蛋白磷酸酶2A催化亚基PP-2Aca过表达的蛋白质组学及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白磷酸酯酶2A(Protein phosphatase 2A,PP2A)是一种真核生物中最保守的丝氨酸/苏氨酸磷酸酯酶,也是真核生物中含量最丰富的酶之一。它能够对激酶、信号分子等大量细胞内蛋白质进行去磷酸化,并且参与了与细胞分裂、细胞凋亡、基因调控、蛋白质合成及细胞骨架组织相关的一系列重要生物学进程。典型的PP2A全酶以异三聚体形式存在,由催化亚基C、结构亚基A以及调节亚基B组成。
     有关B亚基对细胞转化的研究有较多的报道,最近实验也证明A亚基与肿瘤的生成有直接的关系,为PP2A作为肿瘤抑制因子提供了确凿的证据。但是关于C亚基与癌症发生之间关系的报道则很少。
     为了研究PP-2A催化亚基在癌症中的可能作用,我们研究小组在前期的工作中建立了PP-2A催化亚基C过表达的两种癌细胞的稳定克隆,即小鼠上皮细胞JB6(pCI-PP2Aca-JB6)和人的肺癌细胞H1299(pCI-PP2Aca-H1299)。利用这两种稳定的细胞系以及转染了载体的稳定细胞系(pCI-Neo-JB6;pCI-Neo-H1299),我们通过蛋白质组学技术、基因芯片技术及其它分子生物学技术对过表达外源性PP-2Aca可能对细胞产生的影响进行了研究。
     本论文通过基于胶的双向电泳/质谱偶联蛋白质组学研究技术及基于稳定同位素标记与质谱偶联蛋白质组学定量技术对pCI-PP2Aca-JB6细胞和pCI-neo-JB6细胞在蛋白质组水平的差异表达进行了分析。另外本课题组其他研究人员采用基因芯片技术获得pCI-PP2Aca-JB6细胞在mRNA水平的差异表达数据。这些数据显示虽然下游基因在蛋白水平及mRNA水平的表达存在一些不一致的地方,但是我们发现无论是通过基因芯片所得到的pCI-PP2Aca-JB6细胞与pCI-neo-JB6细胞在mRNA水平的差异表达数据还是通过蛋白质组技术得到的蛋白质水平的差异表达数据都表明pCI-PP2Aca过表达引起了下游基因表达的显著变化。我们发现,与对照相比,pCI-PP2Aca-JB6细胞中包括氧化应激、蛋白质代谢及转运、碳水化合物及能量代谢、蛋白质折叠、转录调控、信号转导、细胞骨架等多条信号通路的发生了变化。结果显示,过氧化氢酶、过氧化物酶、醛脱氢酶、视黄醛脱氢酶、硫氧还蛋白、硫氧还蛋白2、硫氧还蛋白4、硫氧还蛋白6及谷胱甘肽S-转移酶等这些在细胞中清除细胞产生的活性氧、活性氮以及一些醛类活性中间产物等有害物质的酶类和蛋白明显出现了下调,从而通过一些未知机制增强了细胞的转化。相应地,与蛋白质折叠相关的一些蛋白如splicing isoform 1 of smallglutamine-rich tetratricopeptide repeat-containing protein A,calreticulinprecursor,protein disulfide-isomerase precursor和tetratricopeptiderepeat protein表达上调,这表明分子伴侣的活性增强是pCI-PP2Aca-JB6细胞转化所必须的。而Prohibitin(phb)和annexin Al这些种肿瘤抑制因子的表达下调也支持PP2Aca的肿瘤生成功能。总之,这些结果提示我们pCI-PP2Aca-JB6细胞显示出一些转化的癌细胞的特征。
     本实验通过过表达PP-2Aca及用OA抑制PP2A的活性的实验证明,PP-2A通过直接对P-p53-ser-15的磷酸化状态的调控来调节p53的活性。另外,我们的实验显示,通过负调控直接控制Cathepsin基因Ctsb的启动子p53,PP-2A正调控Cathepsin B的表达水平从而促进了细胞的转化。这个结论在H1299细胞中也得到证实。
     综上所述,我们的实验结果显示,PP-2Aca的稳定过表达引起了JB6细胞蛋白质表达方式的显著变化,从而促进了细胞转化。同时结果也显示PP-2A可能是通过调节p53-cathepsin B信号通路促进了细胞的转化。
Protein phosphatase 2A(PP-2A) is one of the most abundant and conserved serine/threonine phosphatase hin eukaryotes.It dephosphorylates a panel of cellular proteins such as kinases and other signal molecules,and participates in many cellular processes including cell division,cell apoptosis,gene regulation,protein synthesis, cytoskeleton organization and so on.The PP-2A holoenzyme exists as a heterotrimer,consisting of a catalytic C subunit,a structural A subunit and a regulatory B subunit.
     Previous studies have shown that the regulatory B subunit of PP-2A plays a crucial role in cell transformation.In addition,recent studies have also demonstrated that the structural A subunit of PP-2A is also implicated in carcinogenesis.Whether the catalytic C subunits of this phosphatase play a role in cancer remains to be explored.
     To explore the possible function of the catalytic subunit of PP-2A in cancer,our group has previously established the stable clones overexpressing the catalytic C subunit of PP-2A in both mouse skin cancer,JB6 cells(pCI-PP2Aca-JB6) and human lung cancer,H1299 cells (pCI-PP2Aca-H1299).Using these stable cell lines and also vector-transfected control cell lines(pCI-Neo-JB6;pCI-Neo-H1299),we have investigated the possible effects of the overexpressed exogenous PP-2Aca in these cells using proteomics,cDNA microarray and other molecular biology techniques.
     The differential expression patterns of total proteins between pCI-Neo-JB6 and pCI-PP2Aca-JB6 were analyzed using proteomics which was based on 2-D gel separation coupled with mass spectrum analysis or the samples labeled by ~(18)O coupled with mass spectrum analysis.At the same time,the differential transcription of the downstream genes affected by PP2Aca overexpression was also examined through cDNA microarray analysis by our collaborators. Although the differential expression patterns of the downstream genes display some inconsistency between the mRNA and protein levels,it is easy to detect the changes in the expression patterns of the downstream genes between vector and PP2Aac-transfected JB6 cells.Our results demonstrate that the proteins involved in oxidative stress,protein metablism,membrane transport,carbohydrate and energy metabolism, protein folding,transcriptional regulation,cell signaling and cytoskeleton dynamics and some other minor aspects are differentially expressed. The anti-oxidative stress system components including catalase,aldehyde dehydrogenase,retinal dehydrogenase-1,glutathione S-transferase Mu1 and Mu2,thioredoxin 2,4 & 6 are all downregulated in pCI-PP2Aca-JB6 cells compared with the control cells(pCI-Neo-JB6).The downregulation of the above proteins and enzymes likely leads to an attenuated defense against toxic active substance such as active O,N,and aldehyde but enhanced cell transformation through some unknown mechanism.In contrast,factors involved in protein folding such as splicing isoform 1 of small glutamine-rich tetratricopeptide repeat-containing protein A,calreticulin precursor,protein disulfide-isomerase precursor and tetratricopeptide repeat protein are upregulated,which explain the enhanced chaperone activities necessary for cell transformation in pCI-PP2Aca-JB6 cells.The downregulation of the tumor suppression factors including both prohibitin and annexin Al in pCI-PP2Aca-JB6 cells also supports the tumorigenesity function of PP-2Aac.Together,these results suggest that the pCI-PP2Aca-JB6 cells display some characteristics of transformed cancer cells.
     Through the manipulations of the intracellular levels of PP-2Aac by okadaic acid treatment and overexpression of the exogenous PP-2Aac,we have demonstrated that PP-2A directly regulates p53 activity through its dephosphorylation at Ser-15.Furthermore,we demonstrate that through negative regulation of p53,which directly controls the expression of the Cathepsin gene promoter,Ctsb,PP-2A positively regulates Cathepsin B level to promote cell transformation.This conclusion is also confirmed in lung cancer cell,1299 line.
