用户名: 密码: 验证码:
纳米催化无机膜集成技术的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米催化剂是新一代高性能的催化剂,具有高的催化活性、高的催化选择性、
    良好的催化稳定性,具有巨大的研究与应用价值,已受到科学界、企业界、各国
    政府的高度重视。经过多年的研究与开发,纳米催化剂的制备技术已日趋完善并
    逐步走向产业化。但是,关于纳米催化剂的工业化应用还是很少,特别是那种非
    负载型的悬浮态纳米催化剂,其主要原因之一是纳米催化剂的分离回收问题还没
    有很好的解决。高梯度磁分离与无机膜分离是两种较好的分离回收悬浮态纳米催
    化剂的技术,前者要求纳米催化剂或其载体具有高度饱和磁化强度而限制了它的
    应用,后者的应用领域更广。因而,采用无机膜分离技术分离回收纳米催化剂以
    解决纳米催化剂工程化应用的瓶颈问题已成为当前关注的焦点之一。
    无机膜催化反应器是将催化反应与无机膜分离过程相结合的一种反应分离
    耦合技术,已受到普遍关注。目前的无机膜催化反应过程研究还主要集中在气相
    体系,对液相体系的研究相对较少,尤其是对催化剂处于悬浮态的液相催化反应
    的研究。而使用悬浮态的催化剂可大大增加反应速率,提高催化剂的使用效率,
    而且这一类膜反应器也比较容易放大,所以研究催化剂处于悬浮态的液相无机催
    化膜反应器具有广阔的前景。
    为实现悬浮态纳米催化剂的工业化应用,我们对纳米催化与无机膜分离的耦
    合过程进行研究,主要从三个层次上展开研究工作:在对硝基苯酚制备对氨基苯
    酚的过程中研究纳米镍的催化性能;以上述催化过程为模型反应,对分置式的纳
    米催化无机膜反应器进行理论分析;在此基础上,针对分置式膜反应器的不足,
    进一步开发一体式纳米催化无机膜反应器,通过过程强化研究该膜反应器中的膜
    过滤行为,为一体式纳米催化无机膜反应器的应用提供基础数据与理论依据。
    首先,在对氨基苯酚的合成反应中比较了纳米镍与骨架镍的催化性能。实验
    结果显示,在同样的实验条件下,纳米镍的催化活性、稳定性、选择性均优于骨
    架镍。纳米镍的小粒径效应、表面结构以及不存在内孔等因素导致纳米镍具有高
    的催化活性、稳定性与选择性。采用氮气吸附、粒径分析等技术,对使用前后的
    催化剂的比表面积、孔容、粒径进行表征分析。结果表明,比表面积不是决定镍
    催化活性的唯一因素;纳米镍在反应中的团聚会导致纳米镍的失活;骨架镍催化
    剂中的一些微孔被反应物或产物所堵塞是引起骨架镍失活的原因之一。可见,在
    对硝基苯酚催化加氢制备对氨基苯酚的过程中,使用纳米镍作为催化剂,可大大
    提高催化剂的使用效率。在此基础上,研究了纳米镍催化合成对氨基苯酚的本征
    动力学,为纳米催化合成对氨基苯酚的工业生产提供基础数据。研究结果表明:
    当搅拌速度大于 300rpm 时,外扩散的影响已消除;在反应温度 80-110℃时,氢
     I
    
    
    南 京 工 业 大 学 博 士 学 位 论 文
    压 0.8MPa-1.9MPa,对硝基苯酚的初始浓度 37.94-249.97g·L-1的实验条件下,该
    反应对氢气为 1.3 级,对对硝基苯酚为零级,反应的活化能为 32.62 kJ·mol-1。
    其次,从采用陶瓷膜错流过滤技术分离回收纳米镍催化剂的可行性出发,研
    究操作参数对膜过滤性能的影响,考察膜过滤过程对催化剂的粒径、催化活性、
    悬浮液中颗粒浓度的影响,并对膜的污染与清洗进行详细的分析。结果表明,使
    用平均孔径为 50 纳米的 ZrO2陶瓷膜可以将纳米镍催化剂完全截留。操作压力在
    0.25MPa 左右时比较适宜。在实验范围内,随着膜面流速的增大,膜通量先减小
    后增大,这主要与纳米镍催化剂的粒径分布、易吸附等特性有关。膜通量随着颗
    粒浓度的增加而降低,随着温度的升高而线性增加。离心泵错流膜过滤过程对纳
    米镍催化剂的粒径以及催化活性都没有影响,这对纳米催化-膜分离耦合系统的
    稳定性操作是非常有利的。增加膜面流速有利于抑制悬浮液中纳米镍催化剂浓度
    的降低。采用扫描电镜对污染膜的截面及表面进行微观表征;采用能量发散 X
    衍射技术对膜的化学成份进行分析;根据 Darcy 定律对膜过滤阻力进行分析。结
    果表明,纳米镍催化剂吸附在膜的表面上及堵塞部分膜孔造成的膜污染是膜通量
    下降的主要原因。采用物理清洗加化学清洗的组合方法可以较好地恢复膜通量且
    清洗重复性好。
    然后,采用数学分析手段探讨了无机膜反应器的构型、反应级数等因素对三
    种多相分置式催化无机膜反应器(连续搅拌釜式-无机膜反应器(简称
    CST-MR)、间隙搅拌釜式-无机膜反应器(简称 BST-MR)、连续管式-无机膜
    反应器(简称 PF-MR))所需反应体积大小的影响,并以反应体积为目标函数,
    对于特定的反应确定最佳的分置式催化无机膜反应器。分析结果表明,对于像纳
    米镍催化合成对氨基苯酚的零级反应而言,选择 CST-MR 比较适宜。通过对
    CST-MR 中物料停留时间分布的分析可知,实际 CST-MR 系统中的物料停留时间
    分布密度可以直接按无外循环的、容积不包括循环系统的全混流反应器(CSTR)
    的停留时间分布密度来计算。
    最后,从一体式膜反应过程中膜过滤(简称一体式膜过滤)的特点出发,实
    验研究一体式膜过滤的强化,开发新型的一体式膜反应器,弥补分置式膜反应器
    的不足,并为一体式纳米催化无机膜反应器的应用提供基础数据与理论依据。主
    要
Nano-sized catalysts have received considerable attention for their excellent
    catalytic properties. Up to now, various methods have been developed to prepare
    nano-sized catalysts, and furthermore, a lot of nano-sized catalysts have been
    commercially produced. But the large scale applications of nano-sized catalysts have
    been still few, especially for these unsupported suspended nano-sized catalysts. One
    of the main reasons is due to the fact that the problem of recovery of nano-sized
    catalysts from product mixture has not been well resolved. High-gradient magnetic
    separation and inorganic membrane separation are two main methods for recovering
    nano-sized catalysts and the latter is more practicable. Therefore, applying inorganic
    membrane separation in nanocatalysis is important for implementing the industrial
    applications of nano-sized catalysts.
    In recent years, inorganic membrane reactors have been paid many attentions,
    but the research has been focused on gas-phase applications. A limited number of
    studies are concerned with the applications of inorganic membrane reactors to liquid
    phase reactions, especially for liquid phase reactions with catalysts in suspension.
    In order to implement commercial applications of nano-sized catalysts, the
    research work was carried out on coupling of nanocatalysis and inorganic membranes
    in this dissertation: examining the catalytic properties of nano-sized nickel for the
    preparation of p-aminophenol; theoretical analyzing side-stream nanocatalytic
    inorganic membrane reactor for the preparation of p-aminophenol over nano-sized
    nickel; designing a novel submerged inorganic membrane reactor to overcome the
    shortage of side-stream membrane reactor and to enhance the membrane flux by
    process intensification. These works will provide fundamental knowledge for the
    application of nanocatalytic inorganic membrane reactor.
    Firstly, catalytic properties of nano-sized nickel were investigated in the catalytic
    hydrogenation of p-nitrophenol to p-aminophenol in comparison with conventional
    Raney nickel, which is the commercially used catalyst. Experimental results showed
    that the catalytic activity, stability and selectivity of nano-sized nickel were superior
    to those of Raney nickel under the same reaction conditions. Particle size, surface
    structure and absence of micropores might be responsible for nano-sized nickel’s
    excellent catalytic properties. Fresh nickel and used nickel samples were characterized
    by particle size analyzer and nitrogen sorption. The results indicated that aggregation
     IV
    
