用户名: 密码: 验证码:
高性能耐磨铜基复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机械、电子以及航空航天工业的迅猛发展,迫切要求开发不仅具有良好导电(热)性、而且具有较高机械和耐磨性能,较低热膨胀系数的功能材料。铜和铜合金是传统的高导电(热)材料,但由于强度和耐热性不足,其应用范围受到很大的限制。
     本文以开发高性能导电(热)耐磨铜基复合材料为目标,通过成分和工艺优化,采用机械合金化(MA)、冷压成形和复压复烧工艺制备出了满足性能要求的颗粒增强Cu(-Cr)基复合材料。以寻求最佳的材料制备工艺,满足材料的高强度、高导电(热)性以及优良的摩擦磨损性能要求。通过SEM,XRD、TEM和其它实验检测仪器对粉末的机械合金化过程,复合材料的微观组织特征以及机械、物理和摩擦磨损性能进行了系统研究,为拓展新型高性能铜基复合材料的应用领域打下坚实基础。本文研究内容主要有以下几个方面:
     1.采用机械合金化工艺可使在固态和液态下完全互不溶的Cu-Cr系形成过饱和固溶体,并显著细化晶粒和产生严重晶格畸变。由高能球磨引起的高密度晶体结构缺陷和溶质组元化学势的降低以及晶粒细化对形成Cu-Cr过饱和固溶体起着决定作用。
     2.采用冷压-烧结-复压-复烧工艺对Cu-Cr合金粉末致密化过程进行研究。系统探讨了压制压力、烧结温度对相对密度的影响。研究结果表明初压和复压能显著提高材料相对密度,而复烧对提高材料的相对密度贡献不大,其作用主要体现在材料性能的改善和优化。
     3.通过对不同成分Cu-Cr合金性能测试,研究了成分、烧结温度和复压复烧对材料力学和物理性能的作用,同时探讨了Cu-Cr合金的增强机制。Cu-1.2wt%Cr合金的硬度、抗拉强度随着烧结温度的升高而增加,在850℃时达到峰值;当温度进一步升高时,由于析出相Cr粒子长大、粗化,与基体失去共格,使得硬度和抗拉强度又有所下降,而材料的导电(热)率则随着烧结温度的升高继续缓慢增加。合金中过饱和的Cr原子对材料强度的影响是通过沉淀强化和细晶强化来实现的。
     4.以SiC为增强颗粒,采用粉末冶金工艺制备了颗粒增强铜基复合材料,研究了SiC颗粒体积分数、粒度对复合材料显微组织和力学、物理、摩擦磨损性能的影响。在此基础上着重探讨了SiC颗粒粒度的变化对复合材料性能的影响。结果表明:在制备工艺相同的情况下,SiC粒度为10μm时,复合材料具有最大抗拉强度,达到265.7MPa,其断裂机制是以Cu-SiC界面处基体撕裂为主。当SiC颗粒粒度较大时(≥21μm),由于界面面积有限和增强颗粒间距过大,使得SiC颗粒增强效果有限。相对于强度的变化,复合材料的摩擦磨损特性也随SiC颗粒粒度的变化而发生明显改变。在低载荷条件下(≤120N),增大SiC颗粒粒度有助于提高材料的耐磨性,其磨损机制以磨粒磨损为主。随着载荷的增加,由于大粒度SiC颗粒易于破碎,承载作用下降,导致剥层磨损的发生。通过对复合材料物理性能研究表明:由于SiC粒度减小,复合材料单位体积Cu-SiC界面面积的增加和SiC颗粒间距的减小,都会对自由电子的运动产生阻碍作用,导致复合材导电(热)率下降。复合材料的热膨胀系数随着SiC颗粒粒度的增加而提高;同时由于SiC颗粒粒度的增加,导致材料内部的热应力提高,引起材料热膨胀系数发生突变的临界温度降低。
     5.采用化学沉积工艺对SiC颗粒表面包覆Cu或Ni,以改善Cu-SiC界面状况。结果表明:SiC颗粒表面经金属涂层处理提高了复合材料界面结合强度,在基体和增强颗粒之间可以有效传递载荷,使得复合材料的相对密度、硬度和拉伸性能获得提高。由于基体铜和镍镀层之间可以相互扩散,形成连续固溶层,从而使复合材料力学性能提升更为显著。在摩擦磨损过程中由于界面优化减少了SiC颗粒与基体的界面脱粘,有效地发挥承载作用,从而提高了Cu/SiC复合材料的耐磨性。
     6.为了结合颗粒强化和析出强化两种强化方式,以Cu-Cr合金为基体,采用SiC颗粒增强Cu-Cr合金,结果发现随着基体强度的提高,可更有效的发挥SiC颗粒对复合材料的增强作用,并改变了复合材料的断裂机制,同时材料软化温度也得到大幅度提高。
     7.研究了不同载荷、滑动速度和距离条件下(Cu-Cr)/SiC复合材料的摩擦磨损行为。结果表明:随着SiC颗粒含量的增加,复合材料的耐磨性能得到提高,并延缓了严重磨损的发生。当载荷和滑动速度等条件变化时,复合材料的磨损机制也发生改变,并在某一临界值附近引起磨损率的突然增加。在微缓磨损阶段磨粒磨损和氧化磨损为主要磨损机制;在严重磨损阶段因磨损面机械混合层的剥层脱落和摩擦热导致亚表层基体温升软化及对磨双方材料大量粘着转移为主要磨损机制。
     8.研究了(Cu-Cr)/SiC复合材料高温摩擦磨损行为,结果表明SiC颗粒的加入,可以有效提高复合材料发生严重磨损的临界温度。严重磨损发生的原因是因为温度的增加导致磨损面氧化膜破裂、脱落,磨损机制以剥层、粘着磨损为主。石墨颗粒的加入可以降低在一定温度下复合材料的摩擦系数和磨损率,改善了复合材料高温摩擦学特性。
     9.研究了纳米SiC颗粒对Cu-Cr合金的增强作用,结果发现在纳米SiC含量较低的情况下(0.5%-3%),复合材料硬度、抗拉强度和摩擦磨损性能随着纳米SiC颗粒增加而得到改善,而当纳米颗粒含量达到5%,则发生团聚现象,对材料力学性能产生不利影响,并导致断裂机制的改变。