     In summary,our results reveal that stable overexpression of PP-2Aca causes significant changes in the protein expression patterns of the JB6 cells,which favor the promotion of cell transformation.Our results also suggest that PP-2A may promote cell transformation via regulation of the n53-cathensin B nathway.
引文
1.Hunter,T.,Signaling-2000 and beyond.Cell,2000.100(1):p.113-27.
    2.Hunter,T.,Protein kinases and phosphatases:the yin and yang of protein phosphorylation and signaling.Cell,1995.80(2):p.225-36.
    3.Cohen,P.,The origins of protein phosphorylation.Nat Cell Biol,2002.4(5):p.E127-30.
    4.Shi,Y.,Assembly and structure of protein phosphatase 2A.Sci China C Life Sci,2009.52(2):p.135-46.
    5.Janssens,V.,J.Goris,and C.Van Hoof,PP2A:the expected tumor suppressor Curr Opin Genet Dev,2005.15(1):p.34-41.
    6.Arroyo,J.D.and W.C.Hahn,Involvement of PP2A in viral and cellular transformation.Oncogene,2005.24(52):p.7746-55.
    7.Schonthal,A.H.,Role of serine/threonine protein phosphatase 2A in cancer Cancer Lett,2001.170(1):p.1-13.
    8.Mumby,M.,PP2A:unveiling a reluctant tumor suppressor.Cell,2007.130(1):p.21-4.
    9.Sablina,A.A.,et al.,The tumor suppressor PP2A Abeta regulates the RalA GTPase.Cell,2007.129(5):p.969-82.
    10.Junttila,M.R.,et al.,CIP2A inhibits PP2A in human malignancies.Cell,2007.130(1):p.51-62.
    11.Janssens,V.,S.Longin,and J.Goris,PP2A holoenzyme assembly:in cauda venenum(the sting is in the tail).Trends Biochem Sci,2008.33(3):p.113-21.
    12.Janssens,V.and J.Goris,Protein phosphatase 2A:a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.Biochem J,2001.353(Pt 3):p.417-39.
    13.Zhou,J.,et al.,Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A:differences in expression,subunit interaction,and evolution.Biochem J,2003.369(Pt 2):p.387-98.
    14.Eichhorn,P.J.,M.P.Creyghton,and R.Bernards,Protein phosphatase 2A regulatory subunits and cancer.Biochim Biophys Acta,2009.1795(1):p.1-15.
    15.李天祝and向本琼.,蛋白磷酸酶PP2A的结构及其肿瘤抑制因子功能.生物化学与生物物理进展,2009.36(2):p.133-142.
    16.Yu,X.X.,et al.,Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Balpha regulatory subunit but not SG2NA,striatin,or polyomavirus middle tumor antigen.Mol Biol Cell,2001.12(1):p.185-99.
    17.Jordens,J.,et al.,The protein phosphatase 2A phosphatase activator is a novel peptidyl-prolyl cis/trans-isomerase.J Biol Chem,2006.281(10):p.6349-57.
    18.Leulliot,N.,et al.,Crystal structure of the PP2A phosphatase activator:implications for its PP2A-specific PPIase activity.Mol Cell,2006.23(3):p.413-24.
    19.Longin,S.,et al.,Selection of protein phosphatase 2A regulatory subunits is mediated by the C terminus of the catalytic Subunit.J Biol Chem,2007.282(37):p.26971-80.
    20.Xing,Y.,et al.,Structural mechanism of demethylation and inactivation of protein phosphatase 2A.Cell,2008.133(1):p.154-63.
    21.Xing,Y.,et al.,Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins.Cell,2006.127(2):p.341-53.
    22.Cho,U.S.and W.Xu,Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme.Nature,2007.445(7123):p.53-7.
    23.Xu,Y.,et al.,Structure of the protein phosphatase 2A holoenzyme.Cell,2006.127(6):p.1239-51.
    24.Groves,M.R.,et al.,The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs.Cell,1999.96(1):p.99-110.
    25.Chao,Y.,et al.,Structure and mechanism of the phosphotyrosyl phosphatase activator Mol Cell,2006.23(4):p.535-46.
    26.Janssens,V.,et al.,Identification and characterization of alternative splice products encoded by the human phosphotyrosyl phasphatase activator gene.Eur J Biochem,2000.267(14):p.4406-13.
    27.Fellner,T.,et al.,,4 novel and essential mechanism determining specificity and activity of protein phasphatase 2A(PP2A) in vivo.Genes Dev,2003.17(17):p.2138-50.
    28.Rodriguez-Viciana,P.,C.Collins,and M.Fried,Polyoma and SV40 proteins differentially regulate PP2A to activate distinct cellular signaling pathways involved in growth control.Proc Natl Acad Sci U S A,2006.103(51):p.19290-5.
    29.Bryant,J.C.,R.S.Westphal,and B.E.Wadzinski,Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit.Biochem J,1999.339(Pt 2):p.241-6.
    30.Ikehara,T.,et al.,Methylation of the C-terminal leucine residue of the PP2A catalytic subunit is unnecessary for the catalytic activity and the binding of regulatory subunit(PR55/B).Biochem Biophys Res Commun,2007.354(4):p.1052-7.
    31.Silverstein,A.M.,et al.,Actions of PP2A on the MAP kinase pathway and apoptasis are mediated by distinct regulatory subunits.Proc Natl Acad Sci U S A,2002.99(7):p.4221-6.
    32.Ory,S.,et al.,Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites.Curt Biol,2003.13(16):p.1356-64.
    33.Adams,D.G,et al.,Positive regulation of Raf1-MEK1/2-ERK1/2 signaling by protein serine/threoninephasphatase 2A holoenzymes.J Biol Chem,2005.280(52):p.42644-54.
    34.Wang,Y.X.,J.H.Zhang,and Z.W.Gu,[Wnt/beta-catenin signal pathway and malignant hematological disease—review].Zhongguo Shi Yah Xue Ye Xue Za Zhi,2009.17(1):p.234-7.
    35.Bienz,M.,Bio-sketch for oncogene review issue on Wnt signalling.Oncogene,2006.25(57):p.7441.
    36.Bienz,M.and H.Clevers,Linking colorectal cancer to Wnt signaling.Cell,2000.103(2):p.311-20.
    37.Barker,N.and H.Clevers,Catenins,Wnt signaling and cancer.Bioessays,2000.22(11):p.961-5.
    38.Seeling,J.M.,et al.,Regulation of beta-catenin signaling by the B56 subunit of protein phasphatase 2A.Science,1999.283(5410):p.2089-91.
    39.Zhang,W.,et al.,PR55 alpha,a regulatory subunit of PP2A,specifically regulates PP2A-mediated beta-catenin dephasphorylation.J Biol Chem,2009.284(34):p.22649-56.
    40.陈合格,小鼠蛋白磷酸酶PP2A-Aa基因启动子的克隆和功能分析.博士学位论文,2008.
    41.Creyghton,M.P.,et al.,PR72,a novel regulator of Wnt signaling required for Naked cuticle function.Genes Dev,2005.19(3):p.376-86.
    42.Bajpai,R.,et al.,Drosophila Twins regulates Armadillo levels in response to Wg/Wnt signal.Development,2004.131(5):p.1007-16.
    43.Patturajan,M.,et al.,DeltaNp63 induces beta-catenin nuclear accumulation and signaling.Cancer Cell,2002.1(4):p.369-79.
    44.Smith,N.D.,et al.,The p53 tumor suppressor gene and nuclear protein:basic science review and relevance in the management of bladder cancer.J Urol,2003.169(4):p.1219-28.
    45.Bode,A.M.and Z.Dong,Post-translational modification of p53 in tumorigenesis.Nat Rev Cancer,2004.4(10):p.793-805.
    46.Li,H.H.,et al.,A specific PP2A regulatory subunit,B56gamma,mediates DNA damage-induced dephosphorylation of p53 at Thr55.Embo J,2007.26(2):p.402-11.
    47.Shouse,G.P.,X.Cai,and X.Liu,Serine 15 phosphorylation of p53 directs its interaction with B56gamma and the tumor suppressor activity of B56gamma-specific protein phosphatase 2A.Mol Cell Biol,2008.28(1):p.448-56.