    
    南 京 工 业 大 学 博 士 学 位 论 文
    of nanoparticles might lead to the deactivation of nano-sized nickel and jam of
    micropores could be the major reason for the deactivation of Raney nickel. In
    conclusion, nano-sized nickel was an efficient catalyst for the catalytic hydrogenation
    of p-nitrophenol to p-aminophenol. The intrinsic kinetics of preparation of
    p-aminophenol from p-nitrophenol over nano-sized nickel catalyst was also studied
    under exclusion from effects of external diffusion and internal diffusion. Experimental
    results showed that external diffusing influence could be eliminated when the
    agitation rate was over 300 rpm. Under the conditions that the reaction temperature,
    the hydrogen pressure, the initial concentration of p-nitrophenol were 80-110 C, 0.8
     o
    MPa-1.9 MPa, 37.94-249.97 g·L-1 respectively, the reaction was zeroth order with
    respect to p-nitrophenol and 1.3 order with respect to hydrogen, and the activation
    energy of the reaction was 32.62 kJ·mol-1.
    Secondly, the feasibility of using cross-flow ultrafiltration technology to separate
    the nano-sized nickel catalyst from a liquid was investigated. At the same time, effects
    of operating conditions on the filtration performance were discussed. Other filtration
    behaviors, such as membrane fouling and cleaning, were also studied. Experimental
    results showed that the nano-sized nickel catalyst could be completely rejected by a
    ceramic membrane with a mean pore size of
引文
[1] 胡迁林 我国催化技术及催化剂的发展现状,当代化工,2001,30:2-6.
    [2] 张立德 纳米材料技术的发展趋势和应用机遇,世界科技研究与发展,2002,24:18-22.
    [3] 张立德 纳米材料和技术的战略地位、发展趋势和应用,中国高新技术企业,2000:
    4-6.
    [4] 周忠清,金国山 金超微粒子催化剂的新进展,现代化工,1999,19:19-21.
    [5] 张玉军,陈杰瑢 油脂加氢催化剂研究现状及发展趋势,工业催化,2002,10:23-26.
    [6] 刘冰,任兰亭 21 世纪材料发展的方向—纳米材料,青岛大学学报,2000,13:91-95.
    [7] Carnes C.L., Klabunde K.J. The catalytic methanol synthesis over nanoparticle metal
    oxide catalysts, J. Mol. Catal. A: Chem., 2003, 194:227-236.
    [8] Wang H.M., Yu Z.B., Chen H.Y., et al. High activity ultrafine Ni-Co-B amorphous alloy
    powder for the hydrogenation of benzene, Appl. Catal. A: General, 1995,129: 143-149.
    [9] Hwang C.B., Fu Y.S., Lu Y.L., et al. Synthesis, characterization, and highly efficient
    catalytic reactivity of suspended palladium nanoparticles, J. Catal., 2000,195: 336-341.
    [10] Lee S.P., Chen Y.W Nitrobenzene hydrogenation on Ni–P, Ni–B and Ni–P–B ultrafine
    materials, J. Mol. Catal. A: Chem., 2000, 152:213-223.
    [11] Gao J.Z., Guan F., Zhao Y.C., et al. Preparation of ultrafine nickel powder and its
    catalytic dehydrogenation activity, Mater. Chem. Phys., 2001,71:215-219.
    [12] 程祖毅,任家瑛 镍超细粒子催化二级醇液相脱氢反应的活性研究,华东师范大学学
    报(自然科学版),1995:65-71.
    [13] Balint L., Miyazaki A., Aika K.I. Methane reaction with NO over alumina-supported Ru
    nanoparticles, J. Catal., 2002,207:66-75.
    [14] Sulman, E., Matveeva V., Usanov A., et al. Hydrogenation of acetylene alcohols with
    novel Pd colloidal catalysts prepared in block copolymers micelles, J. Mol. Catal. A:
    Chem., 1999,146:265-269.
    [15] Riahi G., Guillemot D., Polisset-Thfoin M. Preparation, characterization and catalytic
    activity of gold-based nanoparticles on HY zeolites, Catal. Today, 2002,72:115-121.
    [16] 左东华,张志琨、崔作林 纳米镍在硝基苯加氢中催化性能的研究,分子催化,1995,
    9:298-302.
    [17] 刘雪宁,杨治中 纳米科技研究中的若干新热点,广州化学,1999,55-60.
    [18] Malyala R.V., Rode C.V., Arai M. Activity, selectivity and stability of Ni and bimetallic
    Ni–Pt supported on zeolite Y catalysts for hydrogenation of acetophenone and its
    substituted derivatives, Appl. Catal. A: General, 2000,193:71-86.
    [19] Keshavaraja1 A., She X., Flytzani-Stephanopoulos M. Selective catalytic reduction of
    NO with methane over Ag-alumina catalysts, Appl. Catal. B: Environmental, 2000, 27:
     110
    