     本文采用机械合金化工艺制备了Cu-Cr复合粉末,并开发相应的成形工艺,获得最佳工艺参数,然后采用SiC颗粒增强纯Cu和Cu-Cr合金。研究了SiC颗粒含量、粒度和基体强度对复合材料性能的影响。同时通过化学沉积工艺对Cu/SiC复合材料进行界面优化,并探索其对复合材料性能的作用。系统地研究了复合材料在室温和高温环境下的摩擦磨损行为,分析其微观磨损机理。初步探讨了纳米SiC颗粒对Cu-Cr合金性能的增强作用及机制。本论文的研究结果对研制开发新型耐磨铜基复合材料和丰富材料摩擦学有着重要的理论和现实意义。
With the development of electronic, mechanical, aeronautic and aerospace industries, requires imperative demand of developing functional materials with not only high electrical conductivity, thermal conductivity, and excellent mechanical properties, wear-resistant, low coefficient of thermal expansion. Copper and copper alloys are the traditional high-conductivity, thermal conductivity materials, but because of lack of strength and heat-resistant Performance, its application is greatly restricted.
     In this thesis, to developing copper matrix composites with high electrical conductivity, thermal conductivity and good wear-resistant as the objective, the components of the composite systems and the preparation technique were designed. SiC particles reinforcement of Cu(-Cr)matrix composites were fabricated by mechanical alloying (MA)plus cold pressure forming and repressing and resintering process to find the best fabrication process and meet the high-strength, high-conductivity and excellent wear-resistant properties. The mechanical alloying process of powder and composites microstructure, mechanical, physics, wear and tribological properties were systematically observed and analyzed by means of SEM, XRD, TEM, and other test instruments.All of these works lay a solid foundation for development the utilization area of novel advanced wear-resistant copper matrix composites. The works include the following aspects:
     1. Cu (-Cr) supersaturated solid solutions were prepared by mechanical alloying, whereas such a binary system is known to be immiscible in solid and liquid state. The crystalline of Cu-Cr alloy powders were significantly refined and lattice strain were have serious lattice distortion during MA process. This suggests that the high density crystal defects, solute elements chemical potential decreasing and crystalline refinement due to MA may play a critical role on the supersaturated solid solution of Cr in Cu.
