用户名: 密码: 验证码:
华北积层混合云微物理特征的飞机观测分析及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用国家科技支撑计划重点项目环北京地区三架飞机联合云探测试验数据,研究了2009年4月18日和5月1日两次积层混合云中冰晶形态、分布与增长过程,依据观测结果,考察了中尺度数值模式对积层混合云云物理及降水过程的模拟能力。研究结果表明:
     飞机在0--16oC范围的云层内观测的冰晶形态主要包括板状、针柱状、柱帽状、辐枝状和不规则状。云中低层观测的冰晶形态受云顶温度影响,云顶温度不同,观测的冰晶形态不同,当云顶温度高于-8oC,在云中低层观测的冰晶形态以板状和针柱状为主,当云顶温度低于-13oC时,在云中低层可观测到辐枝状冰晶,当云顶温度低于-18oC时,在云中低层可观测到柱帽状冰晶。同时冰晶形态还受其所处云中位置的影响,不同云区采集的冰晶形态都是多形态的混合,但是对流区域能够采集到更多的辐枝状冰晶和冰晶聚合体,同时冰晶的凇附程度高于层云区域,而层云区域能够采集到清晰的六角板状冰晶;在融化层以上,冰晶的增长过程主要包括凝华、凇附和聚合过程,在垂直方向上,随着高度降低云中过冷水增多,冰晶的凇附增长也相应增强。积层混合云中的对流区和层云区粒子谱下落拓宽速率有明显差别,在4.8-4.2km(-11.6--8℃)高度层,对流区粒子谱拓宽速率为3mm km-1,而层云区为3.67mm km-1,层云中粒子拓宽增长的速率略高于对流区;而在4.2-3.6km(-8--5℃)高度层,对流区的粒子谱拓宽速率为6.67mm km-1,层云区为2.33mm km-1,对流区的粒子拓宽增长速率是层云区的近三倍,主要原因是嵌入对流区的低层含有较多过冷水
     数值模拟实验表明,WRF模式能够较准确地模拟出两次积层混合云雷达回波和降水的不均匀性分布特征,模拟的强降水中心的降水量与实况比较一致。对于积层混合云中液态水含量(LWC)的模拟,虽然两次模拟过程中,由于模拟嵌入对流位置的误差,导致在高层(-8--16℃)飞机轨迹上的LWC模拟有细微误差,但总体上模式能够模拟出积层混合云LWC分布特征,尤其是对中下层LWC的模拟。对于积层混合云中冰水含量(IWC)的模拟,模拟的IWC高于实测值,主要原因是模拟的雪粒子凇附增长较大,而碰并增长过程发生的高度偏高,说明模式在雪粒子凇附增长过程和碰并增长过程处理上存在一些问题,有待改进。而在积层混合云中下层,模式能够较准确模拟云中水凝物的垂直分布,包括融化层的分布。
     在云中粒子谱的对比方面,对于4月18日过程,WRF模式模拟的粒子谱参数在云低层与观测具有较好的一致性,但在高层比观测值偏小。在-8℃层,模式计算的粒子谱的截距和斜率都小于实际观测值,主要与该层模式模拟的雪粒子质量浓度偏高有关,在-5℃层,模式计算的截距和斜率接近实际谱,在3℃层,模式计算的斜率接近实际谱,但是截距大于实际谱。同时,随着高度从-8℃层降到3℃层,由于降水粒子的聚合过程和碰并过程,云中的小粒子端粒子浓度逐渐减少,云中降水粒子谱分布逐渐从MP分布转变为Gamma分布。5月1日过程的对比结果与4月18日类似,也是由于模拟的高层雪粒子质量浓度偏高,导致计算的粒子谱斜率小于实际谱斜率。同时在云中随着高度的降低,云中粒子谱分布也表现出从MP分布转变为Gamma分布。另外在积云区和层云区粒子谱分布的对比方面,模拟的积云区粒子谱分布更加接近实测,而层云区粒子谱分布与实测差异较大,同时模式在积云区和层云区计算的粒子谱拓宽速率都小于实际的粒子谱拓宽速率。两次模拟实验的对比结果表明,WRF模式在云冰相过程的参数化描述方面仍然存在较大的问题,特别是雪粒子的凇附增长过程和碰并增长过程,同时模式中降水粒子谱参数的描述方案有待改进,模式中谱形参数μ不应一直设置为0,而是应该随着高度变化而变化。
Ice crystal habits, distribution and growth process in two cases of stratiform clouds withembedded convection on18April2009and1st May2009are analyzed with data observedduring the Beijing Cloud Experiment (BCE), and then, to verify the cloud microphysicalscheme and ability in simulating cloud microphysics, thecloud microphysics and precipitationcharacteristics intwo cases simulated by WRF modelwere compared with data observedduring the BCE. The results show that:
     Ice crystal habits in clouds with temperature between0--16oC were predominantlyplate, needle-column, capped-column, dendrite and irregular. Ice crystal habits were affectedby the cloud top temperature(CTT) and were different with the change of CTT, plate andneedle-columns were predominant habits as CTT warmer than-8oC, but dendritic andcapped-column crystals were observed just as CTT colder than-13oC and-18oC respectively.At the same time,ice crystal habits were also affected by their locations in cloud. A mixture ofseveral ice crystal habits always be recorded in different clouds. But the ice crystal habitsrecorded in embedded convections contained more dendrites and had a heavier riming degree,and the ice crystal recorded in stratiform clouds contained more hexagonal plate crystals.Above the melting layer, ice particle grew mainly by deposition,riming