    
    南 京 工 业 大 学 博 士 学 位 论 文
    L1-L9.
    [20] 戴红 贵金属合金催化剂的应用,贵金属,1999,20:58-62.
    [21] 张志檩 跟踪纳米技术,迎接石油化工纳米材料的新纪元,现代化工,2001,21:1-7.
    [22] 张志檩 跟踪纳米技术,迎接石化纳米材料新纪元,中国石化,2001:36-41.
    [23] 陈香生 纳米材料及其在石油化工催化剂和添加剂中的应用前景,炼油设计,2001,
    31:58-61.
    [24] 冷发启 纳米科学与纳米材料,南华大学学报(理工版),2002,16:74-78.
    [25] 刘祥萱,杨绪杰,汪信等 纳米 TiO2对改性 BMI 树脂固化反应及热稳定性影响,复
    合材料学报,2001,18:12-15.
    [26] 阎淑萍,张士莹,秦惠霞等 纳米材料在化工领域中的应用,河北化工,2001:1-6.
    [27] 李明,刘铁 纳米材料在化工领域的应用,当代化工,2001,30:14-16.
    [28] 方华书,林思明 纳米材料与技术-个崭新的前沿领域,福州师专学报(自然科学版),
    2001,21:50-56.
    [29] 冯丽鹃,赵宇靖,陈诵英 超细粒子催化剂,石油化工,1991,20:633-639.
    [30] 于霞飞,彭子飞 纳米钴系列产品的应用及其展望,中国高新技术企业,2000,0:36-37.
    [31] 唐定骧,洪广言,陈云贵等 稀土纳米材料及应用,四川稀土,2001,0:2-5.
    [32] 霍煜丽,葛树琴 纳米级稀土材料在汽车尾气净化中的应用,化工新型材料,2002,
    30:29-31.
    [33] 王正平,叶贤富,安红波 纳米 TiO2的光催化机理、制备方法及应用,化学与粘合,
    2003,0:23-25.
    [34] 袁颂东,袁静玲 纳米催化剂的制备及其在环保领域的应用,湖北工学院学报,2000,
    16:72-74.
    [35] Somorjai G.A., Borodko Y.G. Research in nanosciences-great opportunity for catalysis
    science, Catal. Lett., 2001, 76:1-5.
    [36] 陈彩凤,陈志刚,陈雪梅等 纳米粉体的制备技术,江苏理工大学学报(自然科学版),
    2000,21:98-102.
    [37] 徐存英,王真,洪品杰 纳米粉体材料的制备,云南民族学院学报,1998,7:65-69.
    [38] 邵庆辉,古国榜,章丽娟等 纳米材料的合成与制备进展研究,兵器材料科学与工
    程,2002,25:59-63.
    [39] 盖轲,李锡恩,刘文君 纳米材料制备方法简介,甘肃教育学院学报(自然科学版),
    2002,16:43-46.
    [40] 高海燕,曹顺华 纳米粉制备方法进展,硬质合金,2002,19:96-99.
    [41] 吴金桥,王玉琨 纳米材料的液相制备技术及其进展,西安石油学院学报(自然科学
    版),2002,17:31-38.
    [42] Yoo J.S. Selective gas-phase oxidation at oxide nanoparticles on microporous materials,
    Catal. Today, 1998, 41: 409-432.
    [43] 陈克正,张志琨,崔作林等 氢电弧等离子体法制备的纳米镍铈粒子的催化特性,功
     111
    
    
    参考文献
    能材料,1996,27:562-564.
    [44] Wang C., Zhang X.M., Qian X.F., et al. Preparation of nanocrystalline nickel powders
    through hydrothermal-reduction method, Mater. Res. Bull., 1998, 12: 1747-1751.
    [45] Zhang X.M., Wang C., Xie Y., et al. Preparation and characterization of nanocrystalline
    nickel monosulfide (h) via the ethanol-thermal reducing process, Mater. Res. Bull.,1999,
    34: 1967-1972.
    [46] Kapoor S., Salunke H.G., Tripathi A.K., et al. Radiolytic preparation and catalytic
    properties of nanophase nickel met al particles, Mater. Res. Bull., 2000, 35: 143-148.
    [47] Zheng H.G., Liang J.H., Zeng J.H., et al. Preparation of nickel nanopowders in
    ethanol-water system (EWS), Mater. Res. Bull., 2001, 36: 947-952.
    [48] Vitulli G., Verrazznai A., Pitzalis E., et al. Pt/γ-Al2O3 catalytic membranes vs. Pt on
    γ-Al2O3powders in the selective hydrogenation of p-chloronitrobenzene, Catal. Lett., 1997,
    44:205-210.
    [49] Peureux P., Torres M., Mozzanega H., et al. Nitrobenzene liquid-phase hydrogenation in
    a membrane reactor, Catal. Today, 1995, 25:409-415.
    [50] Crezee E., Barendregt A., Kapteijn F., et al. Carbon coated monolithic catalysts in the
    selective oxidation of cyclohexanone, Catal. Today, 2001, 69: 283-290.
    [51] Asplund S., Fornell C., Holmgren A., et al. Catalyst deactivation in liquid- and gas-phase
    hydrogenation of acetylene using a monolithic catalyst reactor, Catal. Today, 1995, 24:
    181-187.
    [52] Cybulski A., Chrzaszcz J., Twigg M.V., et al. Hydrogenation of dimethyl succinate over
    monolithic catalysts, Catal. Today, 2001,69: 241-245.
    [53] de Deugd R.M., Kapteijn F., Moulijn J.A. Using monolithic catalysts for highly selective
    Fischer–Tropsch synthesis, Catal. Today, 2003,79-80: 495-501.
    [54] Fields D.L., Lim P.K., Roberts G.W. Catalytic destruction of methyl tertiary butyl ether
    (MTBE) with a Pt/Rh monolithic automotive exhaust catalyst, Appl. Catal. B:
    Environmental, 1998,15: 93-105.
    [55] Lindstr?m B., Agrell J., Pettersson L.J. Combined methanol reforming for hydrogen
    generation over monolithic catalysts, Chem. Eng. J., 2003, 93: 91-101.
    [56] Mulukutla R.S., Shido T., Asakura K., et al. Nanoparticles of RhOx in the MCM-41: a
    novel catalyst for NO-CO reaction in excess O2, Scripta Materialia, 2001,44: 1695-1698.
    [57] Mulukutla R.S., Shido T., Asakura K., et al. Characterization of rhodium oxide
    nanoparticles in MCM-41 and their catalytic performances for NO–CO reactions in excess
    O2, Appl. Catal. A: General, 2002, 228: 305-314.
    [58] Zheng S., Gao L., Zhang Q.H., et al. Synthesis, Characterization, and Photoactivity of
    Nanosized Palladium Clusters Deposited on Titania-Modified Mesoporous MCM-41, J.
    Solid State Chem., 2001,162: 138-141.
     112
    