    48.Qin,J.,et al.,Protein phosphatase-2A is a target of epigailocatechin-3-gallate and modulates p53-Bak apoptoticpathway.Cancer Res,2008.68(11):p.4150-62.
    49.Mi,J.,et al.,PP2A regulates ionizing radiation-induced apoptosis through Set46phosphorylation of p53.Mol Cancer Ther,2009.8(1):p.135-40.
    50.Deng,X.,E Gao,and W.S.May,Protein phosphatase 2A inactivates Bcl2's antiapoptotic function by dephosphorylation and up-regulation of Bcl2-p5 3 binding.Blood,2009.113(2):p.422-8.
    51.Ahlander,J.and G.Bosco,The RB/E2F pathway and regulation of RNA processing.Biochem Biophys Res Commun,2009.384(3):p.280-3.
    52.Du,W.and J.S.Searle,The rb pathway and cancer therapeutics.Curr Drug Targets,2009.10(7):p.581-9.
    53.Araki,K.,K.Kawauchi,and N.Tanaka,IKK/NF-kappaB signaling pathway inhibits cell-cycle progression by a novel Rb-independent suppression system for E2F transcription factors.Oncogene,2008.27(43):p.5696-705.
    54.Voorhoeve,P.M.,E.M.Hijmans,and R.Bernards,Functional interaction between a novel protein phosphatase 2A regulatory subunit,PR59,and the retinoblastoma-related p107protein.Oncogene,1999.18(2):p.515-24.
    55.Kolupaeva,V.,E.Laplantine,and C.Basilico,PP2A-mediated dephosphorylation ofp107plays a critical role in chondrocyte cell cycle arrest by FGF.PLoS One,2008.3(10):p.e3447.
    56.Vuocolo,S.,et al.,Protein phosphatase 2A associates with Rb2/p130 and mediates retinoic acid-induced growth suppression of ovarian carcinoma cells.J Biol Chern,2003.278(43):p.41881-9.
    57.Soprano,K.J.,et al.,Rb2/p130 and protein phosphatase 2A:key mediators of ovarian carcinoma cell growth suppression by all-trans retinoic acid.Oncogene,2006.25(38):p.5315-25.
    58.Baharians,Z.and A.H.Schonthal,Autoregulation of protein phosphatase type 2A expression.J Biol Chem,1998.273(30):p.19019-24.
    59.Sablina,A.A.and W.C.Hahn,The role of PP2A A subunits in tumor suppression.Cell Adh Migr,2007.1(3):p.140-1.
    60.Sablina,A.A.and W.C.Hahn,SV40 small T antigen and PP2A phosphatase in cell transformation.Cancer Metastasis Rev,2008.27(2):p.137-46.
    61.Chen,W.,et al.,Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity.Cancer Res,2005.65(18):p.8183-92.
    62.Chen,W.,et al.,Identification of specific PP2A complexes involved in human cell transformation.Cancer Cell,2004.5(2):p.127-36.
    63.Yeh,E.,et al.,A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells.Nat Cell Biol,2004.6(4):p.308-18.
    64.Moreno,C.S.,et al.,Signaling and transcriptional changes critical for transformation of human cells by simian virus 40 small tumor antigen or protein phosphatase 2A B56gamma knockdown.Cancer Res,2004.64(19):p.6978-88.
    65.Mann,M.,Quantitativeproteomics? Nat Biotechnol,1999.17(10):p.954-5.
    66.Unlu,M.,M.E.Morgan,and J.S.Minden,Difference gel electrophoresis:a single gel method for detecting changes in protein extracts.Electrophoresis,1997.18(11):p.2071-7.
    67.Alban,A.,et al.,A novel experimental design for comparative two-dimensional gel analysis:two-dimensional difference gel electrophoresis incorporating a pooled internal standard.Proteomics,2003.3(1):p.36-44.
    68.郭尧君.蛋白质电泳实验技术(第二皈).2005.
    69.Tonge,R.,et al.,Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology.Proteomics,2001.1(3):p.377-96.
    70.Ong,S.E.and M.Mann,Mass spectrometry-based proteomics turns quantitative.Nat Chem Biol,2005.1(5):p.252-62.
    71.Oda,Y.,et al.,Accurate quantitation of protein expression and site-specific phosphorylation.Proc Natl Acad Sci USA,I999.96(12):p.6591-6.
    72.Conrads,T.P.,et al.,Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling.Anal Chem,2001.73(9):p.2132-9.
    73.Ong,S.E.,et al.,Stable isotope labeling by amino acids in cell culture,SILaC,as a simple and accurate approach to expression proteomics.Mol Cell Proteomics,2002.1(5):p.376-86.
    74.Zhang,R.,et al.,Controlling deuterium isotope effects in comparative proteomics.Anal Chem,2002.74(15):p.3662-9.
    75.Krijgsveld,J.,et al.,Metabolic labeling of C.elegans and D.melanogaster for quantitative proteomics.Nat Biotechnol,2003.21(8):p.927-31.
    76.Wu,C.C.,et al.,Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis.Anal Chem,2004.76(17):p.4951-9.
    77.Gygi,S.P.,et al.,Quantitative analysis of complex protein mixtures using isotope-coded affinity tags.Nat Biotechnol,1999.17(10):p.994-9.
    78.Julka,S.and F.Regnier,Quantification in proteomics through stable isotope coding:a review.J Proteorne Res,2004.3(3):p.350-63.
    79.Bottari,P.,et al.,Design and synthesis of visible isotope-coded affinity tags for the absolute quantification of specific proteins in complex mixtures.Bioconjug Chem,2004.15(2):p.380-8.
    80.Smolka,M.B.,et al.,Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis.Anal Biochem,2001.297(1):p.25-31.
    81.Ross,P.L.,et al.,Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents.Mol Cell Proteomics,2004.3(12):p.1154-69.82.Munchbach,M.,et al.,Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety.Anal Chem,2000.72(17):p.4047-57.
    83.Schmidt,A.,J.Kellermann and F.Lottspeich,A novel strategy for quantitative proteomics using isotope-codedprotein labels.Proteomics,2005.5(1):p.4-15.
    84.Yao,X.,et al.,Proteolytic 180 labeling for comparative proteomics:model studies with two serotypes of adenovirus.Anal Chem,2001.73(13):p.2836-42.
    85.Andersen,C.A.,et al.,Robust MS quantification method for phospho-peptides using 18O/16O labeling.BMC Bioinformatics,2009.10:p.141.
    86.Broedel,O.,et al.,In-Gel 180 labeling for improved identification of proteins from 2-DE Gel spots in comparative proteomic experiments.J Proteome Res,2009.8(7):p.3771-7.
    87.White,C.A.,N.Oey,and A.Emili,Global quantitative proteomic profiling through 180-labeling in combination with MS/MS spectra analysis.J Proteome Res,2009.8(7):p.3653-65.
    88.Liu,H.,et al.,Non-gel-based dual 18O labeling quantitative proteomics strategy.Anal Chem,2007.79(20):p.7700-7.
    89.Stewart,Ⅱ,T.Thomson,and D.Figeys,18O labeling:a tool for proteomics.Rapid Commun Mass Spectrom,2001.15(24):p.2456-65.
    90.Mirza,S.P.,A.S.Greene,and M.Olivier,18O labeling over a coffee break:a rapid strategy for quantitative proteomics.J Proteome Res,2008.7(7):p.3042-8.
    91.Bonenfant,D.,et al.,Quantitation of changes in protein phosphorylation:a simple method based on stable isotope labeling and mass spectrometry.Proc Nail Acad Sci U S A,2003.100(3):p.880-5.
    92.Zang,L.,et al.,Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection,LC-MS,and 16O/18O isotopic labeling.J Proteome Res,2004.3(3):p.604-12.
    93.Chen,X.,et al.,Quantitative proteomic analysis of the secretory proteins from rat adipose cells using a 2D liquid chromatography-MS/MS approach.J Proteome Res,2005.4(2):p.570-7.
    94.Old,W.M.,et al.,Comparison of label-free methods for quantifying human proteins by shotgun proteomics.Mol Cell Proteomics,2005.4(10):p.1487-502.
