用户名: 密码: 验证码:
改性云母基微晶玻璃及其可切削性能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可切削微晶玻璃因其可用常规工具加工而倍受瞩目。在云母基可切削微晶玻璃中,云母结构中层面间的弱连接是导致材料强度低的主要原因。针对此问题,采用Ca~(2+)替代部分K~+可增强云母结构的结合力,提高云母晶体自身的强度;同时掺杂氧化锆来增强和增韧,可制得高强度可切削微晶玻璃。本研究对以钙云母为主相的可切削微晶玻璃的制备工艺、结构特点、增强增韧机理及力学性能等进行了初步的研究。
     本论文探讨了CaO-MgO-Al_2O_3-SiO_2-F系氟硅酸盐微晶玻璃的析晶机理。K~+促进了云母相基本基团[AlSiO_3]的形成。实验证明钙云母晶体的生长过程受界面跃迁过程控制。分析了相组成和显微结构对力学性能的影响及其增强增韧机理。含有大量细小板条形钙云母晶体的微晶玻璃,强度较高。微晶玻璃的断裂韧性随云母晶粒长径比的提高而提高,且存在有多种增韧作用:t-ZrO_2相变增韧、裂纹偏转增韧等。论述了云母基微晶玻璃的增强机理,计算晶粒长径比大于8时,晶体可通过裂纹偏转、晶粒补强增韧使材料具有较好的力学性能。讨论了不同长径比晶粒的增韧效果。
     按材料特点设计组成,采用二步法热处理,制得了以钙云母为主相的微晶玻璃,强度高达235MPa,断裂韧性最高2.17Mpa.m~(1/2)。此材料具有一定的可切削性。
Machinable glass ceramics (MGC) can be machined with conventional tools. In the conventional mica-based MGC, the weak bonding between tetrahedron-octahedron-octahedron at layers of mica leads to low strength. In the paper on the base of materials design and calculation in mica MGC system, the partly-substitution K+ by Ca2+ doubly strengthens bonding force between layers, then increases the strength of mica crystal in itself. At the same time, high strength mica-based MGC can be prepared by doping zirconia to strengthen and toughen. The study on preparation process, microstructure, strengthening and toughening mechanisms of MGC mainly containing Ca-mica were investigated, together with mechanical properties and machinability.
    Crystallization mechanisms were probed in the CaO-MgO-Al2O3-SiO2-F system in the study. K+ promoted mica's basic unit [AlSiO3] to form zirconia provided nucleating site for planar like mica crystal. The fracture toughness of the material improved with the increase in aspect ratio of mica crystal, and several existing toughening mechanisms were the phase transformation from t-ZrO2. The better mechanical properties attributed to the reinforcement and the crack deflection of crystals with aspect ratios over 8. Effect of different aspect ratios of crystals on toughen was discussed.
    With the special design, the MGC mainly containing Ca-mica crystals was prepared using two-stage heat treatment; the highest bending strength is 235MPa and the corresponding toughness is 2.17 MPa.m1/2, which was better than that of currently MGC. The results of machinability evaluation test showed that the material is easy to machine.