    
    南 京 工 业 大 学 博 士 学 位 论 文
    [59] Zheng S., Gao L. Synthesis and characterization of Pt, Au or Pd clusters deposited
    titania-modified mesoporous silicate MCM-41, Mater. Chem. Phys., 2003,78: 512-517.
    [60] Molinari R., Mungari M., Drioli E., et al. Study on a photocatalytic membrane reactor for
    water purification, Catal. Today, 2000,55:71-78.
    [61] Li X.Z., Zhao Y.G. Advanced treatment of dyeing wastewater for reuse, Wat. Sci. Tech.,
    1999,39:249-255.
    [62] Lee S.A., Choo K.H, Lee C.K., et al. Use of ultrafiltration Membranes for the separation
    of TiO2 photocatalysis in drinking water treatment, Ind. Eng. Chem. Res., 2001, 40:
    1712-1719.
    [63] Kelland D.R. Magnetic separation of nanoparticles, IEEE Transactions on Magnetics,
    1998, 34: 2123-2125.
    [64] 江芳,韩永忠 高剃度磁分离技术在废水处理中的应用,污染防治技术,2002,15:
    17-19.
    [65] Bucak S., Jones D.A., Laibinis P.E., et al. Protein separations using colloidal magnetic
    nanoparticles, Biotech. Prog., 2003,19:477-484.
    [66] Laurie W., John L. Liquid phase chemical process with separation of catalyst particles by
    magnetic flocculation, EP0014802.
    [67] Yano Jiyunichi Separation of magnetic catalyst, JP 60137439.
    [68] Narita H. Separation of iron catalyst from coal liquefaction crude oil with high gradient
    magnetic separator, Coal Sci. Technol., 1995, 24:1323-1326.
    [69] Yoon T.J., Kim J. I., Lee J.K. Rh-based olefin hydroformylation catalysts and the change
    of their catalytic activity depending on the size of immobilizing supporters, Inorganica
    Chimica Acta, 2003, 345: 228-234.
    [70] Gao Y, Chen B.H., Li H.L., et al. Preparation and characterization of a magnetically
    separated photocatalyst and its catalytic properties, Mater. Chem. Phys., 2003,80:348-355.
    [71] Andersson S.I., Myrstad T. Test of magnetically separated catalysts in an ARCO pilot
    unit, Appl. Catal. A: General, 1997:159:291-304.
    [72] Goolsby T.L., Moore H.F. Development of FCC catalyst magnetic separation, Separ. Sci.
    Tech., 1997, 32: 655-668.
    [73] Chen J, Xiang F.Z., He P.B. Magnetic separation of fluid catalytic cracking equilibrium
    catalyst, Transaction of Nonferrous Metals Society of China, 1998, 8:319-323.
    [74] 姚炜,张洪林,孙桂大等 高梯度磁分离技术的进展及其在 FCC 废催化剂中的应用,
    抚顺石油学院学报,2000,20:25-30.
    [75] 袁峻业,卫全华 催化裂化废催化剂磁分离装置及工业应用,炼油设计,2001,31:
    30-32.
    [76] 王东,张洪林,蒋林时等 催化裂化催化剂的磁分离及再生回用技术的发展,2001,
    27:19-21.
     113
    
    
    参考文献
    [77] 向发柱,陈荩 高梯度磁分离 FCC 平衡催化剂研究,国外金属矿选矿,1998:2-4.
    [78] 郝代军,王志杰,卫全华等 磁分离技术用于回收被重金属污染的 FCC 催化剂,石
    油炼制 与化工,2001,32:12-17.
    [79] Hettinger, William P. Magnetic separation of old from new cracking catalyst by means of
    heavy rare earth "magnetic hooks", US5328594.
    [80] Hettinger, William P. Addition of magnetically active moieties for magnetic beneficiation
    of particulates in fluid bed hydrocarbon processing, US5230869.
    [81] Hettinger, William P. Superparamagnetic formation of FCC catalyst provides means of
    separation of old equilibrium fluid cracking catalyst, US5190635.
    [82] 闵恩泽 工业催化剂的研制与开发,中国石化出版社, 1997.
    [83] 吴颉,王君,景晓燕等 开发与应用磁性高分子微球的制备及应用,化工新型材料,
    2002,30:23-26.
    [84] 陈捷,薛博,白姝 新型磁性亲和载体的制备及其对溶菌酶的吸附,天津大学学报,
    2001,34:103-106.
    [85] Teunissen W., Frank M.F., Geus J., et al. The structure of carbon encapsulated NiFe
    nanoparticles, J. Catal., 2001, 204:169-174.
    [86] 董星龙,金寿日,张志东 碳包覆磁性金属纳米胶囊的制备及表征,粉末冶金工业,
    1999,9:31-33.
    [87] Dong X.L., Zhang Z.D., Jin S.R., et al. Surface characterizations of ultrafine Ni particles,
    NanoStructured Mater., 1998, 10:585-592.
    [88] Dong X.L., Zhang Z.D., Xiao Q.F., et al. Characterization of ultrafine γ-Fe(C), α-Fe(C)
    and Fe3C particles synthesized by arc-discharge in methane, J. Mater. Sci., 1998, 33:
    1915-1919.
    [89] 张勋高,江明,刘英 交流碳弧法合成碳包碳化铁纳米晶,高等学校化学学报,2001,
    22:91-94.
    [90] 张冠东,官月平,单国彬等 纳米 Fe3O4颗粒的表面包覆及其在磁性氧化铝载体制备
    中的应用,过程工程学报,2002,2:319-324.
    [91] 郑领英,王学松 膜技术,化学工业出版社,2001.
    [92] Marcel Mulder 著,李琳译 膜技术基本原理,清华大学出版社,1999.
    [93] 徐南平,邢卫红,赵宜江 无机膜分离技术与应用,化学工业出版社,2003.
    [94] 李建华 膜分离技术的发展及其在反应中的应用,化学工程师,1997:32-33.
    [95] 顾爱萍,白玉洁 分离技术在石油化工领域中的应用与发展,天津化工,2001:16-19.
    [96] 朱智清 膜分离技术的发展及其工业应用,化工技术与开发,2003,32:19-21.
    [97] 魏庆葆 膜分离技术的工业化应用与发展,郑州牧业工程高等专科学校学报,2002,
    22:176-178.
    [98] 劳嘉葆 膜分离技术的应用前景广阔,黑龙江造纸,2002:10-11.
    [99] Héran M., Elmaleh S. Microfiltration through an inorganic tubular membrane with high
     114
    