    95.Yan,Q.,et al.,Protein phosphatase-1 modulates the function of Pax-6,a transcription factor controlling brain and eye development.J Biol Chem,2007.252(19):p.13954-65.
    96.Li,D.W.,et al.,Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities.Oncogene,2006.25(21):p.3006-22.
    97.Li,D.W.,et al.,Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alpha B-crystallin through inhibition of RAS activation.Mol Biol Cell,2005.16(9):p.4437-53.
    98.Yan,J.X.,et al.,A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry.Electrophoresis,2000.21(17):p.3666-72.
    99.Gharahdaghi,F.,et al.,Mass spectrometric identification of proteins from silver-stained polyacrylamide gel:a method for the removal of silver ions to enhance sensitivity.Electrophoresis,1999.20(3):p.601-5.
    100.Orchard,S.,Proteomics:from technology development to biomarker applications.Expert Rev Proteomics,2007.4(6):p.709-10.
    101.Duncan,M.W.and S.W.Hunsucker,Proteomics as a tool for clinically relevant biomarker discovery and validation.Exp Biol Med(Maywood),2005.230(11):p.808-17.
    102.Wong,L.L.,et al.,Tyrosinephosphorylation of PP2A is regulated by HER-2 signalling and correlates with breast cancer progression.Int J Oncol,2009.34(5):p.1291-301.
    103.Samanta,A.K.,et al.,Jak2 inhibition deactivates Lyn kinase through the SET-PP2A-SHP1pathway,causing apoptosis in drug-resistant cells from chronic myelogenous leukemia patients.Oncogene,2009.
    104.Lu,J.,et al.,Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage induced defense mechanisms.Proc Natl Acad Sci U S A,2009.106(28):p.11697-702.
    105.Arnold,H.K.and R.C.Sears,A tumor suppressor role for PP2A-B56alpha through negative regulation of c-Myc and other key oncoproteins.Cancer Metastasis Rev,2008.27(2):p.147-58.
    106.Creyghton,M.P.,et al.,PR130 is a modulator of the Wnt-signaling cascade that counters repression of the antagonist Naked cuticle.Proc Natl Acad Sci U S A,2006.103(14):p.5397-402.
    107.Chang,H.J.,et al.,Identification of mitochondrial FoF1-ATP synthase involved in liver metastasis of colorectal cancer Cancer Sci,2007.98(8):p.1184-91.
    108.Shin,Y.K.,et al.,Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance.Cancer Res,2005.65(8):p.3162-70.
    109.Liu,X.,et al.,Proteomic analysis of the tumorigenic human prostate cell line M12 after microcell-mediated transfer of chromosome 19 demonstrates reduction of vimentin.Electrophoresis,2003.24(19-20):p.3445-53.
    110.Yan,X.D.and L.Y.Pan,[Proteomic analysis of human ovarian cancer cell lines and their platinum-resistant clones].Zhonghua Fu Chan Ke Za Zhi,2006.41(9):p.584-7.
    111.Lexander,H.,et al.,Proteomic analysis of protein expression in prostate cancer Anal Quant Cytol Histol,2005.27(5):p.263-72.
    112.Sarnland,A.K.and G.A.Sprenger,Transaldolase:from biochemistry to human disease.Int J Biochem Cell Biol,2009.41(7):p.1482-94.
    113.Bini,L.,et al.,Protein expression profiles in human breast ductal carcinoma and histologically normal tissue.Electrophoresis,1997.18(15):p.2832-41.
    114.Li,C.,et al.,Proteome analysis of human lung squamous carcinoma.Proteomics,2006.6(2):p.547-58.
    115.Petit,E.,et al.,Progestins induce catalase activities in breast cancer cells through PRB isoform:correlation with cell growth inhibition.J Steroid Biochem Mol Biol,2009.115(3-5):p.153-60.
    116.Oh,S.H.,et al.,Dihydrocapsaicin(DHC),a saturated structural analog of capsaicin,induces autophagy in human cancer cells in a catalase-regulated manner Autophagy,2008.4(8):p.1009-19.
    117.Chung-man Ho,J.,et al.,Differential expression of manganese superoxide dismutase and catalase in lung cancer.Cancer Res,2001.61(23):p.8578-85.
    118.de Moreno de LeBlanc,A.,et al.,Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice.J Med Microbiol,2008.57(Pt 1):p.100-5.
    119.Vasiliou,V.,A.Pappa,and T.Estey,Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism.Drug Metab Rev,2004.36(2):p.279-99.
    120.Oyama,T.,et al.,Susceptibility to inhalation toxicity of acetaldehyde in Aldh2 knockout mice.Front Biosci,2007.12:p.1927-34.
    121.Kunugita,N.,et al.,Increased frequencies of micronucteated reticulocytes and T-cell receptor mutation in Aldh2 knockout mice exposed to acetaldehyde.J Toxicol Sci,2008.33(1):p.31-6.
    122.Moreb,J.S.,et al.,ALDH isozymes downregulation affects cell growth,cell motility and gene expression in lung cancer cells.Mol Cancer,2008.7:p.87.
    123.Walsh,N.,et al.,Aldehyde dehydrogenase 1A1 and gelsolin identified as novel invasion-modulating factors in conditioned medium of pancreatic cancer cells.J Proteomics,2008.71(5):p.561-71.
    124.Rice,K.L.,et al.,Overexpression of stem cell associated ALDH1A1,a target of the leukemogenic transcription factor TLX1/HOX11,inhibits lymphopoiesis and promotes myelopoiesis in routine hematopoieticprogenitors.Leak Res,2008.32(6):p.873-83.
    125.Visus,C.,et al.,Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck.Cancer Res,2007.67(21):p.10538-45.
    126.Touma,S.E.,et al.,Retinoid metabolism and ALDH1A2(RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model.Biochem Pharmacol,2009.78(9):p.1127-38.
    127.Alnouti,Y.and C.D.Klaassen,Tissue distribution,ontogeny,and regulation of aldehyde dehydrogenase(Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice.Toxicol Sci,2008.101(1):p.51-64.
    128.Zhang,L.,F.Zhang,and K.Huo,Cloning and characterization of a novel splicing variant of the ZADH1 gene.Cytogenet Genome Res,2003.103(1-2):p.79-83.
    129.Primiano,T.,et al.,Identification of dithiolethione-inducible gene-1 as a leukotriene B412-hydroxydehydrogenase:implications for chemoprevention.Carcinogenesis,1998.19(6):p.999-1005.
    130.Gao,K.,et al.,Genomic analyses identify gene candidates for acquired irinotecan resistance in melanoma cells.Int J Oncol,2008.32(6):p.1343-9.
    131.Fontana,X.,et al.,[Glutathione S-transferase mu 1(GSTM1):susceptibility gene of breast cancer].Bull Cancer,1997.84(1):p.35-40.
    132.Sakoda,L.C.,et al.,Glutathione S-transferase M1 and P1 polymorphisms and risk of breast cancer and fibrocystic breast conditions in Chinese women.Breast Cancer Res Treat,2008.109(1):p.143-55.
    133.Tsuchiya,Y.,et al.,Polymorphisms of cytochrome P450 1A1,glutathione S-transferase class mu,and tumour protein p53 genes and the risk of developing gallbladder cancer in Japanese.Clin Biochem,2007.40(12):p.881-6.
    134.Chou,F.P.,et al.,Specific induction of glutathione S-transferase GSTM2 subunit expression by epigallocatechin gallate in rat liver Biochem Pharmacol,2000.60(5):p.643-50.
    135.Ebert,M.N.,et al.,Expression of glutathione S-transferases(GSTs) in human colon cells and inducibility of GSTM2 by butyrate.Carcinogenesis,2003.24(10):p.1637-44.
    136.Urzua,U.,et al.,Transcriptomic analysis of an in vitro murine model of ovarian carcinoma:functional similarity to the human disease and identification of prospective tumoral markers and targets.J Cell Physiol,2006.206(3):p.594-602.
    137.Kim,Y.C.,et al.,Heroin-induced activation of the thioredoxin gene by Nrf2.A differential regulation of the antioxidant responsive element by a switch of its binding factors.J Biol Chem,2001.276(21):p.18399-406.