and aggregationprocess,the riming process became more intense in lower cloud layer due to the increase ofsupercooled liquid water content. The broaden rate of Particle size distributions(PSDs) isobviously different between embedded convections and stratiform cloudsin the verticaldirection, at levels4.84.2km(-11.6--8℃), the PSDs broaden rate in embeddedconvections is3mm km-1,smaller than3.67mm km-1in stratiform clouds, but at levels4.2-3.6km(-8--5℃), the PSDs broaden rate in embedded convections is6.67mm km-1,whichwas almost three times as big as2.33mm km-1in stratiform clouds, which is mainly due tothat embedded convections had more supercooled liquid water than stratiform cloudsat levels4.2-3.6km.
     The simulated results show that the distributions of radar echo and precipitationsimulated by WRF model are in good agreement with observations. The simulated verticaldistribution of Liquid Water Content (LWC) is consistent with aircraft measurements,especialy at middle and low layer of cloud, although the simulated LWC at high layer(-8--16℃)flight path has some errors with observation due to the location error of embedded convection simulated by model. The Ice Water Content (IWC) at high layer simulated bymodel is higher than observation due to that the simulated riming process is stronger at thislayer, and aggregation process occurred at higher layer, so it needs an improvement atproduction processes of snow. Vertical distributions of water content at middle and low layer(most of cloud water is LWC) are simulated correctly,including the melting layer.
     For the case of18April, at-8℃layer, both the intercept and slope of Particle sizedistributions(PSDs) simulated by model are lower than observations due to simulated snowmass concentration is higher than observed. At-5℃layer, both simulated intercept and slopeare consistent with observations. At3℃layer, the simulated slope is consistent withobservation, but the simulated intercept is higher than observation due to concentration ofsmall particles is decreasing in cloud, that suggest the parameter of spectrum shape shoudchange with height in cloud. For the case of1st May, the comparation results were similarwith the case of18April, the simulated slope of PSDs at high layer is smaller thanobservation due to more snow content were simulated at high layer. With the decrease ofheight, the PSDs changed from MP distribution to Gamma distribution. In addition, thesimulated results at embedded convection were closer to observation, and at stratiform regionwere higher than observation. In addition, the simulated broadening rate of PSDs inembedded convection and stratiform region both were smaller than the observed results. Twonumerical experiments suggest that there is a problem with the parameter of ice process incloud physical scheme in WRF model, especialy at riming process and collision process. Atthe same time, the parameter of spectrum shape of PSDs should change with height in cloud.
