DeMaria.2003. Large-scale characteristics of rapidly intensifying tropical cyclones in theNorth Atlantic basin. Wea. Forecasting,18:1093-1108.
    Kaplan J, M DeMaria, and J AKnaff.2010. Arevised tropical cyclone rapid intensification index for the Atlanticand eastern North Atlantic basins. Wea. Forecasting,25:220-241.
    Keighton S J, H B Bluestein and D R MacGorman.1991. The evolution of a severe mesoscale convectivesystem: Cloud-to-ground lighting location and storm structure. Mon. Wea. Rev.,119(12):1533-1556.
    Kelley O A, J Stout, and J B Halverson.2004. Tall precipitation cells in tropical cyclone eyewalls are associatedwith tropical cyclone intensification. Geophys. Res. Lett.,31: L24112.
    Koshak W J, E P Krider, and D J Boccippio.2000. LIS validation at the KSC-ER. EOS, Trans. Amer. Geophys.Union,81(48), F47.
    Krishnamurti T N, S Pattnaik, L Stefanova, T S V Vijaya Kumar, B P Mackey, AJ O’Shay, and R J Pasch.2005.The hurricane intensity issue. Mon. Wea. Rev.,133:1886-1912.
    Kummerow C, and L Giglio.1994. A passive microwave technique for estimating rainfall and vertical structureinformation from space. Part I:Algorithm description. J. Appl. Meteor.,33(1):3-18.
    Kummerow C, Y Hong, W S Olson, S Yang, R F Adler, J McCollum, R Ferraro, G Petty, D-B Shin, and T TWilheit.2001. The evolution of the Goddad Profiling Algorithm (GPROF) for rainfall estimation frompassive microwave sensors. J. Appl. Meteor.,40:1801-1820.
    Lay E H, R H Holzworth, C J Rodger, J N Thomas, O Pinto, and R L Dowden.2004. WWLL global lightningdetection system: Regional validation study in Brazil. Geophys. Res. Lett.,31(3), L03102,10.1029/2003GL018882.
    Lin Y L, R D Farley, and H D Orville.1983. Bulk parameterization of the snow field in a cloud model. J.Climate Appl. Meteor.,22:1065-1092.
    Lyons W A, and C S Keen.1994. Observations of lightning in convective supercells within tropical storms andhurricanes. Mon. Wea. Rev.,122(8):1897-1916.
    Lyons W A, M G Venne, P G Black, et al.1989. Hurricane lightning: A new diagnostic tool for tropical stormforecasting? Preprints,18th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor.Soc.,113-114.
    MacGorman D R, and C D Morgenstern.1998. Some characteristics of cloud-to-ground lightning in mesoscaleconvective systems. J. Geophys. Res.,103(D12):14,011-14,023.
    Mohr K I, E R Toracinta, E J Zipser, and R E Orville.1996. A comparison of WSR-88D reflectivities, SSM/Ibrightness temperatures and lightning for mesoscale convective systems in Texas. Part II: SSM/I brightnesstemperatures and lightning. J. Appl. Meteor.,35:919-931.
    Molinari J, P Dodge, D Vollaro, K L Corbosiero, and Jr F Marks.2006. Mesoscale aspects of the downshearreformation of a tropical cyclone. J. Atmos. Sci.,63:341-354.
    Molinari J, P K Moore, and V P Idone.1999. Convective structure of hurricanes as revealed by lightninglocations. Mon. Wea. Rev.,127:520-534.
    Molinari J, P K Moore, V P Idone, R W Henderson, and A B Saljoughy.1994. Cloud-to-ground lightning inHurricaneAndrew. J. Geophys. Res.,99(D8):16,665-16,676.
    Nagele D.2010. Analysis of cloud-to-ground lightning within tropical cyclones. Texas Tech University, Masterthesis.
    Nolan D S, Y Moon, and D P Stern.2007. Tropical cyclone intensification from asymmetric convection:Energetics and efficiency. J. Atmos. Sci.,64:3377-3405.
    Orville R E.2008. Development of the National Lightning Detection Network. Bull. Amer. Meteor. Soc.,89:180-190.
    Orville R E, and Coyne J M. Cloud-to-ground lightning in tropical cyclones (1986–1996). Preprints,23rd Conf.on Hurricanes and Tropical Meteorology,1999, Dallas,Amer Meteor Soc,194pp.
    Orville R E, and G R Huffines.1999. Lightning ground flash measurements over the contiguous United States:1995-97. Mon. Wea. Rev.,127:2693-2703.
    Orville R E, and G R Huffines.2001. Cloud-to-ground lightning in the United States: NLDN results in the firstdecade,1989-98. Mon. Wea. Rev.,129:1179-1193.
