用户名: 密码: 验证码:
西藏野生大麦耐盐种质的发掘及其耐盐机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐化是全球范围内限制作物生产的主要逆境,由于环境污染加剧和农用灌溉水质持续恶化,农田土壤盐化日趋严重。明确作物的耐盐机理是培育耐盐新品种和制订抗盐栽培措施的基础。目前虽已明确渗透调节、离子平衡和抗氧化是植物的主要耐盐机制,但相关的遗传及分子机理尚未完全阐明。
     大麦(Hordeum vulgare)是全球第四大粮食作物,适应性广,耐盐性强。以大麦为模式作物,研究其耐盐机制,对揭示禾本科作物的耐盐机理具有重要的理论价值。青藏高原一年生野生大麦(H. Spontaneum和H. agriocrithum)(以下称西藏野生大麦)系我国独有的植物种质资源,具有丰富的遗传变异和抗逆基因资源,发掘其耐盐资源可为大麦及作物耐盐改良提供优异种质。
     本研究在评价西藏野生大麦耐盐性的基础上,采用关联分析法鉴定与发掘优异耐盐野生种质,并首次从离子组、膜蛋白组和代谢组三个水平上系统解析野生大麦和栽培大麦对盐胁迫的响应机制及其差异,取得的主要研究结果如下:
     1.西藏野生大麦耐盐种质的发掘与遗传关联分析
     采用水培试验,大麦三叶期用300mM NaCl胁迫处理3周,以相对干物重为指标,评价了188份西藏野生大麦的耐盐性,发现盐胁迫明显降低根和地上部的干重,降幅为27.6%~73.1%,且以根的降幅较大。西藏野生大麦的耐盐性存在广泛的基因型差异,与普遍认同的耐盐对照品种CM72相比,鉴定到根和地上部相对干重显著大于对照的野生大麦材料。
     利用57对多态性芯片技术(DArT)标记分析了西藏野生大麦群体第5染色体的连锁不平衡(LD)结构,发现第5染色体LD的遗传衰减距离为8.9cM(R2<0.1)或者1.5cM (R2<0.2),LD程度较弱。采用测序法分析了野生大麦群体中HvCBF1、HvCBF3、HvCBF4和HvHVA1基因编码区(CDS)序列多态性,与参照序列相比,分别检测到2、15、16和10个单核苷酸多态性(SNP)位点,即平均每100bp碱基中存在0.3、2、2.4和1.6个SNP,对应3、8、13和6个单倍型,基因SNP位点之间存在不同程度的LD关系。
     耐盐性状与遗传多态性的关联分析结果表明,标记bPb-4891与地上部和整株的相对干物重显著关联(P<0.05),可分别解释表型变异的2.2%和2.3%;4个基因中,仅HvCBF4的单倍型13与地上部、根和整株的相对干物重显著关联,可分别解释7.44%、2.4%和5.34%的表型变异。标记bPb-4891与HvCBF4基因在大麦遗传图谱上紧密连锁,推测该位点和HvCBF4的单倍型13可能与大麦耐盐性相关。野生大麦种质XZ16和XZ26具有HvCBF4的单倍型13的基因型,具有较强的耐盐能力。
     2.大麦离子组对盐胁迫的响应机制
     以栽培品种CM72(耐盐)、Gairdner(敏感)和两个野生大麦XZ16(耐盐)和XZ169(敏感)为材料,苗期进行150和300mM NaCl处理0、1、2、3和5周,系统分析了它们的生长和离子组对盐胁迫的响应。结果表明,低盐浓度对大麦生长的抑制不显著,而高盐浓度对4个大麦地上部的抑制率为30~53%,XZ16在两种盐胁迫下均有最大的绝对干物重,低浓度和高浓度下分别是CM72干物重的1.7倍和1.4倍。结果佐证了XZ16是生长快的耐盐材料,而Gairdner和XZ169的耐盐性弱。
     根离子组中,盐胁迫下Na含量上升至处理2周后有所降低;P、S、Mg、K、 Mn、Zn和B含量因盐处理而降低,但Mn和Zn在高盐胁迫下降幅较低,Ca、Cu和Fe的含量因盐处理而增加。地上部离子组中,盐处理增加Na含量,降低P、K、Ca、Mg、S、Cu和B含量;Mn和Zn含量在低盐浓度下增加,而在高盐浓度下降低;而Fe含量在低盐下降低,高盐下增加。处理5周后,CM72和XZ16的Na含量和Na/K比显著低于Gairdner和XZ169。以上结果说明维持地上部低Na含量和Na/K比是大麦重要的耐盐机制。此外,大麦通过增加根部Ca、Cu和Fe的含量以及地上部Fe的含量,可增强组织对盐胁迫的耐性。
     3.大麦膜蛋白对盐胁迫的响应机制
     采用双向电泳(2-DE)和基质辅助激光解离飞行时间质谱系统(MALDI-TOF-TOF-MS)技术,分析了200mM NaCl胁迫处理48h和正常条件下XZ16和CM72大麦根和叶片膜蛋白组的差异,结果发现有41个膜蛋白受盐胁迫诱导差异表达。在根部,ATP合成酶(α亚基)、天冬氨酸转氨酶、单脱氢抗坏血还原酶、第Ⅲ类过氧化物酶和病程相关蛋白10受盐胁迫诱导表达上调,而ATP合成酶(β亚基)、二氢硫辛酰胺脱氢酶家族、丝氨酸蛋白酶、半胱氨酸蛋白酶、钙调蛋白类、NADP-苹果酸酶和第Ⅲ类过氧化物酶受盐胁迫表达下调。叶片中,叶绿体ATP合成酶、Bp2A蛋白、Cp31AHv蛋白、Cp31BHv蛋白、谷氨酰胺合成酶、磷酸甘油酸激酶、二磷酸腺苷葡萄糖焦磷酸酶和叶绿体Oxygen-evolving增强蛋白2受盐胁迫表达下调;而NAD依赖型异构酶、DegP蛋白酶和Harpin结合蛋白受盐胁迫诱导表达上调。
     研究结果推测,根部膜蛋白的主要响应机制是保护细胞膜稳定性、清除活性氧自由基(ROS)和参与离子平衡的重建,叶片膜蛋白的主要响应机制是保护光合反应活性。膜蛋白的表达水平基因型之间存在差异,XZ16野生大麦参与渗透调节和离子转运以及保护叶片的光合作用的膜蛋白表达高于栽培大麦CM72,这可能也是前者具有较强耐盐性的分子基础。
     4.大麦代谢物组对盐胁迫的响应机制
     采用气相色谱-质谱(GC-MS)技术,分析了300mM NaCl胁迫处理3周和正常条件下XZ16和CM72大麦根和叶片代谢组差异,鉴定到82种代谢物响应盐胁迫。与对照相比,CM72和XZ16分别有53种和55种代谢物含量显著变化,根代谢组的响应方式是参与TCA循环和糖转运的代谢物积累增加,而参与糖酵解和氨基酸合成的代谢物积累受到抑制。叶片代谢组中,CM72和XZ16分别有55种和54种代谢物含量显著变化,其响应方式是参与糖酵解、Calvin循环和氨基酸合成的代谢物积累明显增加,而参与TCA循环的代谢物积累受到抑制。
     代谢物响应盐胁迫存在组织差异性,根部调节渗透的主要代谢物是脯氨酸、糖类(蔗糖、海藻糖和棉子糖)、甘露醇和纤维醇;而棉子糖和脯氨酸等多种氨基酸是叶片的主要渗透调节物。根部代谢物对盐胁迫的响应机制是积累渗透调节剂含量,增强耐盐性;而叶片代谢物的响应机制除增强组织的渗透调节能力外,还为根部提供足够的糖类和能量,从而调节渗透压和转运Na+。代谢物响应机制存在基因型差异,栽培大麦CM72通过增加代谢物的合成,从而增强渗透调节和离子平衡提供物质和能量;而野生大麦XZ16自身拥有较强的渗透调节能力,维持正常的光合作用和合成代谢,从而保持较高的生长水平。
     综上所述,大麦的耐盐性受一个复杂的分子调控网络控制。本研究从西藏野生大麦中鉴定到耐盐性优于CM72的种质,可为大麦耐盐育种提供遗传材料;并从离子组、膜蛋白组和代谢组上分别解析了野生大麦和栽培大麦对盐胁迫的响应及其差异,丰富了作物耐盐机理,可为进一步发掘耐盐遗传资源和培育耐盐作物品种提供理论参考和实践指导。
Soil salinity is a major abiotic stress of restricting crop productivity worldwide, posing a great threat to agricultural sustainability. A thorough understanding of salt-tolerant mechanisms is necessary for alleviating salt injury to agricultural production by improving cultural practices and developing salt-tolerant varieties. Currently, it is well documented that osmotic regulation, ion homeostasis and anti-oxidation are the three aspects of salt tolerance in plants. However, the genetic and molecular mechanisms of salt tolerance have not been fully elucidated.