引文
陈宝君,李子华,刘吉成等.三类降水云雨滴谱分布模式.气象学报,1998,56(4):506-512.
    范烨,郭学良,张佃国等.北京及周边地区2004年8-9月层积云结构及谱分析飞机探测研究.大气科学,2010,34(6):1187-1200
    封彩云.城市污染大气环境下云和降水形成的观测和数值模拟研究.兰州大学博士论文2011,p1-p2.
    洪延超,1996.积层混合云数值模拟研究_I_模式及其微物理过程参数化.气象学报54(5):544-557.
    洪延超,黄美元和王首平.梅雨云系中亮带不均匀性的理论探讨.大气科学,1984,8(2):197-204.
    黄美元和洪延超.在梅雨锋云系内层状云回波结构及其降水的不均匀性.气象学报,1984,42(1):81-87.
    黄美元,洪延超,徐华英和吴玉霞.梅雨锋云系和降水的若干研究.大气科学,1987,11(1):23-30.
    胡朝霞,雷恒池,郭学良等.降水性层状云系结构和降水过程的观测个例与模拟研究.大气科学,2007,31:425-439.
    盛裴轩,毛节泰和李建国等.大气物理学.北京大学出版社,2002,304-305.
    陶玥,齐彦斌,洪延超.霰粒子下落速度对云系及降水发展影响的数值研究.气象学报.2009.67(3):370-381.
    杨洁帆,雷恒池,胡朝霞.一次层状云降水过程微物理机制的数值模拟研究.大气科学,2010,34:275-289.
    游来光,王守荣,王鼎丰和迟玉明.新疆冬季降雪微结构及其增长过程的初步研究.气象学报,1989,47(1):73-81.
    叶家东,范蓓芬and Cotton, W.R..一个缓慢移动的中尺度对流复合体内层状降水区的微结构分析.大气科学,1992,16(4):464-475.
    孙可富和游来光.1963年4-6月吉林地区降水性层状冷云中的冰晶与雪晶.气象学报,1965,35(3):265-272.
    汪学林,秦元明和吴宪君.层状云中对流泡特征及其在降水场中的作用.应用气象学报,2001,12(S1):146-150.
    张佃国,郭学良,付丹红和李宏宇.2003年8~9月北京及周边地区云系微物理飞机探测研究.大气科学,2007,31(4):597-610.
    朱士超,郭学良.华北积层混合云中冰晶形态、分布与增长过程的飞机探测研究.气象学报.2013, doi:10.11676/qxxb2014.013.
    Bailey, M.P. and Hallett, J. A Comprehensive Habit Diagram for Atmospheric Ice Crystals:Confirmation from the Laboratory, AIRS II, and Other Field Studies. Journal of theAtmospheric Sciences,2009,66(9):2888-2899.
    Bergeron, T., The problem of artificial control of rainfall on the globe. Part II:The coastal orographic maxima of precipitation in autumn and winter. Tellus,1949.1:15-32.
    Caniaux, G., Redelsperger, J.L. and Lafore, J.P.. A Numerical Study of the StratiformRegion of a Fast-Moving Squall Line. Part I: General Description and Water and Heat Budgets.Journal of the Atmospheric Sciences,1994,51(14):2046-2074.
    Carbone, R.E. and Bohne, A.R.. Cellular Snow Generation—A Doppler Radar Study. Journalof the Atmospheric Sciences,1975,32(7):1384-1394.
    Carey, L.D. et al.. The Vertical Profile of Liquid and Ice Water Content in MidlatitudeMixed-Phase Altocumulus Clouds. Journal of Applied Meteorology and Climatology,2008,47(9):2487-2495.
    Chen, F. and Dudhia, J.. Coupling an Advanced Land Surface–Hydrology Model with thePenn State–NCAR MM5Modeling System. Part I: Model Implementation and Sensitivity. MonthlyWeather Review,2001,129(4):569-585.