    
    南 京 工 业 大 学 博 士 学 位 论 文
    frequency retrofiltration, J. Membr. Sci., 2001,188: 181-188.
    [100] Viadero Jr R.C., Noblet J.A. Membrane filtration for removal of fine solids from
    aquaculture process water, Aquacultural Eng., 2002,26:151-169.
    [101] Hwang K.J., Liu H.C. Cross-flow microfiltration of aggregated submicron particles, J.
    Membr. Sci., 2002,201: 137-148.
    [102] Hwang K.J., Yu Y.H., Lu W.M. Local properties of cake in cross-flow microfiltration of
    submicron particles, J. Membr. Sci., 1998,138: 181-192.
    [103] Hwang K.J., Yu Y.H., Lu W.M. Cross-flow of submicron microbial suspension, J. Membr.
    Sci., 2001,194: 229-243.
    [104] Ramirez J.A., Davis R.H. Application of cross-flow microfiltration with rapid
    backpulsing to wastewater treatment, J. Hazard. Mater. B, 1998,63: 179-197.
    [105] 许煜汾,范文元 陶瓷微滤膜分离 Zr(OH)4 悬浮液的研究,中国粉体技术,2000,6:
    251-253.
    [106] 范文元,许煜汾 陶瓷微滤膜过滤亚微米级悬浮液的研究,合肥工业大学学报(自然
    科学版),2000,23:104-107。
    [107] 钟璟,徐南平,时均 溶液环境对陶瓷膜微滤微米级颗粒悬浮液的影响,高校化学
    工程学报,2000,14:19-24.
    [108] 钟璟,徐南平,时均 颗粒粒径和膜孔径对陶瓷膜微滤微米级颗粒悬浮液的影响,
    高校化学工程学报,2000,14:230-234.
    [109] 李红,钟璟,邢卫红等 硫酸法钛白粉生产工艺中偏钛酸回收新技术的研究,水处理
    技术,1995,21:325-329.
    [110] 孙杰,金珊 无机膜回收硫酸法钛白生产中偏钛酸的研究,石油化工高等学校学报,
    2001,14:40-47.
    [111] 赵宜江,钟璟,李红等 陶瓷膜回收钛白生产中偏钛酸的研究,涂料工业,1998:17-20.
    [112] 赵宜江,钟璟,李红等 陶瓷微滤膜处理钛白生产废水研究,化学工程,1998,26:
    56-60.
    [113] Hwang S.J., Chang D.J., Chen C.H. Steady state permeate flux for particle cross-flow
    filtration, Chem. Eng. J., 1996,61:171-178.
    [114] Dwars T., Haberland J., Grassert I., et al. Asymmetric hydrogenation in a membrane
    reactor recycling of the chiral catalyst by using a retainable micellar system, J. Mol. Catal.
    A: Chem., 2001, 68: 81-86.
    [115] Brinkmann N., Giebel D., Lohmer G., et al. Allylic substitution with dendritic palladium
    catalysts in a continuously operating membrane reactor, J. Catal., 1999, 183: 163-168.
    [116] Giffels G., Beliczey J., Felder M., et al. Polymer enlarged oxazaborolidines in a
    membrane reactor enhancing effectively by retention of the homogeneous catalyst,
    Tetrahedron: Asymmetry, 1998, 9: 691-696.
    [117] Rissom S., Beliczey J., Giffels G., et al. Asymmetric reduction of acetophenone in
     115
    
    
    参考文献
    membrane reactors comparison of oxazaborolidine and alcohol dehydrogenase catalysed
    processes, Tetrahedron: Asymmetry, 1999, 10: 923-928.
    [118] Dijkstra H.P., van Klink G.P.M., van Koten G. The use of ultra- and nanofiltration
    techniques in homogeneous catalyst recycling, Acc. Chem. Res., 2002,35:798-810.
    [119] Heijnen J.H.M., de Bruijn V.G., van den Broeke L.J.P., et al. Micellar catalysis for
    selective poxidations of linear alkenes, Chem. Eng. Proc., 2003, 42: 223-230.
    [120] Michales A.S. New separation technique for the CPI, Chem. Eng. Prog., 1968, 64: 31-43.
    [121] 刘忠洲,贾志谦 膜化学反应器及其应用, 第四届全国膜和膜过程学术报告会,南京,
    2002:41-49.
    [122] 盛梅,林西平,栗洪道等 无机膜反应器,江苏石油化工学院学报, 1999,11:59-64.
    [123] 吴泽彪,盛梅,朱毅青 无机膜和无机膜反应器, 江苏石油化工学院学报,1998,10:
    57-60.
    [124] 方永成,江桂秀 膜反应与膜反应器技术,石油炼制与化工,1994,25:35-40.
    [125] 胡云光 膜反应器在石油化工中的应用,石油化工,1994,23:400-406.
    [126] 于晓东,许勇,汪仁 膜反应器在催化反应中的研究进展,天然气化工 , 1994,19:
    37-43.
    [127] Zaman J., Chakma A. Inorganic membrane reactor, J. Membr. Sci., 1994,92:1-28.
    [128] Coronas J., Santamaraia J. Catalytic reactors based on porous ceramic membranes, Catal.
    Today, 1999,51:377-389.
    [129] Julbe A., Farrusseng D., Guizard C. Porous ceramic membranes for catalytic
    reactors-overview and new ideas, J. Membr. Sci., 2001,181:3-20.
    [130] Gielens F.C., Tong H.D., van Rijn C.J.M., et al. High-flux palladium-silver alloy
    membranes fabricated by microsystem technology, Desalination, 2002,147:417-423.
    [131] She Y., Han J., Ma Y.H. Palladium membrane reactor for the dehydrogenation of
    ethylbenzene to styrene, Catal. Today, 2001,67:43-45.
    [132] Lin Y.M., Rei M.H. Process development for generating high purity hydrogen by using
    supported palladium membrane reactor as steam reformer, International Journal of
    Hydrogen Energy, 2000,25:211-219.
    [133] Lin Y.M., Lee G.L., Rei M.H. An integrated purification and production of hydrogen with
    a palladium membrane-catalytic reactor, Catal. Today, 1998, 44:343-349.
    [134] Li A., Liang W., Hughes R. Characterisation and permeation of palladium/stainless steel
    composite membrane. J. Membr. Sci., 1998,149:259-268.
    [135] 沈梅兴,陆天长,杨南如等 混合导电性催化透氧陶瓷膜在天然气化工领域中的应用,
    火花塞与特种陶瓷,1998:24-27.
    [136] Gu X.H., Jin W.Q., Chen C.L., et al. YSZ-SrCo0.4Fe0.6O3- membranes for the partial
    oxidation of methane to syngas, AIChE J., 2002, 48: 2051-2060.
    [137] Akin F. T., Lin Y.S. Oxidative coupling of methane in dense ceramic membrane reactor
     116
    