引文
[1] Mcmillion P C, Glass Ceramics, 2Ed, Academic Press, London, 1979
    [2] Beall G H, Advances in nucleation and crystallization in glasses. American Ceramic Society inc, Columbus Ohio, 1971:251
    [3] Chyung K, Beall G H, Crossman D G. Proce, 10th Inter Cong Glass, 14, 1974:33
    [4] Crossman D G., J. Am. Ceramic Soc, 1972, 55(1): 446-449
    [5] Tamman G, The states of Aggregation, D Van Nostrand Reinhold, New York, 1925
    [6] Becket R, Ann Phys, 1938, 32:128
    [7] Uhlmann D R, Discuss, Faraday Soc.,1970, 50:233-241
    [8] James P F, et al. Advances in nucleation and crystallization in glasses. American Ceramic Society, Inc. Columbus Ohio, 1982
    [9] 徐晓杰,李家治,姚鹿萍,硅酸盐学报,1988,16(5):398-407
    [10] 郑捷,吴勉学,诸培南,硅酸盐学报,1988,3(1):1-8
    [11] Mukherjee S P, et al, Physic. Chem. Glasses, 1967, 8(3):124
    [12] Hench L L, Splinfer R J, Allen W C, et al, Mater. Res, 1971, 2(1):19-71
    [13] Hench L L, Bioceramics, J. Am. Ceram. Soc, 1998, 81(7):1705-28
    [14] Hench L L, J. Am. Ceram. Soc, 1991,74(6): 1487
    [15] Wilson J, Pigott G H, Schoen F J, et al, Mater Res, 1981, 15:805-807
    [16] Wilson J, Nolletti D, Bioactive glass and glass-ceramics,Vol.h CRC Press, FL
    [17] Wilson J, et al, An introduction to Bioceramics, World Science, Sigapore, 1993:63
    [18] Kokubo T, et al, J. Mater. Sci, 1988, 20:2001-2004
    [19] Kokubo T, An introduction to Bioceramics, World Scientific, Singapore, 1993:75
    [20] Yamamuro T, ibid: 89
    [21] Holand W, Biocompatible and bioactive glass-ceramics-states of the art and new directions, J Non-cryst Solids, 1992, 219:192-197
    [22] Hill R, Wood P, Apatite-mullite glass ceramics, J Mater Sci, 1995(6): 311-318
    [23] Vogel W, Holand W, et al, 医用可加工生物活性微晶玻璃的研制,北京国际玻璃讨论会论文集,中国建筑工业出版社,北京,1984:44-48
    [24] Beall G H, Designs and properties of glass-ceramics. Mater Sci Ann Rev, 1992,22:91-119
    [25] 朱光明,黄占杰,可切削生物活性玻璃陶瓷的研制,硅酸盐学报,16(10),416-422
    [26] Holand W, et al, A New Type of Phlogopite crystal in Machinable Glass-ceramics, Glass Technology, 1983, 24(6): 318-325
    [27] Holand W, et al, Control of Phase Formation Process in Glass-ceramics for Medicine and Technology, J Non-Crystal Solid, 1991, 129:152-157
    [28] Gebhardt A, et al, TEM Study on the Origin of Cabbage-shaped mica Crystal Aggregates in Machinable Glass-ceramics, Acta Matal, 1999, 47(17):4427-4433
    
    
    [29] Thompson J Y, Bayne S C, Heyman H O, Mechanical properties of a new based machinable glass-ceramic for CAD/CAM restorations, J Prosthet Dent, 1996, 76(6): 619-624
    [30] Taira M, Yamaki M, Studies on hardness of nine machinable ceramics for dental applications, J Mater Sci Let, 1994, (13): 425-426
    [31] Taira M, Yamaki M. Ranking machinability of nine machinable ceramics by high-speed cutting tests, J Mater Sci Let, 1994, 13: 480-481
    [32] Uno T, Kasuga T, NaKajma K, et al. High-strength mica-containing glass-ceramics, J Am Ceram Soc, 1991, 74(12): 3139-3142
    [33] Uno T, Kasuga T, NaKayama S, et al. Microstructure of mica-based nanocomposite glass-ceramics, J.Am. Ceram. Soc, 1993,76(2): 539-541