    Colle, B.A. and Mass, C.F.. The5–9February1996Flooding Event over the PacificNorthwest: Sensitivity Studies and Evaluation of the MM5Precipitation Forecasts. MonthlyWeather Review,2000,128(3):593-617.
    Colle, B.A., Westrick, K.J. and Mass, C.F.. Evaluation of MM5and Eta-10PrecipitationForecasts over the Pacific Northwest during the Cool Season. Weather and Forecasting,1999,14(2):137-154.
    Connolly, P.J. et al.. Aircraft observations of the influence of electric fields onthe aggregation of ice crystals. Quarterly Journal of the Royal Meteorological Society,2005,131(608):1695-1712.
    Dudhia, J.. Numerical Study of Convection Observed during the Winter Monsoon ExperimentUsing a Mesoscale Two-Dimensional Model. Journal of the Atmospheric Sciences,1989,46(20):3077-3107.
    Evans, A.G., Locatelli, J.D., Stoelinga, M.T. and Hobbs, P.V.. The IMPROVE-1Stormof1–2February2001. Part II: Cloud Structures and the Growth of Precipitation. Journalof the Atmospheric Sciences,2005,62(10):3456-3473.
    Fabry, F., Zawadzki, I. and Cohn, S.. The Influence of Stratiform Precipitation onShallow Convective Rain: A Case Study. Monthly Weather Review,1993,121(12):3312-3325.
    Field, P.R., Heymsfield, A.J. and Bansemer, A.. Shattering and Particle InterarrivalTimes Measured by Optical Array Probes in Ice Clouds. Journal of Atmospheric and OceanicTechnology,2006,23(10):1357-1371.
    Field, P.R. et al.. Parametrization of ice-particle size distributions formid-latitude stratiform cloud. Quarterly Journal of the Royal Meteorological Society,2005,131(609):1997-2017.
    Fuhrer, O. and Sch r, C.. Embedded Cellular Convection in Moist Flow past Topography.Journal of the Atmospheric Sciences,2005,62(8):2810-2828.
    Fukuta, N. and Takahashi, T.. The Growth of Atmospheric Ice Crystals: A Summary ofFindings in Vertical Supercooled Cloud Tunnel Studies. Journal of the Atmospheric Sciences,1999,56(12):1963-1979.
    Gallus, W.A. and Bresch, J.F.. Comparison of Impacts of WRF Dynamic Core, PhysicsPackage, and Initial Conditions on Warm Season Rainfall Forecasts. Monthly WeatherReview,2006,134(9):2632-2641.
    Garvert, M.F. et al.. The13–14December2001IMPROVE-2Event. Part II: Comparisonsof MM5Model Simulations of Clouds and Precipitation with Observations. Journal of theAtmospheric Sciences,2005,62(10):3520-3534.
    Grell, G.A. and Dévényi, D.. A generalized approach to parameterizing convectioncombining ensemble and data assimilation techniques. Geophysical Research Letters,2002,29(14):38-1-38-4.
    Herzegh, P.H. and Hobbs, P.V.. The Mesoscale and Microscale Structure and Organizationof Clouds and Precipitation in Midlatitude Cyclones. II: Warm-Frontal Clouds. Journal ofthe Atmospheric Sciences,1980,37(3):597-611.
    Herzegh, P.H. and Hobbs, P.V.. The Mesoscale and Microscale Structure and Organizationof Clouds and Precipitation in Midlatitude Cyclones. IV: Vertical Air Motions andMicrophysical Structures of Prefrontal Surge Clouds and Cold-Frontal Clouds. Journal ofthe Atmospheric Sciences,1981,38(8):1771-1784.
    Heymsfield, A.J.. Laboratory and Field Observations of the Growth of Columnar and PlateCrystals from Frozen Droplets. Journal of the Atmospheric Sciences,1973,30(8):1650-1656.
    Heymsfield, A.J. et al.. Observations and Parameterizations of Particle SizeDistributions in Deep Tropical Cirrus and Stratiform Precipitating Clouds: Results fromIn Situ Observations in TRMM Field Campaigns. Journal of the Atmospheric Sciences,2002,59(24):3457-3491.