    
    南 京 工 业 大 学 博 士 学 位 论 文
    with high yields, AIChE J., 2002, 48: 2298-2306.
    [138] 钟丽,扬维慎,刘杰等 无机膜反应器中乙苯脱氢反应的研究, 催化学报,1995,16:
    506-509.
    [139] Gobina E., Hughes R. Ethane dehydrogenation using a high-temperature catalytic
    membrane reactor, J. Membr. Sci., 1994,90:11-19.
    [140] 扬先贵,陈义均,安伟珠 微孔金属镍膜反应器中环己烷脱氢反应的研究, 石油化工,
    1996,25:1-4.
    [141] Daub K., Wunder V.K., Dittmeyer R. CVD preparation of catalytic membrane for
    reduction of nitrates in water, Catal. Today, 2001, 67:257-272.
    [142] Daub K., Emig G., Chollier M.J., et al. Studies on the use of catalytic membranes for
    reduction of nitrate in drinking water, Chem. Eng. Sci., 1999,54:1577-1582.
    [143] Ilinich O.M., Cuperus F.P., van Gemert R.W., et al. Catalytic membrane in denitrification
    of water: a means to facilitate intraporous diffusion of reactants, Separ. Pur. Tech., 2000, 21:
    55-60.
    [144] Ilinich O.M., Cuperus F.P., Nosova L.V., et al. Catalytic membrane in reduction of
    aqueous nitrates: operational principles and catalytic performance, Catal. Today, 2000,
    56:137-145.
    [145] Strukul G., Gavagnin R., Pinna F., et al. Use of palladium based catalysts in
    hydrogenation of nitrates in drinking water: from powders to membranes, Catal. Today,
    2000, 55:139-149.
    [146] Bottino A., Capannelli G., Comite A., et al. Polymeric and ceramic membranes in
    three-phase catalytic membrane reactors for the hydrogenation of methylenecyclohexane,
    Desalination, 2002,144:411-416.
    [147] Niwa S.I., Eswaramoorthy M., Nair J., et al. A one-step conversion of benzene to
    phenol with a palladium membrane, Science, 2002,295(4):105-107.
    [148] Molinari R, Palmisano L., Drioli E., et al. Studies on various reactor configurations for
    coupling photocatalysis and membrane processes in water purification, J. Membr. Sci.,
    2002,5211:1-17.
    [149] Molinari R, Gradue .C, Drioli E., et al. Photocatalytic membrane reactors for degradation
    of organic pollutants in water, Catal. Today, 2001, 67:273–279.
    [150] Sopajaree K., Qasim S.A., Basak S., et al. An integrated flow reactor-membrane
    filtration system for heterogeneous photocatalysis. Part I: Experiments and modeling of a
    batch-recirculated photoreactor, J. Appl. Electrochem.,1999,29:533-539.
    [151] Sopajaree K., Qasim S.A., Basak S.,et al. An integrated flow reactor-membrane
    filtration system for heterogeneous photocatalysis. Part II: Experiments on the
    ultrafiltration unit and combined operation, J. Appl. Electrochem., 1999, 29: 1111-1118.
    [152] 李丽洁,华兆哲,陈坚等 新型光催化固定膜反应器对2,4-二硝基苯酚的降解研究,
     117
    
    
    参考文献
    水处理技术 1999,25:151-154.
    [153] 范益群,史载锋,徐南平等 光催化膜反应器用于亚甲基蓝的降解,南京化工大学学
    报, 1999,21:49-52.
    [154] Shimizu Y., Urau K., Okuno Y.I., et al. Effect of particle size distribution of activated
    sludges on cross-flow microfiltration flux for submeraged membrane, J. Ferment. Bioeng.,
    1997,83:583-589.
    [155] Shimizu Y., Okuno Y.I., Urau K., et al. Filtration characteristics of hollow fiber
    microfiltration membranes used in membrane bioreactor for domestic wastewater
    treatment, Wat. Res., 1996,30:2385-2392.
    [156] Shimizu Y., Urau K., Okuno Y.I., et al. Cross-flow microfiltration of activated sludge
    using submerged membrane with air bubbling, J. Ferment. Bioeng., 1996, 81: 55-60.
    [157] Henry C.R. Catalytic activity of supported nanometer-sized metal clusters, Appl. Surf.
    Sci., 2000, 164:252-259.
    [158] 吕自红,朱志庆,周聪颖 改性雷尼镍在合成间苯二甲胺反应中的性能研究,浙江化
    工,1998, 29: 16-17.
    [159] 陈丹,李树德 兰尼镍催化加氢制备邻氯苯胺,染料工业,1997, 34: 31-33.
    [160] Mikkola J.P., Salmi T. Three-phase catalytic hydrogenation of xylose to xylitol
    –prolonging the catalyst activity by means of on-line ultrasonic treatment, Catal. Today.,
    2001, 64: 271-277.
    [161] 刘琳,仲崇民 硝基苯选择加氢制对氨基苯酚,抚顺石油学院学报,1999,19:19-23.
    [162] 赵玉白 对氨基苯酚氧化变质处理研究,标准化报道,1990:19-31.
    [163] 李荣才 对氨基苯酚(PAP)国内外概况及发展趋势,江苏化工,1999,27:13-16.
    [164] 林彬,王艳华,董中宁 对氨基苯酚的合成及其应用,沈阳化工,1997,26:35-38.
    [165] 高洪,袁华,喻宗沅 对氨基苯酚的合成及应用述评,湖北化工,2000:1-2.
    [166] 董研 对氨基苯酚的合成工艺述评,贵州化工,1996:30-33.
    [167] 王晓艳 对氨基苯酚的合成方法及其工业应用,陕西化工,1995:21-24.
    [168] Vaidya M.J., Kulkarni S.M., Chaudhari R.V. Synthesis of p-aminophenol by catalytic
    hydrogenation of p-nitrophenol, Organic Process Research & Development, 2003,7:
    202-208.
    [169] Rode C.V., Vaidya M.J., Jaganathan R., et al. Hydrogenation of nitrobenzene to
    p-aminophenol in a four-phase reactor reaction kinetics and mass transfer effects, Chem.
    Eng. Sci., 2001,561:299-1304.
    [170] Rode C.V., Vaidya M.J., Chaudhari R.V. Synthesis of p-Aminophenol by catalytic
    hydrogenation of nitrobenzene, Organic Process Research & Development, 1999,3:
    465-470.
    [171] 刘东志,肖义,张昱 硝基苯催化加氢制备对氨基苯酚的研究(I),染料工业,1998,
    35:14-16.
     118
    