    [34] Balk D S, No K S, Chun John S-S, Mechanical proporties of mica glass-ceramics, JAm Ceram Soc, 1995, 78(5):1217-22
    [35] 乔冠军,王永兰,金志浩,以Ba云母为主晶相的可切削玻璃陶瓷,无机材料学报,1996,11(3):29-32
    [36] 华素坤,仲维卓,人造氟金云母的结晶习性和缺陷,硅酸盐学报,1982,10(3):238
    [37] 陈伟民,陈楷,邓再德,氟硅酸盐微晶玻璃的结构和性能,硅酸盐通报,1998,2:390-394
    [38] Mccolm I J, Clark N J, Forming, shaping and working of high-performance ceramics, Blackie and Son Ltd, 1988
    [39] Strnad Z, Olass-ceramic Materials, Glass Science and Technology, ELSEVIER, Amesterdam, 1986
    [40] Matsushita T, Shirator M, Tsunashima A, et al, Crystallization of mica from glasses with composition of lead compositional, J Ceram Soc Jpn, 1982, 90:163-168
    [41] 马新沛,李光新,沈莲,低熔点可切削微晶玻璃的组织和性能,无机材料学报,2000,15(2):365-370
    [42] Holand W, Frank M, et al, Surface Crystallization of Leuit in Glass, J Non-tryst Solids, 1995, 180:292
    [43] Land C H, Porcelain Dental art Dent Cosmos, 1903, 45(5): 437-444
    [44] Weinstein M, Kate S, Weinstein A, Fused porcelain to metal, US Patent, No.30529831962
    [45] Relly J R, Nishimural I, Campbell S D, Ceramics in dentistry: Historical toats and current perspectives, J Prosthesis Dent, 1996, 75(1): 18-32
    [46] Mclean J W, Hugher T H, The reinforcement of dental porcelain with ceramic oxides, Br Dent J, 1965, 119(3): 251-267
    [47] Wagner W, Chv T, Biaxial flexural and in dentistry fracture toughness of three new dental core ceramics, J Prosthesis Dent, 1996, 76(2): 140-144
    [48] Deury I L, Idolloway J A, Rosentid S F, Effect of ion exchange on the microstructure, strength, and thermal expansion behavior of a leculite-reinforced porcelain, J Dent Res 1998, 77(4): 583-588
    [49] Brunton P A, Smith R McCord J F, et al, Procera ail-ceramic crowns: a new approach to an old problem? British Dental Journal, 1999, 186(9):
    
    430-434
    [50] Peter W P, William J O, Carole L G, et al, J Bio Mater Res, 1994,128(3):293-307
    [51] Rosunblun, Schulman, A review of all-ceramic restorations, JADA, 1997, 128:297
    [52] Tyszblat M, Process of the prparation of a sental prothesis by slight solid phase fritting of a metal oxide based infrastructure, U S Patent, 4772436, 1987
    [53] Levy H, Working with the In-ceram porcelain system, J Protheses Dent, 1990, 44(1): 1-11
    [54] Duret F, CAD/CAM in denstistry, Amer Dent Assoc, 1988, 117(7): 715-720
    [55] Mormann W H, Bindl A, The new creativity in ceramic restorations: Dental CAD/CAM Quintessence Int, 1996, 27(12): 821-828
    [56] Eindenbenz S, Lehner C R, Schaer P, Copying milling ceramic inlays from resin analog: a paraticable approach with the Celay system, Int J Prosthodont, 1994, 7(2): 134-142
    [57] Krejci I, Krejci J, Lutz F, Clinical evaluation of a new pressed glass ceramic inlay material over 1.5 years, Quintessence Int, 1992 23(3): 181-186
    [58] 清华大学陶瓷教研室编,陶瓷材料物理化学性能.高等教育出版社,北京,1980
    [59] 程金树,肖静,热处理制度对LiO_2-Al_2O_3-SiO_2系统微晶玻璃结构及性能的影响,武汉 工业大学学报,1995,21(5):123-126
    [60] Tzeng J M, Hun J G, et al, Al_2O_3-and ZrO_2-modified dental glass ceramics, J Mater Sci, 1993, 28:6127-6135