    Heymsfield, A.J., Bansemer, A., Schmitt, C., Twohy, C. and Poellot, M.R.. EffectiveIce Particle Densities Derived from Aircraft Data. Journal of the Atmospheric Sciences,2004a,61(9):982-1003.
    Heymsfield, A.J. and Kajikawa, M.. An Improved Approach to Calculating TerminalVelocities of Plate-like Crystals and Graupel. Journal of the Atmospheric Sciences,1987,44(7):1088-1099.
    Heymsfield, A.J., Schmitt, C., Bansemer, A. and Twohy, C.H.. Improved Representationof Ice Particle Masses Based on Observations in Natural Clouds. Journal of the AtmosphericSciences,2010,67(10):3303-3318.
    Heymsfield, A.J. et al.. Effective ice particle densities for cold anvil cirrus.Geophysical Research Letters,2004b,31(2): L02101.
    Hobbs, P.V. and Locatelli, J.D.. Rainbands, Precipitation Cores and Generating Cellsin a Cyclonic Storm. Journal of the Atmospheric Sciences,1978,35(2):230-241.
    Hobbs, P.V., Matejka, T.J., Herzegh, P.H., Locatelli, J.D. and Houze, R.A.. TheMesoscale and Microscale Structure and Organization of Clouds and Precipitation inMidlatitude Cyclones. I: A Case Study of a Cold Front. Journal of the AtmosphericSciences,1980,37(3):568-596.
    Hobbs, P.V. and Rangno, A.L.. Rapid Development of High Ice Particle Concentrationsin Small Polar Maritime Cumuliform Clouds. Journal of the Atmospheric Sciences,1990,47(22):2710-2722.
    Hogan, R.J. et al.. Characteristics of mixed-phase clouds. I: Lidar, radar and aircraftobservations from CLARE'98. Quarterly Journal of the Royal Meteorological Society,2003,129(592):2089-2116.
    Hong, S.-Y., Dudhia, J. and Chen, S.-H.. A Revised Approach to Ice MicrophysicalProcesses for the Bulk Parameterization of Clouds and Precipitation. Monthly Weather Review,2004,132(1):103-120.
    Hong, S.-Y., Juang, H.-M.H. and Zhao, Q.. Implementation of Prognostic Cloud Schemefor a Regional Spectral Model. Monthly Weather Review,1998,126(10):2621-2639.
    Hou, T., Lei, H. and Hu, Z.. A comparative study of the microstructure and precipitationmechanisms for two stratiform clouds in China. Atmospheric Research,2010,96(2–3):447-460.
    Hou, T., Lei, H., Hu, Z. and Feng, Q.. Observations and Modeling of Ice Water Contentin a Mixed-Phase Cloud System. ATMOSPHERIC AND OCEANIC SCIENCE LETTERS,2013,6(4):210-215.
    Houze, R.A., Hobbs, P.V., Herzegh, P.H. and Parsons, D.B.. Size Distributions ofPrecipitation Particles in Frontal Clouds. Journal of the Atmospheric Sciences,1979,36(1):156-162.
    Houze, R.A., Rutledge, S.A., Matejka, T.J. and Hobbs, P.V.. The Mesoscale andMicroscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones.III: Air Motions and Precipitation Growth in a Warm-Frontal Rainband. Journal of theAtmospheric Sciences,1981,38(3):639-649.
    Janji, Z.I.. Comments on “Development and Evaluation of a Convection Scheme for Usein Climate Models”. Journal of the Atmospheric Sciences,2000,57(21):3686-3686.
    Kain, J.S. and Fritsch, J.M.. A One-Dimensional Entraining/Detraining Plume Model andIts Application in Convective Parameterization. Journal of the Atmospheric Sciences,1990,47(23):2784-2802.
    Kajikawa, M. and Heymsfield, A.J.. Aggregation of Ice Crystals in Cirrus. Journal ofthe Atmospheric Sciences,1989,46(20):3108-3121.