     Barley (Hordeum vulgare) is the fourth most important cereal crop in the world, characterized by its wide adaptability and high salinity tolerance. Consequently, it is frequently used as a model crop in the attempts to understand salinity tolerance in the cereal crops. Tibetan annual wild barley (H. vulgare ssp. Spontaneum and ssp. agriocrithum)(hereafter referred to as Tibetan wild barley) is considered as one of the ancestors of cultivated barley, and shows wide genetic variations in the tolerance to harsh environments. It is possible for us to explore the elite germplasm in terms of salt tolerance from the wild barley.
     In the present study, an association analysis was used to identify and explore salt-tolerant germplasm based on the evaluation of salt tolerance among around200Tibetan wild barley accessions, and the mechanisms of salt tolerance between wild and cultivated barleys were systematically resolved by ionomic, membrane proteomic and metabolomic methods. The main results were summarized as follows:
     1. Identification of salt-tolerant germplasm and genetic association analysis within Tibetan wild barleys.
     Hundred and eighty-eight accessions of Tibetan wild barley were exposed to salt stress of300mM NaCl in hydroponics at three-leaf stage for3weeks, to compare the difference among these accessions in salt tolerance as indicated by relative dry weights. Salt stress significantly reduced shoot and root dry weight by27.6%to73.1%and the root weight showed greater reduction than the shoot weight. There was a significant difference among the Tibetan wild barley accessions. Compared with CM72, a salt-tolerant cultivated cultivar, some accessions showed higher shoot, root or whole-plant dry weight under salt stress.
     The linkage disequilibrium (LD) structures of the chromosome5were evaluated using57diversity arrays technology (DArT) markers over this chromosome. The LD decay of genetic distance was8.9cM (R2<0.1) or1.5cM (R2<0.2). The genetic variation of HvCBF1, HvCBF3, HvCBF4and HvHVA1was studied by sequencing the gene coding regions. There were2,15,16and10single nucleotide polymorphisms (SNP) sites, corresponding to3,8,13and6haplotypes for the four genes, respectively, with0.3,2,2.4and1.6SNPs in each100bp of the coding sequence. Furthermore, the certain LD relationship was detected between SNPs.
     Association analysis was conducted between the genetic diversity and the genotypic salt tolerance. It was found that marker bpb-4891was significantly associated with salt tolerance, explaining the2.2%and2.3%of phenotypic variation for the relative shoot and whole-plant dry weight, respectively. The haplotype13of HvCBF4gene exhibited highly significant association with shoot and whole-plant relative dry weight, explaining7.7%and6.4%of the variations, respectively. Based on the distance in the barley genetic map, it may be assumed that the marker bpb-4891was closely linked with the HvCBF4gene. The results suggest that the marker bpb-4891and haplotype13of HvCBF4gene could be related to salinity tolerance. Tibetan wild barley accessions, XZ16and XZ26have haplotype13of HvCBF4genotypes, and could be considered as high salt tolerance.
     2. Mechanisms of ionome responding to salt stress in barley
     In order to reveal mechanisms of ionome responding to salt stress in barley, two cultivated barleys (CM72, salt-tolerant; Gairdner, salt-sensitive) and two wild barleys (XZ16, salt-tolerant; XZ169, salt-sensitive) differing in salt tolerance were used to investigate shoot biomass and ion changes in response to salt stress of150and300mM NaCl in hydroponics at0,1,2,3and5weeks after treatment. After35days treatment, there was no significant difference in shoot weight between salt stress of150mM NaCl and control for4barley genotypes, but under salt stress of300mM NaCl, the reduction of shoot weight could be found, ranging from30%to53%. Among the four genotypes, XZ16maintained the largest shoot biomass under salt stress, and it had1.7and1.4times larger shoots dry weight than CM72, respectively. In conclusion, the results show that XZ16is a fast-growing and salt-tolerant barley.