    Petersen W A, H J Christian, and S A Rutledge.2005. TRMM observations of the global relationship betweenice water content and lightning. Geophys. Res. Lett.,32: L14189, doi:10.1029/2005GL023236.
    Price C, and D Rind.1992. A Simple lightning parameterization for calculating global lightning distribution. J.Geophys. Res. Lett.,97(D9):9919-9933.
    Price C, M Asfur, and Y Yair.2009. Maximum hurricane intensity preceded by increase in lightning frequency.Nature Geoscience,2:329-332.
    Rodger C J, J B Brundell, and R L Dowden.2005. Location accuracy of VLF World-Wide Lightning Location(WWLL) network: Post-algorithm upgrade. Ann Geophys,23:277-290.
    Rodger C J, J B Brundell, R H Holzworth, and E H Lay.2009. Growing detection efficiency of the World WideLightning Location Network, in Coupling of Thunderstorms and Lightning Discharges to Near‐EarthSpace: Proceedings of the Workshop, edited by N. B. Crosby, T.‐Y. Huang, and M. J. Rycroft, pp.15–20,doi:10.1063/1.3137706, Am. Inst. of Phys., Melville, N. Y.
    Rodger C J, J B Brundell, R L Dowden, and N R Thomson.2004. Location accuracy of long distance VLFlightning location network. Ann Geophys,22:747-758.
    Rodger C J, S Werner, J B Brundell, E H Lay, N R Thomson, R H Holzworth, and R L Dowden.2006.Detection efficiency of the VLF World-Wide Lightning Location (WWLLN): Initial case study. AnnGeophys,24:3197-3214.
    Samsury E, and R E Orville.1994. Cloud-to-ground lightning in tropical cyclones: A study of Hurricanes Hugo(1989) and Jerry (1989). Mon. Wea. Rev.,122(8):1887-1896.
    Saunders C P R.1993.Areview of thunderstorm electrification processes. J. Appl. Meteor.,32:642-655.
    Shao X M, J Harlin, M Stock, et al.2005. Katrina and Rita were lit up with lightning. EOS Trans., AGU,86(42),398, doi:10.1029/2005EO420004.
    Shu S J, J Ming, and P Chi.2012. Large-scale characteristics and probability of rapidly intensifying tropicalcyclones in the western north pacific basin. Wea. Forecasting,27:411-423.
    Simpson J, R F Adler, and G R North.1988. A proposed satellite tropical rainfall measuring mission (TRMM).Bull. Amer. Meteor. Soc.,69:278-295.
    Skamarock W C, Klemp J B, Dudhia J, et al.2008. A Description of the Advanced Research WRF Version3.NCAR Technical Note, NCAR/TN-475+STR,113pp, National Center for Atmospheric Research,Boulder, Colorado, USA, available at: http://wrf-model.org/wrfadmin/publications.php.
    Solorzano N N, J N Thomas, R H Holzworth, et al. Global studies of tropical cyclones using the World WideLightning Location Network,2008, Paper presented at theAMSAnnual Meeting2008in New Orleans.
    Spencer R W, H M Goodman, and R E Hood.1989. Precipitation retrieval over land and ocean with the SSM/I:Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol.,6:254-273.
    Squires K, and S Businger.2008. The morphology of eyewall lightning outbreaks in two category5hurricanes.Mon. Wea. Rev.,136:1706-1726.
    Takahashi T.1978. Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci.,35:1536-1548.
    Takahashi T, T Tajiri, and Y Sonoi.1999. Charges on graupel and snow crystals and the electrical structure ofwinter thunderstorms. J. Atmos. Sci.,56:1561-1578.
    Tao W K, and J Simpson.1993. The goddard cumulus ensemble model. Part I: Model description. Terr. Atmos.Ocean. Sci.,4(1):35-72.
    Tao W K, J Simpson, and M McCumber.1989. An ice-water saturation adjustment. Mon. Wea. Rew.,117:231-235.
    Thomas J N, N N Solorzano, S A Cummer, and R H Holzworth.2010. Polarity and energetics of inner corelightning in three intense North Atlantic hurricanes. J. Geophy. Res.,115, A00E15,doi:10.1029/2009JA014777.
    Thomas R J, P R Krehbiel, W Rison, T Hamlin, D J Boccippio, S J Goodman, and H J Christian.2000.Comparison of ground-based3-dimensional lightning mapping observations with satellite-based LISobservations in Oklahoma. Geophys. Res. Lett.,27(12):1703-1706.
    Toracinta E R, and E J Zipser.2001. Lightning and SSM/I-ice-scattering mesoscale convective systems in theglobal tropics. J. Appl. Meteor.,40(6):983-1002.