    Kessler, W.. On the distribution and continuity of water substance in atmosphericcirculation. Meteor. Monogr., Amer. Meteor. Soc.,1969,84p.
    Korolev, A.V., Bailey, M.P., Hallett, J. and Isaac, G.A.. Laboratory and In SituObservation of Deposition Growth of Frozen Drops. Journal of Applied Meteorology,2004,43(4):612-622.
    Kudo, A.. The Generation of Turbulence below Mid-level Cloud Bases: The Effect ofCooling due to Sublimation of Snow. Journal of Applied Meteorology and Climatology.2012,52(4):819-833.
    Lacis, A.A. and Hansen, J.. A Parameterization for the Absorption of Solar Radiationin the Earth's Atmosphere. Journal of the Atmospheric Sciences,1974,31(1):118-133.
    Lang, S.E., Tao, W.-K., Zeng, X. and Li, Y.. Reducing the Biases in Simulated RadarReflectivities from a Bulk Microphysics Scheme: Tropical Convective Systems. Journal ofthe Atmospheric Sciences,2011,68(10):2306-2320.
    Laprise, R.. The Euler Equations of Motion with Hydrostatic Pressure as an IndependentVariable. Monthly Weather Review,1992,120(1):197-207.
    Lawson, R.P., Stewart, R.E. and Angus, L.J.. Observations and Numerical Simulationsof the Origin and Development of Very Large Snowflakes. Journal of the AtmosphericSciences,1998,55(21):3209-3229.
    Lawson, R.P., Stewart, R.E., Strapp, J.W. and Isaac, G.A.. Aircraft observations ofthe origin and growth of very large snowflakes. Geophysical Research Letters,1993,20(1):53-56.
    Lawson, R.P. and Zuidema, P.. Aircraft Microphysical and Surface-Based RadarObservations of Summertime Arctic Clouds. Journal of the Atmospheric Sciences,2009,66(12):3505-3529.
    Leung, L.R., Kuo, Y.-H. and Tribbia, J.. Research Needs and Directions of RegionalClimate Modeling Using WRF and CCSM. Bulletin of the American Meteorological Society,2006,87(12):1747-1751.
    Li, Y. and Niu, S.. The formation and precipitation mechanism of two ordered patternsof embedded convection in stratiform cloud. Science China Earth Sciences,2011,55(1):113-125.
    Lin, Y.-L., Farley, R.D. and Orville, H.D.. Bulk Parameterization of the Snow Fieldin a Cloud Model. Journal of Climate and Applied Meteorology,1983,22(6):1065-1092.
    Locatelli, J.D. and Hobbs, P.V.. The Mesoscale and Microscale Structure andOrganization of Clouds and Precipitation in Midlatitude Cyclones. XIII: Structure of aWarm Front. Journal of the Atmospheric Sciences,1987,44(16):2290-2309.
    Lu, G. and Guo, X.. Distribution and origin of aerosol and its transform relationshipwith CCN derived from the spring multi-aircraft measurements of Beijing Cloud Experiment(BCE). Chinese Science Bulletin,2012,57(19):2460-2469.
    Magono, C. and Iwabuchi, T.. A laboratory experiment on the electrification of icecrystals. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A,1972,21(2-3):287-298.
    Matejka, T.J., Houze, R.A. and Hobbs, P.V.. Microphysics and dynamics of cloudsassociated with mesoscale rainbands in extratropical cyclones. Quarterly Journal of theRoyal Meteorological Society,1980,106(447):29-56.
    McFarquhar, G.M. and Black, R.A.. Observations of Particle Size and Phase in TropicalCyclones: Implications for Mesoscale Modeling of Microphysical Processes. Journal of theAtmospheric Sciences,2004,61(4):422-439.
    McFarquhar, G.M. et al.. Vertical Variability of Cloud Hydrometeors in the StratiformRegion of Mesoscale Convective Systems and Bow Echoes. Monthly Weather Review,2007,135(10):3405-3428.