    
    南 京 工 业 大 学 博 士 学 位 论 文
    [172] 张翼,王幸宜,沈永嘉 硝基苯催化加氢制备对氨基苯酚,染料工业,1999,36:23-26.
    [173] 申凯华,李树德,陈丹 催化加氢合成对氨基苯酚,辽宁化工,1997,26:91-93.
    [174] 金桂芳 对氨基苯酚的加氢合成,安徽化工,1998:17-19.
    [175] Yao H., Emmett P.J. Kinetics of catalytic liquid hydrogenation.Ⅰ. The hydrogenation of
    aromatic nitrocompounds over colloidal rhodium and palladium, J. Am. Chem. Soc., 1959,
    81: 4125-4132.
    [176] Yao H., Emmett P.J. Kinetics of liquid hydrogenation. Ⅱ. Hydrogenation of aromatic
    and aliphatic nitrocompounds over a colloidal platinum catalyst, J. Am. Chem. Soc., 1961,
    83: 796-799.
    [177] Yao H., Emmett P.J. Kinetics of liquid hydrogenation. Ⅳ . Hydrogenation of
    nitrocompounds over Raney nickel and nickel powder catalysts, J. Am. Chem. Soc., 1962,
    84: 1086-1091.
    [178] 张维刚,方岩雄,刘春英等 合成对乙酰氨基酚动力学,石油化工,2000,29:203-206.
    [179] Carrere H., Schaffer A., Rene F. Cross-flow filtration of guar gum solutions:
    experimental results, Separ. Pur. Tech., 1998,14:59-67.
    [180] Laitinen N., Michaud D., Piquet C. Effect of filtration conditions and backflusing on
    ceramic membrane ultrafiltration of board industry wastewaters, Separ. Pur. Tech., 2001,
    24: 319-328.
    [181] 赵宜江,钟璟,李红等 陶瓷微滤膜回收偏钛酸过程中反冲技术研究,水处理技术,
    1998,24:130-136.
    [182] Gan Q., Allen S.J., Taylor G. Design and operation of an integrated membrane reactor for
    enzymatic cellulose hydrolysis, Biochem. Eng. J., 2002,12: 223-229.
    [183] 苏君雅,齐选良 釜式反应器停留时间分布的测定及其与反应转化率的关系,石油大
    学学报(自然科学版),1990,14:94-101.
    [184] 考宏涛,陆雷,周松林 分解炉循环喂料与物料停留时间分布的研究,南京化工大学
    学报,2000,25:43-45.
    [185] 叶世超 带固体循环系统气流干燥器停留时间分布的计算,高校化学工程学报,1993,
    7:337-343.
    [186] 聂清德,胡金榜,赵忠祥等 反应-膜分离装置生产果糖的研究,食品工业科技,1995:
    5-8.
    [187] 张兴法 循环反应器中循环比的研究,合肥工业大学学报,2000,23:650-653.
    [188] Ueda T., Hata K., Kikuoka Y. Treatment of domestic sewage from rural settlements by a
    membrane bioreactor, Wat. Sci. Tech., 1996,34:189-496.
    [189] Ueda T., Hata K. Domestic wastewater treatment by a submerged membrane bioreactor
    with gravitational filtration, Wat. Res., 1999,33:2888-2892.
    [190] Shi Y.F., Jin F.X., Wu Y.Y. Microfiltration membrane bioreactor in stirred backflush
    operation for biotransformation using intact cells, Proc. Biochem.,1997,32:387-390.
     119
    
    
    参考文献
    [191] Gehlerta G., Hapke J. Mathematical modeling of a continuous aerobic membrane,
    Desalination, 2002,146: 405-412.
    [192] Witzig R., Manz W., Rosenberger S., et al. Microbiological aspects of a bioreactor with
    submerged membranes for aerobic treatment of municipal wastewater, Wat. Res.,2002, 36:
    394-402.
    [193] Rosenberger S., Kruger U., Witzig R., et al. Performance of a bioreactor with submerged
    membranes for aerobic treatment of municipal waste water, Wat. Res., 2002,36:413-420.
    [194] Lombardi M., Fiaty K., Laurent P. Implementation of observer for on-line estimation of
    concentration in continuous-stirred membrane bioreactor Application to the fermentation
    of lactose, Chem. Eng. Sci., 1999,542:1689-2696.
    [195] Liu R., Huang X., Wang C.W., et al. Study on hydraulic characteristics in a submerged
    membrane bioreactor process, Proc. Biochem., 2000, 36: 249-254.
    [196] Gui P., Huang X., Chen Y., et al. Effect of operational parameters on sludge
    accumulation on membrane surfaces in a submerged membrane bioreactor, Desalination,
    2002,151: 185-194.
    [197] Kishino H., Ishida H., Iwabu H., et al. Domestic wastewater reuse using a submerged
    membrane bioreactor, Desalination, 1996,106:115-l 19.
    [198] Shim J.K., Yoo I.K, Lee Y.M. Design and operation considerations for wastewater
    treatment using a flat submerged membrane bioreactor, Proc. Biochem., 2002,38:279-285.
    [199] Steve C. Membrane bioreactors for wastewater treatment - operating experiences with
    the Kubota submerged membrane activated sludge process, Membr. Tech., 1997:5-9.
    [200] Hong S.P., Bae T.H., Tak T.M., et al. Fouling control in activated sludge submerged
    hollow fiber, Desalination, 2002,143:219-228.
    [201] Choi J.H., Dockko S., Fukushi K., et al. A novel application of a submerged
    nanofiltration membrane bioreactor (NF MBR) for wastewater treatment, Desalination,
    2002,146:413-420.
    [202] 刘锐,黄霞,钱易等 一体式膜-生物反应器处理生活污水的中试研究,给水排水,
    1999,25:1-4.
    [203] 刘锐,黄霞,王志强等 一体式膜-生物反应器的水动力学特性,环境科学,2000,
    21:47-50.
    [204] 刘锐,黄霞,汪诚文等 一体式膜-生物反应器长期运行中的膜污染控制,环境科学,
    2000,21:58-61.
    [205] 丁杭军,文湘华,黄霞等 一体式膜-生物反应器处理医院污水,中国给水排水,
    2001,17:1-5.
    [206] 刘锐,黄霞,陈吕军等 一体式膜-生物反应器处理洗浴污水,中国给水排水,2001,
    17:5-8.
    [207] 范彬,黄霞,文湘华等 动态膜-生物反应器对城市污水的处理,环境科学,2002,
     120
    
    
    南 京 工 业 大 学 博 士 学 位 论 文
    23:51-56.
    [208] 付婉霞,李蕾 膜生物反应器处理盥洗废水运行参数的选择,北京建筑工程学院学报,
    2001,17:22-25.
    [209] 张宝杰,乔英杰,石玉明等 膜生物反应器污水处理工艺出水回用研究,哈尔滨工业
    大学学报,2002,34:79-81.
    [210] 殷峻,陈英旭 膜生物反应器中的膜污染问题,环境污染治理技术与设备,2001,2:
    62-68.
    [211] 邹联沛,王宝贞,张捍民 膜生物反应器中膜的堵塞与清洗的机理研究,给水排水,
    2000,26:73-76.
    [212] 单立志,施汉昌,张伟等 一体式膜好氧生物反应器的自动控制,给水排水,1998,
    24:25-28.
    [213] 鲍建国,卢学实 一体式膜生物反应器处理港口污水及回用,中国给水排水,2002,
    18:37-38.
    [214] Park J.Y.,Choi C.K., Kim J.J. A study on dynamic separation of silica slurry using a
    rotating membrane filter: 1. Experiments and filtrate fluxes, J. Membr. Sci., 1994, 97:
    263-273.
    [215] Choi C.K., Park J.Y., Park W.C., et al. A study on dynamic separation of silica slurry
    using a rotating membrane filter: 2. Modelling of cake formation, J. Membr. Sci., 1999,
    157:177-187.
    [216] Engler J., Winesner M.R. Particle fouling of a rotating membrane disk, Wat. Res., 2000,
    34:557-565.
    [217] Jr A.P., Vitolo M. Evaluation of cross-flow microfiltration membranes using a rotary
    disc-filter, Proc. Biochem. 1998,33:39-45.
    [218] Almalack M.H., Anderson G.K. Crossflow microfiltration with dynamic membranes, Wat.
    Res., 1997,31:1969-1979.
    [219] Brou A., Ding L., Boulnois P., et al. Dynamic microfiltration of yeast suspensions using
    rotating disks equipped with vanes, J. Membr. Sci., 2002,197: 269-282.
    [220] Koch W., Hoflinger W., Pongratz E., et al. Comparison of different scraper designs for
    crossflow filtration with rotating discs and cake limitation by scrapers, Separ. Pur. Tech.,
    2002,26:111-119.
    [221] Bott R., Langeloh T., Ehrfeld E. Dynamic cross flow filtration, Chem. Eng. J., 2000, 80:
    245-249.
    [222] Akonur A. Fluid physics of a rotating membrane separator, Northwestern University
    doctoral dissertation, 2001.
    [223] Serra C.A., Wiesner M.R., Laine J.M Rotating membrane disk filters design evaluation
    using computational fluid dynamics, Chem. Eng. J.,1999,72:1-17.
    [224] Serra C.A., Wiesner M.R. A comparison of rotating and stationary membrane disk filters
     121
    