    Ushio T, K T Driscoll, S Heckman, D J Boccippio, W J Koshak, and H J Christian.1999. Initial comparison ofthe Lightning Imaging Sensor (LIS) with Lightning Detection and Ranging (LDAR). Proc.11th Int. Conf.on Atmospheric Electricity, Guntersville,AL, NASA,738-741.
    Ushio T, S Heckman, K Driscoll, D Boccippio, H Christian, and Z-I Kawasaki.2002. Cross-sensorcomparison of the Lightning Imaging Sensor (LIS). Int. J. Remote Sensing,23(13):2703-2712.
    Venne M G, W A Lyons, C S Keen, et al.1989. Explosive supercell growth: A possible indicator for tropicalstorm intensification? Preprints,24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc.,545-548.
    Wacker R S, and R E Orville.1999a. Changes in measured lightning flash count and return stroke peak currentafter the1994U.S. National Lightning Detection Network upgrade.1: Observations. J. Geophys. Res.,104(D2):2151-2157.
    Wacker R S, and R E Orville.1999b. Changes in measured lightning flash count and return stroke peak currentafter the1994U.S. National Lightning Detection Network upgrade.2: Theory. J. Geophys. Res.,104(D2):2159-2162.
    Williams E R.1989. The tripole structure of thunderstorms. J. Geophys. Res.,94(D11):13,151-13,167.
    Willoughby H, F Marks, and R Feinberg.1984. Stationary and moving convective bands in hurricanes. J. Atmos.Sci.,41:3189-3211.
    Wood V T.1994. A technique for detecting a tropical cyclone center using a Doppler radar. J. Atmos. OceanTechnol.,11(5):1207-1216.
    Workman E J, and S E Reynolds.1949. Electrical activity as related to thunderstorm cell growth. Bull. Amer.Meteor. Soc.,30:142-144.
    Wu R, and J A Weinman.1984. Microwave radiances from precipitating clouds containing aspherical ice,combined phase, and liquid hydrometeors. J. Geophys. Res.,89:7170-7178.
    Yokoyama C, and Y N Takayabu.2008. A statistical study on rain characteristics of tropical cyclones usingTRMM satellite data. Mon. Wea. Rev.,136:3848-3862.
    Zhang W J, Y J Zhang, D Zheng, and X J Zhou.2012. Lightning distribution and eyewall outbreaks in tropicalcyclones during landfall. Mon. Wea. Rev.,140:3573-3586.
    Zheng D, Y J Zhang, Q Meng, W T Lu, and M Zhong.2010. Lightning activity and electrical structure in athunderstorm that continued for more than24h. Atmos. Res.,97:241-256.
    白玉洁,胡东明,程元慧,胡胜.2012.广东天气雷达组网策略及在台风监测中的应用.热带气象学报,28(4):603-608.
    陈家宏,张勤,冯万兴,方玉河.2008.中国电网雷电定位系统与雷电监测网.高电压技术,34(3):425-431.
    陈联寿,丁一汇.1979.西北太平洋台风概论,科学出版社.
    陈联寿,孟智勇.2001.我国热带气旋研究十年进展.大气科学,25(3):420-432.
    陈绿文,张义军,吕伟涛,董万胜,郑栋,黄智慧,陈绍东.2009.闪电定位资料与人工引雷观测结果的对比分析.高电压技术,35(8):1896-1902.
    陈佩燕,端义宏,余晖,胡春梅.2006.红外云顶亮温在西北太平洋热带气旋强度预报中的应用.气象学报,04:474-484.
    戴建华,秦虹,郑杰.2005.用TRMM/LIS资料分析长江三角洲地区的闪电活动.应用气象学报,16(6):728-736.
    端义宏,余晖,伍荣生.2005.热带气旋强度变化研究进展.气象学报,63(5):636-645.
    冯锦全,陈多.1995.我国近海热带气旋强度突变的气候特征分析.热带气象学报,11(1):35-42.
    傅云飞,宇如聪,徐幼平,肖庆农,刘国胜.2003. TRMM测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究.气象学报,61(4):421-431.
    胡勇林,钟韬,洪展.2012.0906台风“莫拉菲”影响期间广西暴雨落区的分析.安徽农业科学,40(12):7262-7264.
    雷小途,张义军,马明.2009.西北太平洋热电气旋的闪电特征及其与强度关系的初步分析.海洋学报,31(4):29-38.
    李万彪,宋国琼,童科.2008.TRMM卫星LIS闪电资料在数值模式中的应用.北京大学学报(自然科学版),44(3):399-406.
    李小青,吴蓉璋.2005.用GPROF算法反演降水强度和水凝物垂直结构.应用气象学报,16(6):705-716.