    Mellor, G.L. and Yamada, T.. Development of a turbulence closure model for geophysicalfluid problem. Rev. GeoPhys. Space. Phys,1982,851-875.
    Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A.. Radiativetransfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for thelongwave. Journal of Geophysical Research: Atmospheres,1997,102(D14):16663-16682.
    Molthan, A.L., Petersen, W.A., Nesbitt, S.W. and Hudak, D.. Evaluating the Snow CrystalSize Distribution and Density Assumptions within a Single-Moment Microphysics Scheme.Monthly Weather Review,2010,138(11):4254-4267.
    Morrison, H., Curry, J.A. and Khvorostyanov, V.I.. A New Double-Moment MicrophysicsParameterization for Application in Cloud and Climate Models. Part I: Description. Journalof the Atmospheric Sciences,2005,62(6):1665-1677.
    Morrison, H. and Gettelman, A.. A New Two-Moment Bulk Stratiform Cloud MicrophysicsScheme in the Community Atmosphere Model, Version3(CAM3). Part I: Description andNumerical Tests. Journal of Climate,2008,21(15):3642-3659.
    Ono, A.. The Shape and Riming Properties of Ice Crystals in Natural Clouds. Journalof the Atmospheric Sciences,1969,26(1):138-147.
    Ooyama, K.V.. A Dynamic and Thermodynamic Foundation for Modeling the Moist Atmospherewith Parameterized Microphysics. Journal of the Atmospheric Sciences,2001,58(15):2073-2102.
    Orville, H.D., Hirsch, J.H. and Farley, R.D.. Further results on numerical cloudseeding simulations of stratiform-type clouds. The Journal of Weather Modification,1987,19(1):57-61.
    Parsons, D.B. and Hobbs, P.V.. The Mesoscale and Microscale Structure and Organizationof Clouds and Precipitation in Midlatitude Cyclones. IX: Some Effects of Orography onRainbands. Journal of the Atmospheric Sciences,1983a,40(8):1930-1949.
    Parsons, D.B. and Hobbs, P.V.. The Mesoscale and Microscale Structure and Organizationof Clouds and Precipitation in Midlatitude Cyclones. VII: Formation, Development,Interaction and Dissipation of Rainbands. Journal of the Atmospheric Sciences,1983b,40(3):559-579.
    Plank, V.G., Atlas, D. and Paulsen, W.H.. THE NATURE AND DETECTABILITY OF CLOUDS ANDPRECIPITATION AS DETERMINED BY1.25-CENTIMETER RADAR. Journal of Meteorology,1955,12(4):358-378.
    Pruppacher, H.R. and Klett, J.D.. Microphysics of Clouds and Precipitation. KluwerAcademic,1997,954pp.
    Redelsperger, J.L. et al.. A gcss model intercomparison for a tropical squall lineobserved during toga-coare. I: Cloud-resolving models. Quarterly Journal of the RoyalMeteorological Society,2000,126(564):823-863.
    Reisner, J., Rasmussen, R.M. and Bruintjes, R.T.. Explicit forecasting of supercooledliquid water in winter storms using the MM5mesoscale model. Quarterly Journal of the RoyalMeteorological Society,1998,124(548):1071-1107.
    Rutledge, S.A. and Hobbs, P.. The Mesoscale and Microscale Structure and Organizationof Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder”Process in Warm-Frontal Rainbands. Journal of the Atmospheric Sciences,1983,40(5):1185-1206.
    Schwarzkopf, M.D. and Fels, S.B.. The simplified exchange method revisited: An accurate,rapid method for computation of infrared cooling rates and fluxes. Journal of GeophysicalResearch: Atmospheres,1991,96(D5):9075-9096.
    Stark, D., Colle, B.A. and Yuter, S.E.. Observed Microphysical Evolution for Two EastCoast Winter Storms and the Associated Snow Bands. Monthly Weather Review,2013,141(6):2037-2057.
    Stith, J.L. et al.. Microphysical Observations of Tropical Clouds. Journal of AppliedMeteorology,2002,41(2):97-117.