    138.Kamata,H.and H.Hirata,Redox regulation of cellular signalling.Cell Signal,1999.11(1):p.1-14.
    139.Tanaka,T.,et al.,Thioredoxin-2(TRX-2) is an essential gene regulating mitochondria-dependent apoptosis.Embo J,2002.21(7):p.1695-703.
    140.Cavalieri,D.,et al.,Analysis of gene expression profiles reveals novel correlations with the clinical course ofcolorectal cancer Oncol Res,2007.16(11):p.535-48.
    141.Goodarzi,M.O.,et al.,Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA),a candidate gene for polycystic ovary syndrome.Hum Reprod,2008.23(5):p.1214-9.
    142.Buchanan,G.,et al.,Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha.Cancer Res,2007.67(20):p.10087-96.
    143.Rho,J.H.,M.H.Roehrl,and J.Y.Wang,Glycoproteomic analysis of human lung adenocarcinomas using glycoarrays and tandem mass spectrometry:differential expression and glycosylation patterns of vimentin and fetuin A isoforms.Protein J,2009.28(3-4):p.148-60.
    144.Du,X.L.,et al.,Calreticulin promotes cell motility and enhances resistance to anoikis through STAT3-CTTN-Akt pathway in esophageal squamous cell carcinoma.Oncogene,2009.
    145.Alur,M.,et al.,Suppressive roles of calreticulin in prostate cancer growth and metastasis.Am J Pathol,2009.175(2):p.882-90.
    146.Bergner,A.,et al.,Endoplasmic reticulum Ca2+-homeostasis is altered in Small and non-small Cell Lung Cancer cell lines.J Exp Clin Cancer Res,2009.28:p.25.
    147.Kepp,O.,et al.,The immunogenicity of tumor cell death.Curr Opin Oncol,2009.21(1):p.71-6.
    148.Chen,C.N.,et al.,Identification of calreticulin as a prognosis marker and angiogenic regulator in human gastric cancer Ann Surg Oncol,2009.16(2):p.524-33.
    149.Obeid,M.,et al.,Calreticulin exposure dictates the immunogenicity of cancer cell death.Nat Med,2007:13(1):p.54-61.
    150.Kageyama,S.,et al.,Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine.Clin Chem,2004.50(5):p.857-66.
    151.Brunagel,G.,et al.,Identification of calreticulin as a nuclear matrix protein associated with human colon cancer J Cell Biochem,2003.89(2):p.238-43.
    152.Vougas,K.,et al.,Two-dimensional electrophoresis and immunohistochemical study of calreticulin in colorectal adenocarcinoma and mirror biopsies.J Buon,2008.13(I):p.101-7.
    153.Toquet,C.,et al.,Altered Calreticulin expression in human colon cancer:maintenance of Calreticulin expression is associated with mucinous differentiation.Oncol Rep,2007.17(5):p.1101-7.
    154.Marty,C.,D.D.Browning,and R.D.Ye,Identification of tetratricopeptide repeat 1 as an adaptor protein that interacts with heterotrimeric G proteins and the small GTPase Ras.Mol Cell Biol,2003.23(11):p.3847-58.
    155.Oh,W.K.and J.Song,Cooperative interaction of Hsp40 and TPRI with Hsp70 reverses Hsp70-HspBpl complex formation.Mol Cells,2003.16(1):p.84-91.
    156.Turano,C.,et al.,Proteins of the PDI family:unpredicted non-ER locations and functions.J Cell Physiol,2002.193(2):p.154-63.
    157.Sideraki,V.and H.F.Gilbert,Mechanism of the antichaperone activity of protein disulfide isomerase:facilitated assembly of large,insoluble aggregates of denatured lysozyme and PDI.Biochemistry,2000.39(5):p.1180-8.
    158.Zhang,D.,et al.,Proteomic stud)' reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer Mol Cell Proteomics,2005.4(11):p.1686-96.
    159.Carta,F.,et al.,Analysis of candidate genes through a proteomics-based approach in primary cell lines from malignant melanomas and their metastases.Melanoma Res,2005.15(4):p.235-44.
    160.Lovat,P.E.,et al.,Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress.Cancer Res,2008.68(13):p.5363-9.
    161.Hall,A.,The cytoskeleton and cancer.Cancer Metastasis Rev,2009.28(1-2):p.5-14.
    162.Olson,M.F.and E.Sahai,The actin cytoskeleton in cancer cell motility.Clin Exp Metastasis,2009.26(4):p.273-87.
    163.Leve,F.,W.de Souza,and J.A.Morgado-Diaz,A cross-link between protein kinase A and Rho-family GTPases signaling mediates cell-cell adhesion and actin cytoskeleton organization in epithelial cancer cells.J Pharmacol Exp Ther,2008.327(3):p.777-88.
    164.Willis,N.D.,et al.,Lamin A/C is a risk biomarker in colorectal cancer.PLoS One,2008.3(8):p.e2988.
    165.Fang,W.,et al.,Transcriptional patterns,biomarkers and pathways characterizing nasopharyngeal carcinoma of Southern China.J Transl Med,2008.6:p.32.
    166.Al-Saad,S.,et al.,The prognostic impact of NF-kappaB p105,vimentin,E-cadherin and Par6expression in epithelial and stromal compartment in non-small-cell lung cancer.Br J Cancer,2008.99(9):p.1476-83.
    167.Zanivan,S.,et al.,Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry.J Proteome Res,2008.7(12):p.5314-26.
    168.Turowski,P.,et al.,Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55.Mol Biol Cell,1999.10(6):p.1997-2015.
    169.Ko,S.H.,et al.,Expression of the intermediate filament vimentin in proliferating duct cells as a marker ofpancreaticprecursor cells.Pancreas,2004.28(2):p.121-8.
    170.Wu,K.J.,et al.,Silibinin inhibits prostate cancer invasion,motility and migration by suppressing vimentin and MMP-2 expression.Acta Pharmacol Sin,2009.30(8):p.1162-8.
    171.Zhao,Y.,et al.,Vimentin affects the mobility and invasiveness of prostate cancer cells.Cell Biochem Funct,2008.26(5):p.571-7.
    172.Wei,J.,et al.,Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation.Anticancer Res,2008.28(1A):p.327-34.
    173.Wu,K.C.and J.P.Jin,Calponin in non-muscle cells.Cell Biochem Biophys,2008.52(3):p.139-48.
    174.Fukami,M.,et al.,Activity of smooth muscle phosphatases 1 and 2A in rabbit basilar artery in vasospasm.Stroke,1995.26(12):p.2321-7.
    175.Markiewicz,E.,et al.,The inner nuclear membrane protein emerin regulates beta-catenin activity by restricting its accumulation in the nucleus.Embo J,2006.25(4):p.3275-85.
    176.Lin,F.,et al.,MAN1,an integral protein of the inner nuclear membrane,binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling.Hum Mol Genet,2005.14(3):p.437-45.
    177.Van Berlo,J.H.,et al.,A-type lamins are essential for TGF-betal induced PP2A to dephosphorylate transcription factors.Hum Mol Genet,2005.14(19):p.2839-49.
    178.Dorner,D.,et al.,Lamina-associated polypeptide 2alpha regulates cell cycle progression and differentiation via the retinoblastoma-E2F pathway.J Cell Biol,2006.173(1):p.83-93.
    179.Dang,C.,et al.,Identification of dysregulated genes in cutaneous squamous cell carcinoma.Oncol Rep,2006.16(3):p.513-9.
    180.Scanlan,M.J.,et al.,Cancer-related serological recognition of human colon cancer:identification of potential diagnostic and immunotherapeutic targets.Cancer Res,2002.62(14):p.4041-7.
    181.Venables,R.S.,et al.,Expression of individual lamins in basal cell carcinomas of the skin.Br J Cancer,2001.84(4):p.512-9.
    182.Haram,K.M.,et al.,Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.Prostate,2008.68(14):p.1517-30.