    [61] 王承遇,陶英,玻璃表面和表面处理,中国建材工业出版社,1993
    [62] 西北轻工业学院编.玻璃工艺学,中国轻工业出版社,北京,1995
    [63] Chuang J, Effect of surface tension on the toughness of glass, J Am Ceram Soc, 1987, 70(3):160-164
    [64] Widjaja S, et al, Creep-induced residual stress strengthening in Nicalon-Fiber-Reinforced BMAS-glass-ceramic-matrix composites, J Am Ceram Soc, 1999, 82(3): 657-664
    [65] Shappard L M, Toughening glass with fiber reinforcements, Am Ceram Bull, 1988, 67(11): 1779-1782
    [66] Prewo K M, Fiber-reinforced ceramics: New opportunities for composite materials, Am Ceram Soc Bull, 1989, 68(2): 395-400
    [67] Ye F, Zhou Y, Lei T C, et al, Effect of whisker surface treatment on the mechanical properties of 20vol% SiCw/BAS glass-ceramic composites, J Mater Sci, 2001, 36(1): 237-240
    [68] Xue L A, Chen I W, New SiC-whisker-reinforced lithium aluminosilicate composite, J Am Ceram Soc, 1993, 76(11): 2785-2789
    [69] Cooke R G, Habib F A, Harris B, Mechanical properties of fiber-reinforced glass and glass-ceramic, British Ceramic Transactions, 1993, 92(3): 128-132
    [70] Chyung K, Daweb S B, Fluoromica coated nicalon fiber reinforced glass-ceramic composites, Materials Science & Engineering A, 1993, A142 (1-2): 27-33
    
    
    [71] Brennan J J, Prewo K M, Silicon carbide fiber reinforced glass-ceramic matrix composite exhibiting high strength and toughness, J Mater Sci, 1982, 17(2):2371-2383
    [72] Garoree K P, Whisker reinforcement of glass-ceramics, J Mater Sci, 1991; 26:4845-4854
    [73] Glass S J, Green D J, Mechanical properties of infiltrated alumina-Y-TZP composites, J Am Ceram Soc, 1996, 79(9): 2227-2236
    [74] Zhang N Z, and Anusavice K J, Effect of alumina on the strength, fracture toughness and crystal structure of fluorcanasite glass-ceramics, J Am Ceram Soc, 1999, 82(9): 2509~2513
    [75] Denry I L, Holloway J A, Colijn H O, Phase transformations in a leucite-reinforced pressable dental ceramic, J Biom Mat Res, 2001, 54 (3):351-359
    [76] Ibrahim D M, Ei-Meliegy E A, Mica leucite dental porcelain, British Ceramic Transactions, 2001, 100 (6): 260-264
    [77] Holand W, Rheinberger V, Wegner S, et al, Needle-like apatite-leucite glass-ceramic as a base material for the veneering of metal restorations in dentistry, J Mater Sci, 2000, 11 (1): 11-17
    [78] Schweiger M, Frank M, Carnet S, Microstructure and properties of a composite for dental applications composed of glass-ceramics in SiO2-Li2O-ZrO2-P2O5 system and ZrO_2-ceramics (TZP), J Mater Sci, 1999, 34:4563-4572
    [79] 程慷果,万菊林,梁开明,氧化锆增韧微晶玻璃的制备,硅酸盐学报,1998,26(3): 365-369
    [80] Rincon J M, Microstructural and microanalysis of bioglass and glass-ceramics from the MgO-CaO-P_2O_5-SiO_2 system with ZrO_2, Bioceramics and the human body, Elsevier Applied Science, 1991:244-249
    [81] Sey Chei, Sintering and mechanical properties of 3Y-YZP-Reinforced LAS glass-ceramics composites, J Am Ceram Soc, 1997, 80(12): 2982-2986
    [82] Kasuga T, Yashida M, Uno T, et al, Preparation of zirconia-toughened bioactive glass-ceramics, J Mater Sci, 1988, 23(6): 2255-2258