    Stoelinga, M.T. et al.. Improvement of Microphysical Parameterization throughObservational Verification Experiment. Bulletin of the American Meteorological Society,2003,84(12):1807-1826.
    Syrett, W.J., Albrecht, B.A. and Clothiaux, E.E.. Vertical Cloud Structure in aMidlatitude Cyclone from a94-GHz Radar. Monthly Weather Review,1995,123(12):3393-3407.
    Takahashi, T. and Fukuta, N.. Super cooled cloud tunnel studies on the growth of snowcrystals between-4°C and-20°C. Journal of the Meteorological Society of Japan,1988,66:841-855.
    Tao, W.-K.. Goddard Cumulus Ensemble (GCE) Model: Application for UnderstandingPrecipitation Processes. Meteorological Monographs,2003,29(51):107-107.
    Tao, W.-K., Simpson, J. and Soong, S.-T.. Numerical Simulation of a Subtropical SquallLine over the Taiwan Strait. Monthly Weather Review,1991,119(11):2699-2723.
    Thompson, G., Rasmussen, R.M. and Manning, K.. Explicit Forecasts of WinterPrecipitation Using an Improved Bulk Microphysics Scheme. Part I: Description andSensitivity Analysis. Monthly Weather Review,2004,132(2):519-542.
    Toth, Z.. meeting summary: Ensemble Forecasting in WRF. Bulletin of the AmericanMeteorological Society,2001,82(4):695-697.
    Trier, S.B., Skamarock, W.C., LeMone, M.A., Parsons, D.B. and Jorgensen, D.P..Structure and Evolution of the22February1993TOGA COARE Squall Line: NumericalSimulations. Journal of the Atmospheric Sciences,1996,53(20):2861-2886.
    Viale, M., Houze, R.A. and Rasmussen, K.L.. Upstream orographic enhancement of a narrowcold-frontal rainband approaching the Andes. Monthly Weather Review.2012,141(5):1708-1730.
    Vulfson, A.N.. Sufficient condition of stability of stratus clouds in relation toperturbations of finite amplitude. Leningrad,1988,298:97-110.
    Wang, P.-Y., Parsons, D.B. and Hobbs, P.V.. The Mesoscale and Microscale Structureand Organization of Clouds and Precipitation in Midlatitude Cyclones. VI: WavelikeRainbands Associated With a Cold-Frontal Zone. Journal of the Atmospheric Sciences,1983,40(3):543-558.
    Westbrook, C.D. and Heymsfield, A.J.. Ice Crystals Growing from Vapor in SupercooledClouds between2.5°and22°C: Testing Current Parameterization Methods UsingLaboratory Data. Journal of the Atmospheric Sciences,2011,68(10):2416-2429.
    Wexler, R. and Atlas, D.. PRECIPITATION GENERATING CELLS. Journal of Meteorology,1959,16(3):327-332.
    Woods, C.P., Stoelinga, M.T. and Locatelli, J.D.. Size Spectra of Snow ParticlesMeasured in Wintertime Precipitation in the Pacific Northwest. Journal of the AtmosphericSciences,2008,65(1):189-205.
    Woods, C.P., Stoelinga, M.T., Locatelli, J.D. and Hobbs, P.V.. Microphysical Processesand Synergistic Interaction between Frontal and Orographic Forcing of Precipitation duringthe13December2001IMPROVE-2Event over the Oregon Cascades. Journal of the AtmosphericSciences,2005,62(10):3493-3519.
    Xu, K.-M. and Randall, D.A.. Explicit simulation of cumulus ensembles with the GATEphase III data: Budgets of a composite easterly wave. Quarterly Journal of the RoyalMeteorological Society,2001,127(575):1571-1591.
    Yuter, S.E., Houze, R.A., Smith, E.A., Wilheit, T.T. and Zipser, E.. PhysicalCharacterization of Tropical Oceanic Convection Observed in KWAJEX. Journal of AppliedMeteorology,2005,44(4):385-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700