    183.Spiechowicz,M.,et al.,Hsp70 is a new target of Sgt1-an interaction modulated by S100A6.Biochem Biophys Res Commtm,2007.357(4):p.1148-53.
    184.Spiechowicz,M.and A.Filipek,The expression and function of Sgt1 protein in eukaryotic cells.Acta Neurobiol Exp(Wars),2005.65(2):p.161-5.
    185.Zabka,M.,et al.,Sgtl has co-chaperone properties and is up-regulated by heat shock.Biochern Biophys Res Commun,2008.370(1):p.179-83.
    186.Mayor,A.,et al.,A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses.Nat Immunol,2007.8(5):p.497-503.
    187.Steensgaard,P.,et al.,Sgt1 is required for human kinetochore assembly.EMBO Rep,2004.5(6):p,626-31.
    188.Dantuma,N.P.,C.Heinen,and D.Hoogstraten,The ubiquitin receptor Rad23:at the crossroads of nucleotide excision repair and proteasomal degradation.DNA Repair(Amst),2009.8(4):p.449-60.
    189.Brignone,C.,et al.,A post-ubiquitination role for MDM2 and hHR23A in the p53 degradation pathway.Oncogene,2004.23(23):p.4121-9.
    190.Jin,M.,et al.,Rabla and multiple other Rab proteins are associated with the transcytotic pathway in rat liver J Biol Chem,1996.271(47):p.30105-13.
    191.Touchot,N.,et al.,Biochemical properties of the YPT-related rab1B protein.Comparison with rabtA.FEBS Lett,1989.156(1-2):p.79-84.
    192.Shimada,K.,et al.,Aberrant expression of RAB1A in human tongue cancer Br J Cancer,2005.91(10):p.1915-21.
    193.Telerman,A.and R.Amson,The molecular programme oftumour reversion:the steps beyond malignant transformation.Nat Rev Cancer,2009.9(3):p.206-16.
    194.Susini,L.,et al.,TCTP protects from apoptofic cell death by antagonizing bax function.Cell Death Differ,2008.15(8):p.1211-20.
    195.Yao,Y.,et al.,Comparative proteomic analysis of colon cancer cells in response to Oxaliplatin treatment.Biochim Biophys Acta,2009.1794(10):p.1433-40.
    196.Gnanasekar,M.,et al.,Gene silencing of translationally controlled tumor protein(TCTP) by siRNA inhibits cell growth and induces apoptosis of human prostate cancer cells,hat J Oncol,2009.34(5):p.1241-6.
    197.Alfonso,P.,et al.,Proteomic analysis of p38alpha mitogen-activated protein kinase-regulated changes in membrane fractions of RAS-transformed fibroblasts.Proteomics,2006.6 Suppl 1:p.S262-71.
    198.Liu,Z.,et al.,Somatostatin effects on the proteome of the LNCaP cell-line.Int J Oncol,2007.30(5):p.1173-9.
    199.Zhu,W.L.,et al.,Messenger RNA expression of translationally controlled tumor protein (TCTP) in liver regeneration and cancer Anticancer Res,2008.28(3A):p.1575-80.
    200.Slaby,O.,et al.,Significant overexpression of Hsp110 gene during colorectal cancer progression.Oncol Rep,2009.21(5):p.1235-41.
    201.Niforou,K.M.,et al.,The proteome profile of the human osteosarcoma U2OS cell line.Cancer Genomics Proteomics,2008.5(1):p.63-78.
    202.Deng,S.S.,et al.,Comparative proteome analysis of breast cancer and adjacent normal breast tissues in human.Genomics Proteomics Bioinformaties,2006.4(3):p.165-72.
    203.Yi,M.and J.E.Schnitzer,Impaired tumor growth,metastasis,angiogenesis and wound healing in annexin Al-null mice.Proc Natl Acad Sci U S A,2009.
    204.Inokuchi,J.,et at.,Loss of annexin Al disrupts normal prostate glandular structure by inducing autocrine IL-6 signaling.Carcinogenesis,2009.30(7):p.1082-8.
    205.Chuthapisith,S.,et al.,Annexins in human breast cancer:Possible predictors of pathological response to neoadjuvant chemotherapy.Eur J Cancer,2009.45(7):p.1274-81.
    206.Yu,G.,et al.,Tissue microarray analysis reveals strong clinical evidence for a close association between loss of annexin Al expression and nodal metastasis in gastric cancer Ciin Exp Metastasis,2008.25(7):p.695-702.
    207.Lin,C.Y.,et al.,Nuclear localization of annexin Al is a prognostic factor in oral squamous cell carcinoma.J Surg Oncol,2008.97(6):p.544-50.
    208.Kaplan,R.,et al.,Cloning and expression of cDNA for human endonexin Ⅱ,a Ca~(2+) and phospholipid binding protein.J Biol Chem,1988.163(17):p.8037-43.
    209.Demange,P.,et al.,Annexin V:the key to understanding ion selectivity and voltage regulation?Trends Biochem Sci,1994.19(7):p.272-6.
    210.Grundmann,U.,et al.,Characterization of cDNA encoding human placental anticoagulant protein(PP4):homology with the lipocortinfamily.Proc Natl Acad Sci U S A,1988.85(11):p.3708-12.
    211.Tzima,E.,et al.,,4nnexin V relocates to the platelet cytoskeleton upon activation and binds to a specific isoform ofactin.Eur J Biochem,2000.267(15):p.4720-30.
    212.Brachvogel,B.,et al.,Annexin A5 is not essential for skeletal development.Mol Cell Biol,2003.23(8):p.2907-13.
    213.Corsten,M.F.,et al.,Counting heads in the war against cancer:defining the role of annexin A5 imaging in cancer treatment and surveillance.Cancer Res,2006.66(3):p.1255-60.
    214.Kenis,H.and C.Reutelingsperger,Targetingphosphatidylserine in anti-cancer therapy.Curr Pharm Des,2009.15(23):p.2719-23.
    215.Cui,Y.,et al.,Proteomic and tissue array profiting identifies elevated hypoxia-regulated proteins in pancreatic ductal adenocarcinoma.Cancer Invest,2009.27(7):p.747-55.
    216.Xue,G.,et al.,Expression of Annexin A5 Is Associated With Higher Tumor Stage and Poor Prognosis in Colorectal Adenocarcinomas.J Clin Gastroenterol,2009.
    217.Wehder,L.,et al.,Annexin A5 is involved in migration and invasion of oral carcinoma.Cell Cycle,2009.8(10):p.1552-8.
    218.Alfonso,P.,et al.,Proteome analysis of membrane fractions in colorectal carcinomas by using 2D-DIGE saturation labeling.J Proteome Res,2008.7(10):p.4247-55.
    219.Bae,S.M.,et al.,Protein Expression Profile using Two-Dimensional Gel Analysis in Squamous Cervical Cancer Patients.Cancer Res Treat,2006.38(2):p.99-107.
    220.Fnsaro,G.,et al.,Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling.J Biol Chem,2003.278(48):p.47853-61.
    221.Gamble,S.C.,et al.,Androgens target prohibitin to regulate proliferation of prostate cancer cells.Oncogene,2004.23(17):p.2996-3004.
    222.Woodlock,T.J.,G.Bethlendy,and G.B.Segel,Prohibitin expression is increased in phorbol ester-treated chronic leukemic B-lymphocytes.Blood Cells Mol Dis,2001.27(1):p.27-34.
    223.Mishra,S.,et al.,Prohibitin:a potential target for new therapeutics.Trends Mol Med,2005.11(4):p.192-7.
    224.Merkwirth,C.and T.Langer,Prohibitin function within mitochondria:essential roles for cell proliferation and cristae morphogenesis.Biochim Biophys Acta,2009.1793(1):p.27-32.
    225.郭维,黄.,徐虹,Prohibitin的研究进展.国际病理科学与临床杂志,,2005.25(3):p.254-256.
    226.Kang,X.,et at.,Prohibitin:a potential biomarker for tissue-based detection of gastric cancer J Gastroenterol,2008.43(8):p.618-25.
    227.Ummarmi,R.,et al.,Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer Cancer Lett,2008.266(2):p.171-85.