    [83] 张玉峰,杨涵美,郭景坤,LCMAS微晶玻璃/Y-TZP复相材料,无机材料学报,1994,9(2):153-160
    [84] 梁开明,程慷果,段仁官,万菊林,云母微晶玻璃/Y-TZP复相材料的制备和力学性能,无机材料学报,1998,13(3):315-318
    [85] 施其祥,微晶玻璃的性能与成形方法,云南建材,2000,2:4-8
    [86] Saad M, Poulain M. Sol-get synthesis of fluorozirconate glasses. Am Ceramc Society Bull, 1995, 74(8): 66-71
    [87] Zolotar M S, Zavaglia, Study of the sol-gel processing of glass-ceramic powders in the SiO_2-Al_2O_3-CaO-CaF_2 system. I. Effect of powder composition on gel time and temperature, J Non-Cryst Solids, 1999, 247:50-57
    [88] Nogarni M, Nagasaka K, Toughened glass ceramic in the ZrO_2-Al_2O_3-SiO_2 system prepared by the sol-gel process, J Mat Sci, 1991, 26:3665-3669
    
    
    [89] Saraswati V, Raoot S, Machinable mica-based glass-ceramics, J Mater Sci, 1992, 27:429-432
    [90] Hamaski T, Eguchi K, Koyanagi Y, et al, Preparation and characterization of machinable mica glass-ceramic by sol-gel process, J Am Ceram Soc, 1988,71(12):1120-1124
    [91] Nogami M, Nagasak K, Toughened glass-ceramics containing ZrO2and Al_2O_3 prepared by the sol-gel process from metal alkoxides. J Non-cryst Solids, 1988,100:298-302
    [92] 周玉,陶瓷材料学,哈尔滨工业大学出版社,哈尔滨,1992
    [93] Leatherman G L, Tomozawa M, Mechanical properties of a transformation-toughened glass-ceramic, J Mater Sci, 1990, 25:4488-4494
    [94] Sarno R D, Tomozawa M, Toughening mechanisms for a zirconia lithium aluminasilicate glass-ceramics, J Mater Sci, 1995, 30(17): 4380-4388
    [95] Nogami M, Nagasak K, ZrO_2-transformation-toughened glass-ceramics prepared by the sol-gel process from metalalkoxides, J Am Ceram Soc, 1986, 69(2): 99-102
    [96] Mussier Bernhard H, Shefer Meenrill W, Preparation and properties of cordierite-based glass-ceramic containing precipitated ZrO_2, Am Ceram Bull, 1985, 64(11): 1459-1462
    [97] Sridharan S, Tomozawa M, Toughening of glass-ceramics by both transformable and transformed zirconia, J Non-cryst Solids, 1995, 182: 262-270
    [98] Clarke D R, Schwartz B, Transformation toughened of ZrO_2-Containing Ceramics, J Am Ceram Soc, 1987, 70(10): 689-698
    [99] 陈伟民,ZrO_2在微晶玻璃中的作用,材料科学与工程,1998,16(3):73-76
    [100] Clarke D R, Arora A, Acoustic emission characterization of the tetragonal-monoclin phasetransformation in zirconia, Advances in Ceramics, 1984. 12:54-63
    [101] 苏勉曾,固体化学导论,北京大学出版社,北京,1987,
    [102] 周亚栋,无机材料物理化学,武汉工业大学出版社,武汉,1994
    [103] 王培铭,无机非金属材料学,同济大学出版社,上海,1999
    [104] W D Kingery, H K Bowenand, D R Uhlmann, Introduction for ceramics, the Second Edition, Academic Press
    [105] 秦小梅,孙样云,贾英全,可切削性玻璃陶瓷的显微结构及其可切削性,现代技术陶瓷,1998,19(3),940-943
    [106] 马新沛,李光新,沈莲,周惠久,低熔点可切削微晶玻璃的研究,西安交通大学学报,1999,33(6),50-53
    [107] 程慷果,万菊林,粱开明,具有定向显微结构的高强云母微晶玻璃,材料研究学报,1997,33(3):309-312
    [108] 邢军,宋守志,刘渭萍,王玉新,MgO-Al_2O_3.SlO_2系玻璃受控晶化研究,东北大学学报,2000,21(5):558-561
    [109] 程慷果,万菊林,梁开明,TiO_2作为晶核剂的云母微晶玻璃的分相与析晶,玻璃与搪瓷,1997,25(5):7-10
    [110] 孙样云,秦小梅,杨涛,铁维麟,王慧敏 含氧化锆可切削玻璃陶瓷的成
    
    分研究,稀有金属材料与工程,1999,28(6):383-385
    [111] McCoy M, Lee W E, et al, Crystallization of MgO-Al_2O_3-SiO_2-ZrO_2, J Am Ceram Soc,1986, 69(3): 292-296