    李英,陈联寿,张胜军.2004.登陆我国热带气旋的统计特征.热带气旋学报,20(1):14-23.
    梁宏升.2011.台风“莫拉菲”移动路径和降水诊断分析.海洋科学进展,29(1):28-36.
    刘奇,傅云飞.2007.基于TRMM/TMI的亚洲夏季降水研究.中国科学(D辑),37(1):111-122.
    马明,陶善昌,祝宝友,吕伟涛.2004.卫星观测的中国及周边地区闪电密度的气候分布.中国科学(D辑),34(4):298-306.
    欧坚莲,贾显锋.2009.台风“莫拉菲”暴雨多普勒雷达回波及风场结构分析.气象研究与应用,30(4):5-9.
    潘杰丽,梁利.2009.2009年06号台风路径及其登陆后暴雨分析.气象研究与应用,30:23-24.
    潘伦湘,郄秀书,刘冬霞,王东方,杨静.2010.西北太平洋地区强台风的闪电活动特征.中国科学:地球科学,40(2):252-260.
    潘伦湘,郄秀书.2010.0709号超强台风圣帕(Sepat)的闪电活动特征.大气科学,34(6):1088-1098.
    潘伦湘.2012.西北太平洋地区台风闪电活动特征及成因研究.中国科学院,博士论文.
    王飞,张义军,赵均壮,吕伟涛,孟青.2008.雷达资料在孤立单体雷电预警中的初步应用.应用气象学报,19(2):153-160.
    王瑾,江吉喜.2005.热带气旋强度的卫星探测客观估计方法研究.应用气象学报,16(3):283-292.
    王艳,郑栋,张义军.2011.2000-2007年登陆台风中闪电活动与降水特征.应用气象学报,22(3),321-328.
    王艳.2009.卫星观测的中国近海及登陆中国台风中的闪电特征研究.中国气象科学研究院硕士学位论文.
    王振会.2001.TRMM卫星测雨雷达及其应用研究综述.气象科学,21(4):491-500.
    吴达铭.1997.西北太平洋热带气旋强度突变的分布特征.大气科学,21(2):191-198.
    郄秀书,RToumi.2003.卫星观测到的青藏高原雷电活动特征.高原气象,22(3):288-293.
    郄秀书,余晔,王怀斌,张翠华.2001.中国内陆高原地闪特征的统计分析.高原气象,20(4):395-401.
    徐建平.2005.日本MTSAT多功能卫星.气象科技,33(1).
    阎俊岳,张秀芝,陈乾金,黄爱芬.1995.热带气旋迅速加强标准的研究.气象,21(5):9-13.
    阎俊岳.1996.近海热带气旋迅速加强的气候特征.应用气象学报,7(1):28-35.
    杨美荣,袁铁,郄秀书,潘伦湘.2011.西北太平洋热带气旋的闪电活动、雷达反射率和冰散射信号特征分析.气象学报,69(2):370-380.
    易笑园,宫全胜,离培彦,贾慧珍,王庆元.2009.华北彪线系统中地闪活动与雷达回波顶高的关系及预警指标.气象,35(2):34-40.
    于玉斌,杨昌贤,姚秀萍.2007.近海热带气旋强度突变的垂直结构特征分析.大气科学,31(5):876-886.
    于玉斌,姚秀萍.2006.西北太平洋热带气旋强度变化的统计特征.热带气象学报,22(6):521-526.
    余晖,端义宏.2002.西北太平洋热带气旋强度变化的统计特征.气象学报,60(6):680-687.
    余贞寿,周功铤,赵放,冀春晓.2008.雷达资料对0414号台风“云娜”数值预报的改进.热带气象学报,24(1):59-66.
    俞小鼎,姚秀萍,熊延南,周小刚,吴洪,邓北胜,宋燕.2005.多普勒天气雷达原理与业务应用.北京:气象出版社,pp1-5.
    袁铁,郄秀书.2010.基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究.大气科学,34(1):58-70.
    赵放,冀春晓,高守亭,刘黎平.2012.浙江沿海登陆台风结构特性的多普勒雷达资料分析.气象学报,70(1):15-29.
    郑栋,张义军,孟青,吕伟涛,易笑园.2010.一次雹暴的闪电特征和电荷结构演变研究.气象学报,68(2):248-263.
    郑栋.2008.闪电活动与降水的相关关系研究.中国科学院研究生院博士学位论文.
    郑媛媛,傅云飞,刘勇,朱红芳,姚秀萍,谢亦峰,宇如聪.2004.热带测雨卫星对淮河一次暴雨降水结构与闪电活动的研究.气象学报,62(6):790-802.
    中国气象局,《热带气旋年鉴》,1999-2010,气象出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700