    228.Wu,T.E,et al.,Prohibitin in the pathogenesis of transitional cell bladder cancer Anticancer Res,2007.27(2):p.895-900.
    229.Zhu,B.,et al.,Prohibitin and cofilin are intracellular effectors of transforming growth factor beta signaling in human prostate cancer cells.Cancer Res,2006.66(17):p.8640-7.
    230.Jang,J.S.,et al.,The differential proteome profile of stomach cancer:identification of the biomarker candidates.Oncol Res,2004.14(10):p.491-9.
    231.Cartegni,L.,et al.,hnRNP Al selectively interacts through its Gly-rich domain with different RNA-bindingproteins.J Mol Biol,1996.259(3):p.337-48.
    232.Martinez-Contreras,R.,et al.,hnRNPproteins and splicing control.Adv Exp Med Biol,2007.623:p.123-47.
    233.Schepens,B.,et al.,A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis.Embo J,2007.26(1):p.158-69.
    234.Hossain,M.N.,et al.,Downregulation of hnRNP C1/C2 by siRNA sensitizes HeLa cells to various stresses.Mol Cell Biochern,2007.296(1-2):p.151-7.
    235.Haley,B.,et al.,Response of heterogeneous ribonuclear proteins(hnRNP) to ionising radiation and their involvement in DNA damage repair Int J Radiat Biol,2009.115(8):p.643-55.
    236.Harris,M.N.,et al.,Comparative proteomic analysis of atl-trans-retinoic acid treatment reveals systematic posttranscriptional control mechanisms in acute promyelocytic leukemia.Blood,2004.104(5):p.1314-23.
    237.Liltjebjorn,H.,et al.,Combined high-resolution array-based comparative genomic hybridization and expression profiling of ETV6/RUNXl-positive acute lymphoblastic leukemias reveal a high incidence of cryptic Xq duplications and identify several putative target genes within the commonly gained region.Leukemia,2007.21(10):p.2137-44.
    238.Rho,J.H.,et al.,Proteomic expression analysis of surgical human colorectal cancer tissues:up-regulation of PSB7,PRDX1,and SRP9 and hypoxic adaptation in cancer.J Proteome Res,2008:7(7):p.2959-72.
    239.Yang,C.,et al.,Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling.Cancer Res,2009.69(20):p.7986-93.
    240.Wang,J.W.,et al.,Identification of metastasis-associated proteins involved in gallbladder carcinoma metastasis by proteomic analysis and functional exploration of chloride intracellular channel 1.Cancer Lett,2009.281(1):p.71-81.
    241.Ajani,J.A.,et al.,Multi-institutional trial of preoperative chemoradiotherapy in patients with potentially resectable gastric carcinoma.J Clin Oncol,2004.22(14):p.2774-80.
    242.Varis,A.,et al.,Targets of gene amplification and overexpression at 17q in gastric cancer Cancer Res,2002.62(9):p.2625-9.
    243.Kondoh,N.,et al.,Enhanced expression of S8,L12,L23a,L27 and L30 ribosomal protein mRNAs in human hepatocellular carcinoma.Anticancer Res,2001.21(4A):p.2429-33.
    244.Jiang,R.D.,et al.,[Establishment of a human nasopharyngeal carcinoma drug-resistant cell line CNE2/DDP and screening of drug-resistant genes].Ai Zheng,2003.22(4):p.337-45.
    245.Liu,Y.,et al.,Haplotype and cell proliferation analyses of candidate lung cancer susceptibility genes on chromosome 15q24-25.1.Cancer Res,2009.69(19):p.7844-50.
    246.Tapio,S.,et al.,Combined effects of gamma radiation and arsenite on the proteome of human TK6 lymphoblastoid cells.Mutat Res,2005.581(1-2):p.141-52.
    247.Surmacz,L.,J.Wiejak,and E.Wyroba,Cloning of two genes encoding Rab7 in Paramecium.Acta Biochim Pol,2006.53(1):p.149-56.
    248.Jopling,H.M.,et al.,Rab GTPase regulation of VEGFR2 trafficking and signaling in endothelial cells.Arterioscler Thromb Vasc Biol,2009.29(7):p.1119-24.
    249.Cousin,H.,D.W.Desimone,and D.Alfandari,P,4CSIN2 regulates cell adhesion during gastrulation in Xenopus laevis.Dev Biol,2008.319(1):p.86-99.
    250.Grimm-Gunter,E.M.,et al.,PACSIN proteins bind tubulin and promote microtubule assembly.Exp Cell Res,2008.314(10):p.1991-2003.
    251.Yoo,B.C.,et al.,Galectin-3 stabilizes heterogeneous nuclear ribonucleoprotein Q to maintain proliferation of human colon cancer cells.Cell Mol Life Sci,2009.66(2):p.350-64.
    252.Cao,Q.,et al.,A testis-specific and testis developmentally regulated tumor protein D52 (TPD52)-like protein TPD5213/hD55 interacts with TPD52 family proteins.Biochem Biophys Res Commun,2006.344(3):p.798-806.
    253.Shehata,M.,et al.,Nonredundant functions for tumor protein D52-like proteins support specific targeting of TPD52.Clin Cancer Res,2008.14(16):p.5050-60.
    254.Li,D.Q.,et al.,Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry.Proteomics,2006.6(11):p.3352-68.
    255.Fejzo,M.S.,et al.,Comprehensive analysis of 20q13 genes in ovarian cancer identifies ADRM1 as amplification target.Genes Chromosomes Cancer,2008.47(10):p.873-83.
    256.Cho,S.O.,et al.,Helicobacter pylori in a Korean Isolate Expressed Proteins Differentially in Human Gastric Epithelial Cells.Dig Dis Sci,2009.
    257.Clark,S.W.,et al.,Beta-centractin:characterization and distribution of a new member of the centractin family of actin-related proteins.Mol Biol Cell,1994.5(12):p.1301-10.
    258.Sugarbaker,D.J.,et al.,Transcriptome sequencing of malignant pleural mesothelioma tumors.Proc Natl Acad Sci U S A,2008.105(9):p.3521-6.
    259.Beckman,M.,et al.,Degradation of GFP-iabelled POM121,a non-invasive sensor of nuclear apoptosis,precedes clustering of nuclear pores and externalisation of phosphatidylserine.Apoptosis,2004.9(3):p.363-8.
    260.Niederlova,J.and K.Koubek,[Chemokines and chemokine receptors.Review article].Sb Lek,1999.100(3):p.169-89.
    261.Muller,A.,et al.,Involvement of chemokine receptors in breast cancer metastasis.Nature,2001.410(6824):p.50-6.
    262.Heresi,G.A.,et al.,Expression of the chemokine receptor CCR7 in prostate cancer presenting with generalized lymphadenopathy:report of a case,review of the literature,and analysis of chemokine receptor expression.Urol Oncol,2005.23(4):p.261-7.
    263.Dominguez,F.,A.Pellicer,and C.Simon,The chemokine connection:hormonal and embryonic regulation at the human maternal-embryonic interface—a review.Placenta,2003.24 Suppl B:p.S48-55.
    264.el-Salhy,M.,The possible role of the gut neuroendocrine system in diabetes gastroenteropathy.Histol Histopathol,2002.17(4):p.1153-61.
    265.Smith,M.C.,et al.,CXCR4 regulates growth of both primary and metastatic breast cancer.Cancer Res,2004.64(23):p.8604-12.
    266.Li,A.,M.L.Vamey,and R.K.Singh,Constitutive expression of growth regulated oncogene (gro) in human colon carcinoma cells with different metastatic potential and its role in regulating their metastaticphenotype.Clin Exp Metastasis,2004.21(7):p.571-9.
    267.Monti,P.,et al.,The CC chemokine MCP-1/CCL2 in pancreatic cancer progression:regulation of expression and potential mechanisms of antimalignant activity.Cancer Res,2003.63(21):p.7451-61.
    268.Shao,S.,et al.,Gadd45a interacts with aurora-A and inhibits its kinase activity.J Biol Chem,2006.281(39):p.28943-50.
    269.Rhee,S.G.,et al.,Peroxiredoxin,a novel family ofperoxidases.IUBMB Life,2001.52(1-2):p.35-41.