     In roots, Na content reached the maximum at2weeks after treatments, and then tended to decrease. The contents of P, S, Mg, K, Mn, Zn and B decreased steadily during salt treatment, while Mn and Zn contents decreased greatly under salt stress of300mM NaCl. By contrast, the contents of Ca, Cu and Fe increased under salt stress. In shoots, Na content increased and the contents of P, K, Ca, Mg, S, Cu and B decreased due to salt treatments. The contents of Mn and Zn increased under salt stress of150mM NaCl, and increased under salt stress of300mM NaCl. In contrast, Fe content decreased under salt stress of150mM NaCl, but increased under salt stress of300mM NaCl. These results suggest that maintenance of low Na content and Na/K ratio in shoots is a key important for salt tolerance in both cultivated and wild barleys. In addition, the increased contents of Ca, Cu and Fe in roots and Fe in shoots may enhance tissues tolerance to salt stress.
     3. Mechanisms of membrane proteins responding to salt stress in barley.
     In order to reveal mechanisms of membrane proteins responding to salt stress in barley, wild barley (XZ16) and cultivated barley (CM72) were used to investigate differential expression of membrane proteomes in roots and leaves under normal condition and salt stress of200mM NaCl after48hours, using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-TOF-MS) techniques.
     In roots, salt stress induced6proteins up-expressed, being more than1.5times than those in the control, and these proteins included ATP synthase (subunit a), aspartate aminotransferase, lactoylglutathione lyase, class III peroxidase and pathogenesis related protein No.10. On the other hand,7proteins were down-expressed under salt stress, including ATP synthase (subunit β), dihydrolipoamide dehydrogenase family protein, serine protease, cysteine proteinase, Calmodulin-like protein, NADP-malic enzyme and class Ⅲ peroxidase. In leaves, salt stress induced eight proteins down-expressed, and these proteins included ATP synthase, Bp2A protein, Cp31AHv protein, Cp31BHv protein, glutamine synthetase, germin-like protein phosphoglycerate kinase, and oxygen-evolving enhancer protein No.2. In contrast, NAD-dependent epimerase, DegP protease and harpin binding protein No.1were up-expressed under salt stress.
     Based on the membrane proteome analysis, it can be suggested that the main mechanisms of membrane proteins for salt tolerance in roots were protection of membrane stability, scavenging reactive oxygen species (ROS) and function of ion homeostasis, while the mechanisms of membrane proteins in leaves were protection of photosynthetic reaction activity. Furthermore, there was genotypic difference in expression levels of membrane proteins, with a wild barley, XZ16having higher expression of proteins involved in osmotic regulation, ion transport and protection of photosynthesis than CM72, which could be considered as the molecular basis of high salt tolerance for XZ16.
     4. Mechanisms of metabolome responding to salt stress in barley.
     In order to reveal adaptive metabolic pathways in barley under salt stress, CM72and XZ16were used to investigate metabolome changes in response to salt stress of300mM NaCl after three weeks using gas chromatography-mass spectrometry (GC-MS). A total of82key metabolites were identified and their concentrations were affected by salt stress. Compared with the control, salt stress caused the significant changes in the contents of53and55metabolites for CM72and XZ16, respectively. The response of metabolites in roots was enhanced TCA cycle and sugar accumulations, and inhibited glycolysis and amino acid synthesis. In contrast, Calvin cycle, glycolysis and amino acid synthesis were enhanced, while TCA cycle was inhibited in leaves exposed to salt stress.
     There was an obvious difference in metabolites in response to salt stress between roots and leaves. The results showed that the most important compatible solutes are proline, sugars (sucrose, raffinose and trehalose), mannitol and inositol for roots, and raffinose, proline and some amino acids for leaves. Osmotic adjustment is a basic mechanism for salt tolerance in roots. In leaves, a dramatic enhancement of proline, sugars and amino acid synthesis was found, which is obviously favorable for osmotic adjustment, and may provide sufficient carbohydrates and energy for roots. In addition, metabolites in response to salt stress differ between cultivated and wild barleys. CM72accumulated more metabolites associated with photosynthesis and TCA cycle in leaves, but less amino acids and organic acids, suggesting that the cultivated barley enhances its salt tolerance through increasing photosynthesis and energy consumption. While the contents of fructose-6-P, glucose-6-P and PEP were not affected by salt stress in the leaves of XZ16. Wild barley has higher contents of compatible solutes, more active metabolite synthesis and rapid growth than cultivated barley under salt stress.
     In summary, XZ16, a Tibetan wild barley accession was identified in this study, being higher salt tolerance than CM72, a standard cultivated cultivar. Salt tolerance of barley is involved in a complex molecular network, and to our understanding it is first attempt that we systematically investigated the different mechanisms of salt tolerance between wild barleys and cultivated barleys using ionomic, membrane proteomic and metabolomic methods. The results surely enrich the knowledge of crop salt tolerance and can provide a theoretical reference and practical guidance for exploring genetic resources and breeding crop cultivars with salt stress.
引文
Abebe T, Guenzi AC, Martin B, Cushman JC. (2003) Tolerance of mannitol accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748-1755.
    Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP. (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91-94.
    Aghaei K, Ehsanpour AA, Shah AH, Komatsu S. (2009) Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 36:91-98.
    Alarcon JJ, Sanchez-Blanco MJ, Bolarin MC, Torrecillas A. (1-994) Growth and osmotic adjustment of two tomato cultivars during and after saline stress. Plant Soil 166:75-82.
    Al-Karaki GN. (1997) Barley response to salt stress at varied levels of phosphorus. J Plant Nutrit 20:1635-1643.
    Almansouri M, Kinet JM, Lutts S. (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243-254.
    Alvarez S, Marsh EL, Schroeder SG, Schachtman DP. (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325-340.
    Apel K, Hirt H. (2004) Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373-399.
    Apse MP, Aharon GS, Snedden WA, Blumwald E. (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256-1258.
    Apse MP, Sottosanto JB, Blumwald E. (2003) Vacuolar cation/H+ exchange, ion homeostasis, leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36:229-239.
    Ardlie K, Kruglyak L, Seielstad M. (2002) Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 3:299-309.
    Armengaud P, Sulpice R, Miller AJ, Stitt M, Amtmann A, Gibon Y. (2009) Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol 150:772-785.
    Arshad M, Murtaza G, Ali MA, Shafiq M, Dumat C, Ahmed N. (2011) Wheat growth and phytoavailability of copper and zinc as affected by soil texture in saline-sodic conditions. Pak J Bot43:2433-2439.