    
    参考文献
    using computational fluid dynamics, J. Membr. Sci., 2000,165: 19-29.
    [225] Schwille J.A., Mitra D., Lueptow R.M. Design parameters for rotating cylindrical
    filtration, J. Membr. Sci., 2002,204: 53-65.
    [226] Wereley S. T., Akonur A., Lueptow R.M. Particle-fluid velocities and fouling in rotating
    filtration of a suspension, J. Membr. Sci., 2002,209: 469-484.
    [227] Kroner K.H., Nissinen V. Dynamic filtration of microbial suspension using an annular
    rotation filter, J. Membr. Sci., 1985,5: 85-100.
    [228] Belfort G. Diagnosis of membrane fouling using a rotating annular filter, J. Membr. Sci.,
    1993,77: 23-39.
    [229] Rushton A., Zhang G.S. Rotary microporous filtration, Desalination, 1988, 70:379-394.
    [230] 杨柳,陈文梅,戴光清等 旋转动态膜分离技术的研究与应用进展,流体机械,1999,
    27:29-33.
    [231] 刘泉,陈文梅,王颖 旋转动态管式膜流场与分离性能研究进展,过滤与分离,1999:
    1-5.
    [232] 杨柳,陈文梅,褚良银 旋转管式膜分离器环隙间速度和流线数值模拟,高校化学工
    程学报,2000,14:524-529.
    [233] 杨柳,赵飞虎,陈文梅等 旋转聚乙烯管式膜微滤实验研究,流体机械,2000,28:
    9-13.
    [234] 杨柳,赵飞虎,陈文梅等 旋转聚乙烯管式膜微滤机理研究,四川大学学报(工程科
    学版),2000,32:81-84.
    [235] 李海波,杨瑞菘,徐新阳等 加电场的旋转管式膜滤处理含油污水的过滤模型, 金
    属矿山,2002,51-54.
    [236] 童金忠,邢卫红,徐南平等 陶瓷微滤膜处理钛白粉水洗液的过程强化研究,高校化
    学工程学报,1999,13:421-427.
    [237] 童金忠,邢卫红,徐南平等 陶瓷微滤膜强化过程的工艺条件研究,膜科学与技术,
    1999,19:36-43.
    [238] 邢卫红,童金忠,徐南平等 微滤和超滤过程中浓差极化和膜污染控制方法研究,化
    工进展,2000,44-49.
    [239] Millward H.R., Bellhouse B.J, Walker G. Screw-thread flow promoters an experimental
    study of ultrafiltration and microfiltration performance, J. Membr. Sci., 1995, 106:269-279
    [240] Xu N., Xing W.H., Xu N.P., et al. Application of turbulence promoters in ceramic
    membrane bioreactor used for municipal wastewater reclamation, J. Membr. Sci., 2002,
    210:307-313.
    [241] Xu N., Xing W.H., Xu N.P., et al. Study on ceramic membrane bioreactor with turbulence
    promoter, Separ. Pur. Tech., 2003,32: 403-410.
    [242] Krstic D.M., Tekic M.N., Caric M.D., et al. The effect of turbulence promoter on
    cross-flow microfiltration of skim milk, J. Membr. Sci., 2002,208: 303-314.
     122
    
    
    南 京 工 业 大 学 博 士 学 位 论 文
    [243] Gupta B.B., Howell J.A., Wu D., et al. A helical baffle for cross-flow microfiltration, J.
    Membr. Sci., 1995, 99:31-42.
    [244] Yeh H.M., Chen K.T. Improvement of ultrafiltration performance in tubular membranes
    using a twisted wire-rod assembly, J. Membr. Sci., 2000,178:43-53.
    [245] Yeh H.M., Chen H.Y., Chen K.T. Membrane ultrafiltration in a tubular module with a
    steel rod inserted concentrically for improved performance, J. Membr. Sci., 2000, 168:
    121-123.
    [246] 邢卫红,童金忠,徐南平等 陶瓷微滤膜回收钛白粉水洗液中 TiO2 颗粒中试与现场
    考核,化学工程,2001,29:44-48.
    [247] 甘长海 超声波清洗过滤器技术,过滤与分离,2001,11:20-21.
    [248] 孙洪日,林国辉 超声波清洗原理与工艺分析,电子工艺技术,2001,22:77-78.
    [249] 张艳臻 超声波的声纳原理和空化效应,广西物理,1996,17:8-10.
    [250] 冯若, 黄金兰 超声清洗及其物理机制, 应用声学,13,42-47.
    [251] Chai X., Kobayashi T., Fujii N. Ultrasound-associated cleaning of polymeric membranes
    for water treatment, Separ. Pur. Tech., 1999,15:139-146.
    [252] 陈健,肖凯军,郭祀远等 超声波强化超滤过程,应用声学,2002,21:45-48.
    [253] 芮延年,郭旭红,刘文杰等 超声振动强化膜分离过程机理的研究,环境污染治理技
    术与设备,2002,3:43-46.
    [254] 李春喜,宋红艳,王子镐 超声波在化工中的应用与研究进展,石油学报(石油加工),
    2001,17:86-94.
    [255] Kobayashi T., Chai X., Fujii N. Ultrasound enhanced cross-flow membrane filtration,
    Separ. Pur. Tech., 1999,17:31-40.
    [256] Simon A., Penpenic L., Gondrexon1 N., et al. A comparative study between classical
    stirred and ultrasonically-assisted dead-end ultrafiltration, Ultrasonics Sonochemistry,
    2000, 7: 183-186.
    [257] Chai X., Kobayashi T., Fujii N. Ultrasound effect on cross-flow filtration of
    polyacrylonitrile ultrafiltration membranes, J. Membr. Sci., 1998, 148:129-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700