    [112] Zdaniewski W, DTA and X-Ray analysis study Of nucleation and crystallization of MgO-Al_2O_3-SiO_2 glasses containing ZrO2, TiO2 and CeO2, JAm Ceram Soc, 1975, 58(5): 163-169
    [113] Penkov Ivan, Influence of MoO_3 and ZrO_2 on the crystallization of fluor-mica fusion-castceramics, Glass Science and Technology, 1999, 72(12): 378-385
    [114] Xie, et al, Crystallization Properties of phlogopite based machinable glass-ceramic, Glass Technology, 1996, 37(5): 175-178
    [115] 罗澜,李家冶,CaO-MgO-Al_2O_3-P_2O_5-F系统玻璃的结构、分相与晶化,硅酸盐学报,1989,17(1):31-36
    [116] Cheng X F, Lench L L, et al, Investigation on phase separation, nucleation and crystallization in bioactive glass-ceramics containing fluorophlogopite and fluorapatite, Ceramic International, 1998, 24:401-410
    [117] 王艳丽,沈菊云,陈学贤,缪之训,TiO_2对堇青石基微晶玻璃的分相与晶化的影响,玻璃与搪瓷,2000,28(2):21-25
    [118] Sohn S B, Choi S Y, Lee Y K, Contro lled crystallization and Characterization Of cordierite glass-ceramics for magnetic memory disk substrate, J Mat Sci, 2000, 35(19): 4815-4821
    [119] 岳振星,周济,张洪国,桂治轮,李龙土,低温可烧结堇青石微晶玻璃,高技术通讯,2000,7:96-97
    [120] Hoeche T, Habelita S, Crystal morphology engineering in SiO_2-Al_2O_3-MgO-K_2O-N a_2O-F mica glass-ceramics, Acta Materialia, 1999, 47(3): 735-744
    [121] Moisescu C, Jana C, Russel C, Crystallization of rod-shaped fluoroapatite from glass melts in the system SiO_2Al_2O_3-CaO-P_2O_5-Na_2O-K_2O-F, J Non-cryst Solids, 1999, 248:169-175
    [122] 陈伟民,陈楷,陈扬枝,K_2O-MgO.SiO_2-CaF_2微晶玻璃的晶相演变规律,无机材料学报,1998,13(5):725-728
    [123] 刘平,陈显求,K_2O-MgO-Al_2O_3一SiO_2,系玻璃的分相与析晶,无机材料学报,1999,14(2):275-279
    [124] Lawn B R, Fuller E R, Equilibrium penny-Like cracks I indention fracture, J Mat Sci, 1975, 10(12): 2016-2024
    [125] 保罗A,唐炳文译,玻璃化学,武汉工业大学出版社,武汉,1993
    [126] 宝志琴,骆杰耀,李家冶,堇青石微晶玻璃内初晶相含量的测定,硅酸盐学报,1984,12(1):53-58
    [127] 段仁官,梁开明,顾守仁,万菊林,CaO-Al_2O_3-SiO_2系统玻璃晶化时首析晶相及TiO_2的作用机理预测和研究,硅酸盐学报,1997,25(3):305-310
    [128] Beall G H, Prickey L R, Nanophase Glass-ceramics, J Am Ceram Soc, 1999, 82(1): 5-16
    [129] Kerker M, The Scattering of Light, Academic Press, New York, 1969
    [130] Andree N S, Scattering of visible light by glasses undergoing phase separation
    
    and homogenization, J Non-Cryst Solids, 1978, 30:99-126
    [131] Hopper R W, Stochstic theory of scattering from idealized spinodal structure: Scattering in general and for the basic late stage model, J Non-Cryst solids, 1985, 70:11-142
    [132] 陈伟民,氟硅酸盐微晶玻璃的研究,硅酸盐通报,1997,23:123-127
    [133] Holand W, RheinberSer V, el al, Needle-like apatite-leucite glass-ceramic as a base material for the veneering of metal restorations in dentistry, J Mater Sci, 2000, 11: 11-17
    [134] Amault L, Gerland M, Riviere A, Microstructural study of two LAS type glass-ceramics and their parent glass, J Mater Sci, 1998, 9:291-295
    [135] LikiwaniChkul S, Lacourse W C, EffeCt of fluorine content on Crystallization of canasite glass-ceramics, J Mater Sci, 1995, 30(24): 6151-6155
    [136] 张彪,氟化物在玻璃中的作用,玻璃,1987,14(2):21-22
    [137] Freiman S W, Onoda G Y, et al, Spherulitic crystallization in glasses, advances in nucleation and Crystallization in glasses, American Ceramic Society, 1971