    Ashraf M, Akram NA. (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering:An analytical comparison. Biotechnol Adv 27:744-752.
    Atienza SG, Faccioli P, Perrotta G, Dalfino G, Zschiesche W, Humbeck K, Stanca AM, Cattivelli L. (2004) Large scale analysis of transcripts abundance in barley subjected to several single and combined abiotic stress conditions. Plant Sci 167:1359-1365.
    Blumwald E. (2000) Sodium transport and salt tolerance in plants. Curr Opin Plant Biol 12: 431-434.
    Bohnert HJ, Nelson DE, Jensen, RG. (1995) Adaptations to environmental stresses. Plant Cell 7: 1099-1111.
    Bonilla I, El-Hamdaoui A, Bolanos L. (2004) Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant Soil 267:97-107.
    Bor M, Ozdemir F, Turkan I. (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritime L. Plant Sci 164:77-84.
    Botella MA, Martinez V, Pardines J, Cerda A. (1997) Salinity induced potassium deficiency in maize plants. J Plant Physiol 15:200-205.
    Bradbury PJ, Zhang ZW, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinform appl note 23: 2633-2635.
    Breseghello F, Sorrells ME. (2006) Association mapping of kernel size and milling quality in wheat(Triticum aestivum L.) cultivars. Genetics 172:1165-1177.
    Bressan RA, Hasegawa PM. Pardo JM. (1998) Plants use calcium to resolve salt stress. Trends Plant Sci 3:411-412.
    Caldwell KS, Russell J, Langridge P, Powell W. (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172: 557-567.
    Carvajal M, Martinez V, Cerda A. (1999) Influence of magnesium and salinity on tomato plants grown in hydroponic culture. J Plant Nutrit 22:177-190.
    Chen T, Murata N. (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250-257.
    Chen ZH, Newman 1, Zhou MX, Mendham N, Zhang GP, Shabala S. (2005) Screening plants for salt tolerance by measuring K+ flux:a case study for barley. Plant Cell Environ 28:1230-1246
    Chen ZH, Cuin TA, Zhou MX, Twomey A, Naidu BP, Shabala S. (2007a) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245-4255.
    Chen ZH, Pottosin Ⅱ, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou MX, Palmgren MG, Newman IA, Shabala S. (2007b) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714-1725.
    Chen ZH, Zhou MX, Newman IA, Mendham NJ, Zhang GP, Shabala S. (2007c) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150-162.
    Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W. (2009) New changes in the plasmamembrane-associated proteome of rice roots under salt stress. Proteomics 9:3100-3114.
    Cuin TA, Miller AJ, Laurie SA, Leigh RA. (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657-661.
    Cuin TA, Shabala S. (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225:753-761.
    Dai HX, Shan WN, Zhao J, Zhang GP, Li CD, Wu FB. (2011) Difference in response to aluminum stress among Tibetan wild barley genotypes. J Plant Nutr Soil Sci 174:952-960.
    Dani V, Simon WJ, Duranti M, Croy RR. (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737-745.
    Davenport RJ, Reid RJ, Smith FA. (1997) Sodium-calcium interactions in two wheat species differing in salinity tolerance. Physiol Plantarum 99:323-327.
    Davies WJ, Kudoyarova G, Hartung W. (2005) Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant's response to drought. J Plant Growth Regul 24:285-95.
    Degl'Innocenti E, Hafsi C, Guidi L, Navari-Izzo F. (2009) The effect of salinity on photosynthetic activity in potassium-deficient barley species. J Plant Physiol 166:1968-1981.
    Delauney AJ, Verma DPS. (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215-223.
    Demidchik V, Davenport RJ, Tester M. (2002) Nonselective cation channels in plants. Ann Rev Plant Biol 53:67-107.
    Demiral T, Turkan I. (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol 161:1089-1100.
    Demiral T, Tiirkan I. (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53: 247-257.
    Djanaguiraman M, Sheeba JA, Shanker AK, Devi DD, Bangarusamy U. (2006) Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant Soil 284:363-373.
    Du J, Huang YP, Xi J, Cao MJ, Ni WS, Chen X, Zhu JK, Oliver DJ, Xiang CB. (2008) Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J 56:653-664.
    Dubey RS, Singh, AK. (1999) Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biol Plantarum 42:233-239
    Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. (2003) OsDREB genes in rice, Oryza sativa L. encode transcription activators that function in drought-, high salt-and cold-responsive gene expression. Plant J 33: 751-763.
    Ellis R, Foster B, Handley L, Gordon D, Russell J, Powell W. (2000) Wild barley:a source of genes for crop improvement in the 21st century? J Exp Bot 51:9-17.
    Ersoz ES, Yu J, Buckler ES. (2007) Applications of linkage disequilibrium and association mapping in crop plants. In Varshney R, Tuberosa R (ed.) Genomic assisted crop improvement: Vol. I:Genomics approaches and platforms. Springer Verlag, Germany, pp:97-120.
    FAO. (2009) FAO land and plant nutrition management service. http://www.fao.org/ag/ag1/ag11/spush
    Feng ZY, Liu XJ, Zhang YZ, Ling HQ. (2006) Genetic diversity analysis of Tibetan wild barley using SSR markers. J Genet Genomics 33:917-928.
    Fiehn O. (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol.48: 155-171.
    Flint-Garcia, Thornsberry JM, Buckler ES. (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357-374.
    Flowers TJ, Colmer TD. (2008) Salinity tolerance in halophytes. New Phytol 179:945-963.
    Fougere F, Le Rudulier D, Streeter JG. (1991) Effects of salt stress on amino acid, organic acid, carbohydrate composition of roots, bacteroids, cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96:1228-1236.
    Fricano A, Rizza F, Faccioli P, Pagani D, Pavan P, Stella A, Rossini L, Piffanelli P, Cartivelli L. (2009) Genetic variants of HvCbfl4 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theor Appl Genet 119:1335-1348.
    Fricke W, Akhiyarova G, Veselov D, Kudoyarova G. (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55:1115-1123.
    Fricke W, Akhiyarova G, Wei W, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, Kudoyarova G, Volkov V. (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57:1079-1095.
    Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y. (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146-159.
    Gao M, Tao R, Miura K, Dandekar AM, Sugiura A. (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci 160:837-845.