    270.章波,向.,白云,抗氧化蛋白Peroxiredoxin家族研究进展.生理科学进展,2004.35卷(第4期):p.352-355.
    271.Turk,V.,et al.,Lysosomal cathepsins:structure,role in antigen processing and presentation,and cancer.Adv Enzyme Regul,2002.42:p.285-303.
    272.Yah,S.and B.E Sloane,Molecular regulation of human cathepsin B:implication in pathologies.Biol Chern,2003.384(6):p.845-54.
    273.Devetzi,M.,et al.,Cathepsin B protein levels in endometrial cancer:Potential value as a tumour biomarker.Gynecol Oncol,2009.112(3):p.531-6.
    274.杨晓梅,棉铃虫个体发育过程中组织蛋白酶B的表达及功能研究.博士学位论文,2005:p.1-105.
    275.Glotzer,M.,Animal cell cytokinesis.Annu Rev Cell Dev Biol,2001.17:p.351-86.
    276.Shigeishi,H.,et al.,Increased expression of CHK2 in human gastric carcinomas harboring p53 mutations.Int J Cancer,2002.99(1):p.58-62.
    277.Matsuoka,S.,et al.,Reduced expression and impaired kinase activity of a Chk2 mutant identified in human lung cancer.Cancer Res,2001.61(14):p.5362-5.
    278.Koniaras,K.,et al.,Inhibition of Chkl-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells.Oncogene,2001.20(51):p.7453-63.
    279.Kuribayashi,K.,et al.,TNFSF10(TRAIL),a p53 target gene that mediates p53-dependent cell death.Cancer Biol Ther,2008.7(12):p.2034-8.
    280.Liu,X.Y.,et al.,Effective gene-virotherapy for complete eradication of tumor mediated by the combination ofhTRAIL(TNFSFIO) and plasminogen kS.Mol Ther,2005.11(4):p.531-41.
    281.Chodorowska,G.,A.Glowacka,and M.Tornczyk,Leukemia inhibitory factor(LIF) and its biological activity.Ann Univ Mariae Curie Sklodowska Med,2004.59(2):p.189-93.
    282.Szepietowski,J.and A.Reich,[Leukaemia inhibitory factor(LIF):structure and biological activity].Postepy Hig Med Dosw(Online),2004.58:p.243-51.
    283.Yanatatsaneejit,P.,et al.,Promoter hypermethylation of CCNA1,RARRES1,and HRASLS3 in nasopharyngeal carcinoma.Oral Oncol,2008.44(4):p.400-6.
    284.Dhawan,P.and A.Richmond,Role of CXCL1 in tumorigenesis of melanoma.J Leukoc Biol,2002.72(1):p.9-18.
    285.Wang,D.,et al.,CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer.J Exp Med,2006.203(4):p.941-51.
    286.Gao,P.,et al.,c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism.Nature,2009.458(7239):p.762-5.
    287.Chang,T.C.,et al.,Widespread microRNA repression by Myc contributes to tumorigenesis.Nat Genet,2008.40(1):p.43-50.
    288.Junttila,M.R.and J.Westermarck,Mechanisms of MYC stabilization in human malignancies.Cell Cycle,2008.7(5):p.592-6.
    289.Porter,L.A.and D.J.Donoghue,Cyclin B1 and CDK1:nuclear localization and upstream regulators.Prog Cell Cycle Res,2003.5:p.335-47.
    290.Takizawa,C.G.and D.O.Morgan,Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C.Curr Opin Cell Biol,2000.12(6):p.658-65.
    291.Egloff,A.M.,L.A.Vella,and O.J.Finn,Cyclin B1 and other cyclins as tumor antigens in immunosurveillance and immunotherapy of cancer Cancer Res,2006.66(1):p.6-9.
    292.Yang,M.,et al.,p31comet blocks Mad2 activation through structural mimicry.Cell,2007.131(4):p.744-55.
    293.Kidokoro,T.,et al.,CDC20,a potential cancer therapeutic target,is negatively regulated by p53.Oncogene,2008.27(11):p.1562-71.
    294.Mondal,G,et al.,Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer Carcinogenesis,2007.28(1):p.81-92.
    295.Roy,D.,S.Sarkar,and Q.Felty,Levels of IL-1 beta control stimulatory/inhibitory growth of cancer cells.Front Biosci,2006.11:p.889-98.
    296.Figueiredo,C.,et al.,Helicobacter pylori and interleukin 1 genotyping:an opportunity to identify,high-risk individuals for gastric carcinoma.J Natl Cancer Inst,2002.94(22):p.1680-7.
    297.Mort,J.S.and D.J.Buttle,Cathepsin B.Int J Biochem Cell Biol,1997.29(5):p.715-20.
    298.Thiel,G.and G.Cibelli,Regulation of life and death by the zinc finger transcription factor Egr-1.J Cell Physiol,2002.193(3):p.287-92.
    299.Lin,J.C.,et al.,Glutathione peroxidase 3 gene polymorphisms and risk of differentiated thyroid cancer Surgery,2009.145(5):p.508-13.
    300.Brigelius-Flohe,R.and A.Kipp,Glutathione peroxidases in different stages of carcinogenesis.Bioehim Biophys Acta,2009.
    301.Wang,L.,et al.,Cardl0 is a novel caspase recruitment domain/membrane-associated guanylate kinase family member that interacts with BCLl0 and activates NF-kappa B.J Biol Chem,2001.276(24):p.21405-9.
    302.Lee,C.R.,et al.,Identification and functional characterization of polymorphisms in human cyclooxygenase-1(PTGSI).Pharmacogenet Genomics,2007.17(2):p.145-60.
    303.Saffari,M.,et al.,Identification of novel p53 target genes by cDNA AFLP in glioblastoma cells.Cancer Lett,2009.273(2):p.316-22.
    304.Long,X.,et al.,Inhibition of protein phosphatase-1 is linked to phosphorylation of p53 and apoptosis.Apoptosis,2002.7(1):p.31-9.
    305.Dohoney,K.M.,et al.,Phosphorylation of p53 at serine 37 is important for transcriptional activity and regulation in response to DNA damage.Oncogene,2004.23(1):p.49-57.
    306.Ghobrial,I.M.,T.E.Witzig,and A.A.Adjei,Targeting apoptosis pathways in cancer therapy.CA Cancer J Clin,2005.55(3):p.178-94.
    307.Wang,X.,The expanding role of mitochondria in apoptosis.Genes Dev,2001.15(22):p.2922-33.
    308.Kroemer,G.and S.J.Martin,Caspase-independent cell death.Nat Med,2005.11(7):p.725-30.
    309.Cirman,T.,et al.,Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins.J Biol Chem,2004.279(5):p.3578-87.
    310.Zore,I.,et al.,Cathepsin B/cystatin C complex levels in sera from patients with lung and colorectal cancer Biol Chem,2001.382(5):p.805-10.
    311.Mohanam,S.,et al.,Down-regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells.Oncogene,2001.20(28):p.3665-73.
    312.Zwicky,R.,et al.,Cathepsin B expression and down-regulation by gene silencing and antisense DNA in human chondrocytes.Biochem J,2002.367(Pt 1):p.209-17.
    313.Vasiljeva,O.,et al.,Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice.Oncogene,2008.27(30):p.4191-9.
    314.Brouillet,J.P.,et al.,Cathepsin D assay in primary breast cancer and lymph nodes: relationship with c-myc,c-erb-B-2 and int-2 oncogene amplification and node invasiveness.Ear J Cancer,1990.26(4):p.437-41.
    315.Lenney,J.F.,et al.,Thermostable endogenous inhibitors of cathepsins B and H.Ear J Biochem,1979.101(1):p.153-61.
    316.Ritonja,A.,W.Machleidt,and A.J.Barrett,Amino acid sequence of the intraceitular cysteine proteinase inhibitor cystatin B from human liver.Biochem Biophys Res Commun,1955.131(3):p.1187-92.
    317.刘建平,Cathepsin B及其结合蛋白在卵巢癌细胞凋亡中的作用初步研究.博士学位论文,2005:p.1-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700