    [138] Sue Y-J, Shen Pouyan, Chen Sun-Yuan, et al, Sphrulite growth from a phase-separated vitreous matrix in a cordierite-Y-stabilized zirconia glassceramics, J Am Ceram Soc, 1991, 74(1): 85-91
    [139] Sears S W, The origin of spherulite, J Phys Chem, 1963, 34(2): 323-329
    [140] Keith D, Padden F J, A phenomenological theory of spherulite crystallization, J Apple Physics, 1963, 34(8): 2409-2420
    [141] 张于城,王开泰,沈定坤,球晶材料的TEM-EDAX剖析,无机材料学报,1997,12(5):659-664
    [142] 仲维卓,华素坤,晶体生长形态学,北京,科学出版社,1999
    [143] Freiman S W, Onoda G T Jr, Pincus A G, Mechanical properties of 3BaO multiplied by (times) 5SiO_2 glass-ceramics, J Am Ceram Soc, 1974, 57(1):8-12
    [144] Kango Cheng, Julin Wan, and KaiminS Liang, Differential thermal analysis on the crystallization kinetics of K_2O-B_2O_3-MgO-Al_2O_3-SiO_2-TiO_2-F glass, J Am Ceram Soc, 1999, 82(5): 1212-1216
    [145] Mazurim O V, PornlKoshits E A, Phase separation in glass, North-Holland,1984:35
    [146] 杜新民,沈定坤,陈显求,K_2O-CaO-Al_2O_ 3-SiO_2系统玻璃的分相,硅酸盐通报,1994,(3):275-279
    [147] 王怀德,程金树,武七德,K_2O对CaO-Al_2O_3-SiO_2系统微晶玻璃晶化与烧结性能的影响,武汉工业大学学报,1996,18(4):5-7
    [148] Hoche T, Habelitz S, Avramov I, Crystal morphology engineering in SiO_2-Al_2O_3-MgO-K_2O-Na_2O-F mica glass-ceramics, Acta Mater, 1999, 47(3):734-744
    [149] Hoeche T, Habelitz S, Khodos I I, Origin of unusual fluorophlogopite morphlogy in mica glass ceramics of the system SiO_2-Al_2O_3-MgO-K_2O-Na_2O-F_2, J Cryst Growth, 1998, 192(1-2): 185-195
    [150] Hamzawy E M A. Crystallization behavior of fluophlogopite glass ceramics, 2001, 45(3): 89-96
    
    
    [151] Neilson G F, Nucleation and crystallization in ZrO_2-nucleated glass-ceramic system, advances in nucleation and crystallization in glasses, the American Ceramic Society, 1971
    [152] 浙江大学等编,硅酸盐物理化学,中国建筑工业出版社,北京,1987
    [153] Holand W, Vogel W, et al, A new type phlogopite crystal in machinable glass ceramics, Glass Technology, 1983, 24(6): 318-322
    [154] Bapna M S, Mullerm H J, Thermodilatometric characterization for devitrificaion of a micaceous dental glass-ceramics, J Am Ceram Soc, 1999, 82(7): 1771-1776
    [155] 黄文海,诸培南,锂云母微晶玻璃晶化过程中显微结构的变化,硅酸盐学报,1983,11(4):430-433
    [156] 程慷果,万菊林,梁开明,云母微晶玻璃的析晶动力学研究,硅酸盐学报,1995,25(5):567-572
    [157] Geall G H, Advances in nucleation and crystallization in glasses, Am Ceram Soc, Columbus, OH, 1971
    [158] Keefer K D, Michalske T A, Determination of phase transformation depth profiles with synchrotron radiation, J Am Ceram Soc, 1987, 70(4): 227-231
    [159] Becher P F, Alexaltder K B, et al, Influence of ZrO_2 grain Size and content on the transformation response in the Al_2O_3-ZrO_2(12mol%CeO2)system, J Am Ceram Soc, 1993, 76(3): 657-663
    [160] Budianski B, Hutchenson J W, Lawbropouls J L, J Solid Struct, 1983, 19:337
    [161] Evans A G, Charle E A, Fracture toughness determination by indention. J Am Ceram Soc, 1976, 59:371-372
    [162] Lawn B R, EVans A G, Marshall D B, Elastic/plastic indention damage ceramics: the median/radial crack system, J Am Ceram Soc, 1980, 63:574-581