    Garciadeblas B, Senn ME, Banuelos MA, Rodriguez-Navarro A. (2003) Sodium transport and HKT transporters:The rice model. Plant J 34:788-801.
    Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ. (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898-15903.
    Garris AJ, McCouch SR, Kresovich S. (2003) Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice(Oryza sativa L.). Genetics 165:759-769.
    Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433-442.
    Gong Q, Li P, Ma S, Rupassara S, Bohnert, HJ. (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826-839.
    Gong, ZZ, Koiwa H, Cushman MA, Ray A, Bufford D, Kore-eda S, Matsumoto TK, Zhu, JH, Cushman JC, Bressan RA, Hasegawa PM. (2001) Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol 126:363-375.
    Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. (2004) Metabolomics by numbers:acquiring and understanding global metabolite data. Trends Biotechnol 22:245-252.
    Gossett DR, Millhollon EP, Lucas MC. (1994) Antioxidant responses to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706-714.
    Guidi L, Degl'Innocenti E, Carmassi G, Massa D, Pardossi A. (2011) Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water. Environ Exp Bot 73: 57-63.
    Gzik A. (1996) Accumulation of proline and pattern of a-aminoacids in sugar beet plants in response to osmotic, water and salt stress. Environ Exp Bot 36:29-38.
    Hack B. (2000) Analytical method of determination of mineral nutrients. In:Dolphin CT, John S (eds). Text on analytical in practice,1st edn. New York, Incorp Press, USA. pp:26-33.
    Halperin SJ, Kochian LV, Lynch JP. (1997) Salinity stress inhibits calcium loading into the xylem of excised barley (Hordeum vulgare) roots. New Phytol 135:419-427.
    Hamblin MT, Close TJ, Bhat PR, Chao SM, Kling JG, Abraham K J, Blake T, Brooks WS, Cooper B, Griffey CA, Hayes PM, Hole DJ, Horsley RD, Obert DE, Smith KP, Ullrich SE, Muehlbauer GJ, Jannink JL. (2010) Population structure and linkage disequilibrium in US barley germplasm: implications for association mapping. Crop Sci 50:556-566.
    Hare PD, Cress WA, Staden JV. (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535-553.
    Haro R, Banuelos MA, Senn ME, Barrero-Gil J, Rodriguez-Navarro A. (2005) HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol 139: 1495-1506.
    Hernandez JA, Jimenez A, Mullineaux P, Sevilla F. (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23: 853-862.
    Hernandez JA, Olmos E, Corpas FJ, Sevilla F, del Rio LA. (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151-167.
    Hong Z, Lakkineni K, Zhang Z, Verma DPS. (2000) Removal of feedback inhibition of pyrroline-5-carboxylase synthetase (P5CS) results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129-1136.
    Hu Y, Fromm J, Schmidhalter U. (2005) Effect of salinity on tissue architecture in expanding wheat leaves. Planta 220:838-48.
    Huang JC, Ge XJ, Sun M. (2000) Modified CTAB protocol using a silica matrix for isolation of plant genomic DNA. Biotechniques 28:432-434.
    Itzhaki H, Naveh L, Lindahl M, Cook M, Adam Z. (1998) Identification and characterization of DegP, a serine protease associated with the luminal side of the thylakoid membrane. J Biol Chem 273:7094-7098.
    Jabnoune M, Espeout S, Mieulet D, Fizames C, Jean-Luc Verdeil HV, Conejero G, Rodriguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Alienor Very A.(2009) Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol 150:1955-1971.
    Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL. (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159-4168.
    Katsuhara M, Otsuka T, Ezaki B. (2005) Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci 169:369-373.
    Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ. (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13: 889-905.
    Khan MA, Gul B, Weber DJ. (2001) Germination of dimorphic seeds of Suaeda moquinii under high salinity stress. Aus J Bot 49:185-192.
    Khan MA, Ungar IA, Showalter AM. (1999) Effects of salinity on growth, ion content, and osmotic relations in Halopyrum mucronatum (L.) Stapf. J Plant Nutri 22:191-204.
    Khan MA, Ungar IA, Showalter AM. (2000) Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Communicat Soil Sci Plant Anal 31: 2763-2774.
    Khoshgoftarmanesh AH, Shariatmadari H, Karimian N, Kalbasi M, Khajehpour MR. (2005) Zinc efficiency of wheat cultivars grown on a saline calcareous soil. J Plant Nutrit 27:1953-1962.
    Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A. (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot 58:415-424.
    Kim HK, Verpoorte R. (2010) Sample preparation for plant metabolomics. Phytochem Anal 21: 4-13.
    Koca H, Ozdemir F, Turkan I. (2006) Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol Plant 50: 745-748.
    Koca H, Bor M, Ozdemir F, Turkan I. (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344-351.
    Korithoski B, Levesque CM, Cvitkovitch DG. (2007) Involvement of the detoxifying enzyme lactoylglutathione lyase in streptococcus mutans aciduricity. J Bacteriol 189:7586-7592.
    Kovtun Y, Chiu WL, Tena G, Sheen J. (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940-2945.
    Kronzucker HJ, Britto DT. (2011) Sodium transport in plants:a critical review. New Phytol 189: 54-81.
    Kumar S, Jaggi M, Taneja J, Sinha AK. (2011) Cloning and characterization of two new Class Ⅲ peroxidase genes from Catharanthus roseus. Plant Physiol Biochemist 49:404-412.
    Kusano M, Fukushima A, Redestig H, Saito K. (2011) Metabolomic approaches toward understanding nitrogen metabolism in plants. J Exp Bot 62:1439-1453.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, William HM, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. (2007) Clustal W and Clustal X version 2.0. Bioinform appl note 23:2947-2948.
    Lauchli A. (1984) Salt exclusion:an adaptation of legumes for crops and pastures under saline conditions. In salinity tolerance in plants:strategies for crop improvement, ed. RC Staples. Wiley, New York, pp:171-187.
    Li W, Zhang CY, Lu QT, Wen XG, Lu CM. (2011) The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol 168:1743-1752.
    Li XJ, Yang MF, Chen H, Qu LQ, Chen F, Shen SH. (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings:Proteomic evidence. Biochim Biophys Acta 1804:929-940.
    Librado P, Rozas J. (2009) DnaSP v5:a software for comprehensive analysis of DNA polymorphism data. Bioinform Appl Note 25:1451-1452.
    Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387-396.
    Liska AJ, Shevchenko A, Pick U, Katz A. (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136:2806-2817.
    Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK. (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97: 3730-3734.
    Liu JJ, Ekramoddoullah AK. (2006) The family 10 of plant pathogenesis-related proteins:Their structure, regulation, function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3-13.
    Liu JP, Zhu JK. (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant physiol 114:591-596.
    Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi SK, Shinozaki K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression respectively in Arabidopsis. Plant Cell 10:1391-1406.
    Liu ZW, Biyashev RM, Maroof MA. (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93:869-876.
    Lopez-Berenguer C, Carvajal M, Garcea-Viguera C, Alcaraz CF. (2007) Nitrogen, phosphorus, sulfur nutrition in broccoli plants grown under salinity. J Plant Nutrit 30:1855-1870.
    Loupassaki MH, Chartzoulakis KS, Digalaki NB, Androulakis Ⅱ. (2002) Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, sodium in leaves, shoots, roots of six olive cultivars. J Plant Nutrit 25:2457-2482.
    Luedemann A, Strassburg K, Erban A, Kopka J. (2008) TagFinder for the quantitative analysis of gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinform Appl Note 24:732-737.
    Lynch J, Lauchli A. (1985) Salt stress disturbs the calcium nutrition of barley(Hordeum vulgare L.). New Phytol 99:345-354.
    Maathuis FJ, Amtmann A. (1999) K+ nutrition and Na+ toxicity:The basis of cellular K+/Na+ ratios. Ann Bot 84:123-133.
    Maathuis FJ, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen S, Green BJ, Li Y, Madagan KL, Sanchez-Fernandez R, Forde BG, Palmgren MG, Rea PA, Williams LE, Sanders D, Amtmann A. (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35:675-692.
    Mackay I, Powell W. (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57-63.
    Mahajan S, Pandey GK, Tuteja N. (2008) Calcium-and salt-stress signaling in plants:shedding light on SOS pathway. Arch Biochem Biophys 471:146-158.
    Mano Y, Takeda K. (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley(Hordeum vulgare L.). Euphytica 94:263-272.
    Martinez V, Lachli R. (1991) Phosphorus translocation in salt-stressed cotton. Physiol Plantarum 83:627-632.
    Martinez V, Bernstein N, Lauchli A. (1996) Salt-induced inhibition of phosphorus transport in lettuce plants. Physiol Plantarum 97:118-122.
    McCarty RE, Evron Y, Johnson EA. (2000) The chloroplast ATP synthase:a rotary enzyme? Annu Rev Plant Physiol Plant Mol Biol 51:83-109.
    McKhann HI, Gery C, Berard A, Leveque S, Zuther E, Hincha DK, Mita SD, Brunel D, Teoule E. (2008) Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biol doi:10.1186/1471-2229-8-105.
    Meloni A, Oliva MA, Martinez CA, Cambraia J. (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49: 69-76.
    Meneguzzo S, Navari-Izzo F, Izzo R. (1999) Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. J Plant Physiol 155:274-280.
    Mian A, Oomen R, Isayenkov S, Sentenac H, Maathuis F, Very AA (2011) Over-expression of an Na+-and K+- permeable HKT transporter in barley improves salt tolerance. Plant J 68: 468-479.
    Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453-467.
    Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490-498.
    Mittova V, Tal M, Volokita M, Guy M. (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in responses to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845-856.
    Mohammad M, Shibli R, Ajlouni M, Nimri L. (1998) Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition. J Plant Nutrit 21:1667-1680.
    M(?)ller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M. (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163-2178.
    Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S. (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotech J 9:230-249.
    Morrell PL, Toleno DM, Lundy KE, Clegg MT. (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self fertilization. Proc Natl Acad Sci USA 102:2442-2447.
    Mueller JC. (2004) Linkage disequilibrium for different scales and applications. Brief Bioinform 5: 355-364.
    Mullan DJ, Colmer TD, Francki MG. (2007) Arabidopsis-rice-wheat gene orthologues for Na+ transport and transcript analysis in wheat-L. elongatum aneuploids under salt stress. Mol Genet Genomics 277:199-212.
    Munns R. (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25: 239-250.
    Munns R, Husain S, Rivelli AR, James RA, Condon AG, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA. (2002) Avenues for increasing salt tolerance of crops, the role of physiologically based selection traits. Plant Soil 247:93-105.
    Munns R, James RA. (2003) Screening methods for salinity tolerance:a case study with tetraploid wheat. Plant Soil 253:201-218.
    Munns R. (2005) Genes and salt tolerance:bringing them together. New Phytol 167:645-663.
    Munns R, James RA, Lauchli A. (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025-1043.
    Munns R, Tester M. (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651-681.
    Munns R. (2010) Approaches to identifying genes for salinity tolerance and the importance of timescale. In R. Sunkar (ed.) plant stress tolerance. Methods Mol Biol 639:25-39.
    Navarro JM, Botella MA, Cerda A, Martinez V. (2001) Phosphorus uptake and translocation in salt-stressed melon plants. J Plant Biol 158:375-381.
    Nazar R, Iqbal N. Masood A, Syeed S, Khan NA. (2011) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70:80-87.
    Nevo E. (1997) Evolution in action across phylogeny caused by microclimatic stresses at "evolution canyon". Theor Popul Biol 52:231-243.
    Nevo E, Chen GX. (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Envir 33:670-685.
    Nicholson JK, Lindon JC, Holmes E. (1999) 'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181-1189.
    Niu X, Bressan RA, Hasegawa PM, Pardo JM. (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735-742.
    Nordborg M, Tavare S. (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18:83-90.
    Oh SJ, Kwon CW, Cho DW, Song SI, Kim JK. (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotech J 5:646-656.
    Oliver MJ, Guo LN, Alexander DC, Ryals JA, Wone BW, Cushmand JC. (2011) A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell 23:1231-1248.
    (?)stergaard O, Finnie C, Laugesen S, Roepstorff P, Svennson B. (2004) Proteome analysis of barley seeds:Identification of major proteins from two-dimensional gels (pI 4-7). Proteomics 4: 2437-2447.
    Pakniyat H, Powell W, Baird E, Handley LL, Robinson D, Scrimgeour CM, Nevo E, Hackett CA, Caligari PD, Forster BP. (1997) AFLP variation in wild barley(Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40:332-341.
    Pandey A, Mann M. (2000) Proteomics to study genes and genomes. Nature 405:837-846.
    Pandya DH, Mer RK, Prajith PK, Pandey AN. (2005) Effect of salt stress and manganese supply on growth of barley seedlings. J Plant Nutrit 27:1361-1379.
    Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X. (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584-2599.
    Perez-Lopez U, Robredo A, Lacuesta M, Sgherri C, Munoz-Rueda A, Navari-Izzo F, Mena-Petite A. (2009) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol Plantarum 135:29-42.
    Pharr DM, Stoop JM, Williamson JD, Feusi ME, Massel MO, Conkling MA. (1995) The dual role of mannitol as osmoprotectant and photoassimilate in celery. Hortsci 30:1182-1188.
    Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ. (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372-374.
    Qian G, Han ZX, Zhao T, Deng GB, Pan ZF, and Yu MQ. (2007) Genotypic variability in sequence and expression of HVA1 gene in Tibetan hulless barley, Hordeum vulgare ssp. vulgare, associated with resistance to water deficit. Aus J Agri Res 58:425-431.
    Qiu L, Wu DZ, Ali S, Cai SG, Dai F, Jin XL, Wu FB, Zhang GP. (2011) Evaluation of salinity tolerance and analysis of allelic function of HvHKTl and HvHKT2 in Tibetan wild barley. Theor Appl Genet 122:695-703.
    Rahnama A, Munns R, Poustini K, Watt M. (2011) A screening method to identify genetic variation in root growth response to a salinity gradient. J Exp Bot 62:69-77.
    Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37: 1141-1146.
    Renberg L, Johansson AI, Shutova T, Stenlund H, Aksmann A, Raven JA, Gardestrom P, Moritz T, Samuelsson G. (2010) A metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiol 154:187-196.
    Rengasamy P. (2002) Transient salinity and subsoil constraints to dry land farming in Australian sodic soils. Aus J Exp Agri 42:351-361.
    Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R. (2004) When defense pathways collide. the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683-1696.
    Rodriguez-Navarro A. (2000). Potassium transport in fungi and plants. BBA-Rev Biomembranes 1469:1-30
    Roessner U, Patterson JH, Forbes MG, Fincher GB, Langridge P, Bacic A. (2006) An investigation of boron toxicity in barley using metabolomics. Plant Physiol 142:1087-1101.
    Roy SJ, Tucker EJ, Tester M. (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232-239.
    Rus A, Lee BH, Munnoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM. (2004) AtHKT1 facilitates Na+ homeostasis and K- nutrition in planta. Plant Physiol 136: 2500-2511.
    Sakamoto A, Murata N. (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011-1019.
    Salt DE. (2004) Update on ionomics. Plant Physiol 136:2451-2456.
    Salt DE, Baxter I, Lahner B. (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Bio 59:709-33.
    Sanchez DH, Siahpoosha MR, Roessnerb U, Udvardic M, Kopka J. (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plantarum 132: 209-219.
    Sanchez DH, Pieckenstain FL, Escaray F, Erban A, Kraemer U, Udvardi MK, Kopka J. (2011) Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ 34:605-617.
    Sattia SM, Al-Yahyaia RA. (1995) Salinity tolerance in tomato:implications of potassium, calcium, phosphorus. Communicat Soil Sci Plant Anal 26:2749-2760.
    Sekmen AH, Turkan I, Takio S. (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritime and salt-sensitive Plantago media. Physiol Plantarum 131:399-411.
    Sengupta S, Majumder AL. (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata:a physiological and proteomic approach. Planta 229:911-929.
    Serrano R. (1996) Salt tolerance in plants and microorganisms:Toxicity targets and defense responses. Int Rev Cytol 165:1-52.
    Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Profit M, Ros R, Montesinos C. (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023-1036.
    Shabala S, Shabala L, Van Volkenburgh E, Newman I. (2005) Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. J Exp Bot 56:1369-1378.
    Shabala S, Cuin TA. (2007) Potassium transport and plant salt tolerance. Physiol Plantarum 133: 651-669.
    Shabala S, Cuin TA, Pang JY, Percey W, Chen ZH, Conn S, Eing C, Wegner LH. (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839-853.
    Shakhatreh Y, Haddad N, Alrababah M, Grando S, Ceccarelli S.(2010) Phenotypic diversity in wild barley (Hordeum vulgare L. ssp. spontaneum (C. Koch) Thell.) accessions collected in Jordan. Genet Resour Crop Ev 57:131-146.
    Shalata A, Mittova V, Volokita M, Guy M, Tal M. (2001) Response of the cultivated tomato and itswild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:the root antioxidative system. Physiol Plant 112:487-494.
    Sheveleva E, Chmara W, Bohnert HJ, Jensen RG. (1997) Increased salt and drought tolerance by dononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211-1219.
    Shi HZ, Quintero FJ, Pardo JM, Zhu JK. (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465-477.
    Shi HZ, Zhu JK. (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHXl by salt stress and abscisic acid. Plant Mol Biol 50:543-550.
    Shi HZ, Lee BH, Wu SJ, Zhu JK. (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81-85.
    Shulaev V, Cortes D, Miller G, Mittler R. (2008) Metabolomics for plant stress response. Physiol Plantarum 132:199-208.
    Silberbush M, Ben-Asher J. (2001) Simulation study of nutrient uptake by plants from soilless cultures as affected by salinity buildup and transpiration. Plant Soil 233:59-69.
    Skinner JS, Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen HH, Hayes PM. (2005) Structural, functional, phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533-551.
    Skinner JS, Szucs P, Von-Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM. (2006) Mapping of barley homologs to genes that regulate low-temperature tolerance in Arabidopsis. Theor Appl Genet 112:832-842.
    Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S.(2010) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J Proteome Res 9:2882-2897.
    Sreenivasula N, Grimn B, Wobus U, Weschke W. (2000) Differential response of antioxidant compounds to salinity stress in salt tolerant and salt sensitive seedlings of foxtail millet(Setaria italica). Physiol Plantarum 109:435-442.
    Stockinger EJ, Gilmour SJ, Thomashow MF. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035-1040.
    Stoop JM, Williamson JD, Pharr DM. (1996) Mannitol metabolism in plants:A method for coping with stress. Trends Plant Sci 1:139-144.
    Storey R, Walker RR. (1999) Citrus and salinity. Sci Hortic 78:39-81.
    Tajbakhsh M, Zhou MX, Chen ZH, Mendham NJ. (2006) Physiological and cytological response of salt-tolerant and non-tolerant barley to salinity during germination and early growth. Aus J Exp Agri 46:555-562
    Tanou G, Molassiotis A, Diamantidis G. (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65:270-281.