    [163] Niihara K, Morena R, Hasselman D P H, Evaluation of KIC of brittle Solids by the indention method with low crack-to-indent ratios, Mater Sci Let, 1982, 1:13-16
    [164] 乔冠军,王永兰,金志浩,一种可切削玻璃陶瓷的压痕断裂特性,无机材料学报,1995,10(2):169-174
    [165] Anstis G R, Charntikul P, et al, A critical evaluation of indention techique for measuring fracture toughness Ⅰ: Direct crack measurements, J Am Ceram Soc, 1981, 64:533-538
    [166] Fischer H, Marx R, Fracture toughness of dental ceramics, comparision of bending and indention method, Dental Mater, 2002, 18:12-19
    [167] 施鹰,黄校先,严东生,颗粒补强锆英石复相陶瓷的力学性能、残余应力和增韧行为的研究,无机材料学报,1998,13(2):201-206
    [168] 杜善义,王彪,复合材料细观力学,科学出版社,1998
    [169] 清华大学陶瓷教研室编,陶瓷材料物理性能,高等教育出版社,1980
    [170] Worsen B W, Fiber composite materials, ASM, Metal Park, OH, 1967:37-45
    [171] Chou Tsu-Mei, Microstmctal design of fiber composite, Cambridge University Press, Great Britain, 1992:217-227
    [172] Faber K T, Evans A G, Crack Deflection process Ⅰ: Theory, ActaMetall, 1983;
    
    31(4): 565-576
    [173] Faber K T, Evans A G, Crack Deflection process Ⅱ: Experimental, ibid: 577-585
    [174] Hill T J, et al, Fractal analysis of toughness behavior in 3BaO-5SiO_2 glass-ceramics, J Am Ceram Soc, 2000, 83(3): 545-552
    [175] 斯温M V,郭景坤译,陶瓷的结构与性能,材料科学与技术丛书(11卷)科学出版社,北京,1998:379-381
    [176] Kelly A A, Macmillan N H, Strong Solids, 3rdED, Charendon Press, Oxford, 1986
    [177] 王慧敏,铁维麟,秦晓梅,生物玻璃陶瓷可切削性能及测量的研究,机械设计与制造工程,1999,28(3):40-41
    [178] Baik D S, No K S, et al, Comparative evaluation method of machinablity for mica-based glass-ceramics, J Mater Sci, 1995, 30(7): 1801-1806
    [179] D B Marshall, B R Lawn, R F Cook, Microstmctural effects on grinding of alumina and glass-ceramics, Communicatiom Of the American Ceramic Society, 1987(6): C-139-C-140
    [180] Taira M, Yamaki M, Phase constitution and microstructural characterization of machinable glass ceramics, British Ceramic Transactions, 1995, 94(3):109-111
    [181] Davis J B, Marshall D B, Housley R M, et al, Machinable ceramics containing rare-earth phosphate, J Am Ceram Soc, 1998, 81(8): 2169-2175
    [182] Sindel J, Petschel A, et al, Evaluation of subsurface damage in CAD/CAM machined dental ceramics, J Mater Sci, 1998, (9): 291-295
    [183] Baik D S, No K S, et al, Effect of the aspect ratio of mica crystals and crystallinity on the microhardness and machinability of mica glass-ceramics, J Mater Proc Technology, 1997, 67(1-3): 50-54
    [184] Xu H H K, Smith D T, Jahanmir S, Influence of microstructure on indention and roaching of dental glass-ceramics, J Mater Res, 1996; 11(9): 2325-2337
    [185] Xu H H K and Jahanmir S. Effect of microstmcture on damage tolerance in grinding dental glass-ceramics. J Mater Res, 1998; 13(8): 2231-2236
    [186] Xu H H K, Jahanmir S, Scratching and grinding ora machinable glass-ceramic with weak interface and rising T-curve, J Am Ceram Soc, 1995, 78(2): 497-500
    [187] 廖运茂,杨禾,冼苏琴,可切削渗透陶瓷(MIC)渗透玻璃的研究,生物医学工程杂志,2000,17(1):33~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700