    Tarczynski MC, Jensen RG, Bohnert HJ. (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508-510.
    Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK. (2011) Additive effects of Na+ and Cl- ions on barley growth under salinity stress. J Exp Bot 62:2189-2203.
    Tavakkoli E, Rengasamy P, McDonald GK. (2010) The response of barley to salinity stress differs between hydroponic and soil systems. Funct Plant Biol 37:621-633.
    Teakle NL, Tyerman SD. (2010) Mechanisms of Cl- transport contributing to salt tolerance. Plant Cell Environ 33:566-589.
    Teater M. (1990) Plant ion channels:whole-cell and single channel studies. New Phytol 114:305-340.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. (1997) The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876-4882.
    Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES. (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286-289.
    Turkana I, Demiral T. (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2-9.
    Tuteja N. (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428: 419-438.
    Ueda A, Kathiresan A, Inada M, Narita Y, Nakamura T, Shi WM, Takabe T, Bennett J. (2004) Osmotic stress in barley regulates expression of a different set of genes than salt stress does. J Exp Bot 55:2213-2218.
    Urano K, Kurihara Y, Seki M, Shinozaki K. (2010)'Omics'analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132-138.
    Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G. (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411-1418.
    Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ. (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30:410-421.
    Wang A, Yu ZY, Ding Y. (2009) Genetic diversity analysis of wild close relatives of barley from Tibet and the Middle East by ISSR and SSR markers. C R Biologies 332:393-403.
    Wang XC, Fan PX, Song HM, Chen XY, Li XF, Li YX. (2009) Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J Proteome Res 8:3331-3345.
    Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101: 9915-9920.
    White SH, Wimley WC. (1999) Membrane protein folding and stability:physical principles. Annu Rev Biophys Biomol Struct 28:319-65.
    Widodo, Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U. (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089-4103.
    Wu DZ, Qiu L, Xu LL, Ye LZ, Chen MX, Sun DF, Chen ZH, Zhang HT, Jin XL, Dai F, Zhang GP. (2011). Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS ONE 6:e22938.
    Wyn Jones RG, Gorham J.2002. Intra-and inter-cellular compartmentation of ions. In:Lauchli A, Luttge U (eds). Salinity:environment-plants-molecules. Dordrecht, Kluwer, Netherlands, pp: 159-180.
    Xia JG, Wishart DS. (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6:743-760.
    Xiao HG, Tattersall E, Siddiqua MK, Cramer GR, Nassuth A. (2008) CBF4 is a unique member of the CBF transcription factor family of Vais vinifera and Vitis riparia. Plant Cell Envir 31:1-10.
    Xu D, Duan X, Wang B, Hong B, Ho TH, Wu R. (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249-257.
    Xue DW, Huang YZ, Zhang XQ, Wei K, Westcott S, Li CD, Chen MC, Zhang GP, Lance R. (2009) Identifcation of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 169:187-196.
    Xue GP. (2002) An AP2 domain transcription factor HvCBFl activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif. Biochim Biophys Acta 1577:63-72.
    Yamaguchi T, Blumwald E. (2005) Developing salt-tolerant crop plants:challenges and opportunities. Trends Plant Sci 10:615-620.
    Yan J, Chen G, Cheng JP, Nevo E, Gutterman Y. (2008) Phenotypic variation in caryopsis dormancy and seedling salt tolerance in wild barley, Hordeum spontaneum, from different habitats in Israel. Genet Resour Crop Evol 55:995-1005.
    Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM. (2002) Differentia] expression and function of Arabidopsis thaliana NHX-Na+/H+ antiporters in the salt stress response. Plant J 30:529-539.
    Yousfi S, Wissal M, Mahmoudi H, Abdelly C, Gharsalli M. (2007) Effect of salt on physiological responses of barley to iron deficiency. Plant Physiol Biochemist 45:309-314.
    Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES. (2006) An unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203-208.
    Zhang H, Han B, Wang T, Chen SX, Li HY, Zhang YH, Dai SJ. (2012) Mechanisms of plant salt response:insights from proteomics. J Proteome Res 11:49-67.
    Zhang J, Zhang Y, Du Y, Chen S, Tang H. (2011) Dynamic metabonomic responses of tobacco {Nicotiana tabacum) plants to salt stress. J Proteome Res 10:1904-1914.
    Zhang JF, Jiang JM, Shan QH, Chen GC, Wang Y, Shen LM, Pan CX, Wu H, Abarquez A. (2010) Soil salinization and ecological remediation by planting trees in China. In international conference on mechanic automation and control engineering (MACE).pp:1349-1352.
    Zhang JS, Gu J, Liu FH, Chen SY. (1995) A gene encoding a truncated large subunit of Rubisco is transcribed and salt inducible in rice. Theor Appl Genet 91:361-366.
    Zhang QF, Saghai MA, Yang GP. (1992) Ribosomal DNA polymorphisms and the Oriental-Occidental genetic differentiation in cultivated barley. Theor Appl Genet 84:682-687.
    Zhang QF, Yang GP, Dai XK, Su JZ. (1994) A comparative analysis of genetic polymorphism in wild and cultivated barley from Tibet using isozyme and ribosomal DNA markers. Genome 37: 631-638.
    Zhao J, Sun HY, Dai HX, Zhang GP, Wu FB. (2010) Difference in response to drought stress among Tibet wild barley genotypes. Euphytica 172:395-403.
    Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X. (2009) Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet 118:1381-1390.
    Zhu JK. (2001) Plant salt tolerance. Trends Plant Sci 6:66-71.
    Zhu JK. (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: 247-273.
    Zhu JK. (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441-445.
    Zorb C, Herbst R, Forreiter C, Schubert S. (2009) Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 9:4209-4220.
    Zorb C, Schmitt S, Muhling KH. (2010) Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 10:4441-4449.
    Zribi TO, Abdelly C, Debez A. (2011) Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley(Hordeum vulgare L.).Plant Biol 13:872-880.
    邱龙.(2011)青藏高原一年生野生大麦耐盐性评价及优异等位基因的挖掘[博士学位论文].杭州:浙江大学研究生院.
    阮松林,马华升.(2009)植物蛋白组学.北京:中国农业出版社.
    漆小泉.(2011)植物代谢组学:方法与应用.北京:化学工业出版社.
    徐廷文.(1982)中国栽培大麦的起源与进化.遗传学报9:440-446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700