     2. Densification Process of Cu-Cr alloy powders was studies by means of cold pressing-sintering- repressing-resintering method. The influence of different pressure and temperature on the relative density was discussed systematically. The results showed that pressing and repressing can significantly improve the relative density, however, resintering did not evidently contribute to the relative density, and its main role reflected in the performance improvement and optimization.
     3. Through to test the different composition Cu-Cr alloys properties to analyze the influence of composition, temperature and repressing-resintering on the alloys mechanical and physical properties. Hardness and tensile strength of Cu-1.2wt%Cr alloy increased with the rising sintering temperature, and reached the peak value when 850℃and it decreased with further temperature rising due to Cr particles growth and coarsening, electrical conductivity and thermoconductivity slowly increase with the increase of sintering temperature. Over-saturated Cr atoms are the dominant factors accounting for strengthen by precipitation and grain refinement strengthening.
     4. Cu/SiC composites were fabricated by powder metallurgy. The effect of SiC volume fraction and sizes on the mechanical properties, physical, wear properties and microstructure of composites were investigated. On this base, the influence of various sizes reinforced particles on the properties of composites was investigated. The results indicated that under the same preparing parameters, the composites with SiC particle for 10μm possess the highest ultimate tensile strength, beyond 265.7MPa, and their breakage is due to tearing of matrix near Cu-SiC interface. Composites with large particle (≥21μm) possess finite strength owing to interfacial area limited and the space between SiC particles larged. Compared with tensile strength varying, the friction and wear properties of Cu/SiC composites obviously differ with the size of SiC changing. When the applied load was lower 120N, the bigger SiC are helpful to improve the wear resistance of Cu/SiC composites. However, composites reinforced with larger SiC particulates increase the counterpart steel wear rate, and wear mechanism is mainly abrasion. When the applied load increased, because larger size SiC particles mashed, the load carrying capacity decreased, which lead to delamination wear occurring. Because the SiC particle size reduced, Cu-SiC interfacial area increased and space between SiC particles increased, which impede the movement of electronic effects, leading to electrical conductivity and thermoconductivity decreased. The coefficient of thermal expansion composites increases with enhancing particle size. With the increasing in SiC particle size, the thermal stress trend to be improved and critical temperature with causing the coefficient of thermal expansion catararophe droped.
     5. SiC particles were coated Ni or Cu film by electroless deposition to modify Cu-SiC interfaces. The effects of modification different metals(Cu, Ni)on SiC particles surface on the interfacial bonding were investigated. The results indicate that the interface of composites is compact, improves interfacial bonding strength and loads can be transferred effectively between matrix and SiC by the surface modification with Cu and Ni. Therefore, the densification, bulk hardness and tensile properties of composites are improved. Matrix and coating Ni atoms can diffuse each other to form continual a film of solid solution, which is in favor of improving mechanical properties of composites. In the course of friction and wear, SiC particles effectively play the role of load carrying capacity and thereby improving the tribological properties.
     6. In order to combine particulate reinforcement with precipitation reinforcement, SiC particle were used to be fabricated Cu-Cr matrix composites. As a result, SiC particle can be more effective enhancing composites strength with the improvement of Cu-Cr matrix strength, and change the mechanism of the fracture, while softening temperature had large increased.
     7.The wear behavior of (Cu-Cr)/SiC composites under different loads、sliding velocities and distances was studied. The results showed that the wear resistance properties of composites increased with volume fraction of SiC particles, and delayed severe wear to hanppen. The wear mechanism of (Cu-Cr)/SiC composites changed with the extrinsic factors, such as load, sliding velocity and distance. The wear rate may increase abruptly at certain critical values. In the mild wear stage, the main wear mechanism was abrasion and oxidation wear. In the severe wear stage, mechanically mixed layer was detached and composites was softened by the frictional heat, and therefore massive materials transfer resulted in the abrupt increase of wear rate.
     8. The elevated-temperature wear behaviors of SiC particulate reinforced Cu-Cr matrix composites were studied. The results indicated that the critical temperature to occurring serious wear was increased effectively by the addition of SiC. Along with temperature elevation, the oxide film cracked and fell off from worn surface, leading to serious wear, and wear mechanism is mainly delamination and adhesive. The wear rate and friction coefficients of composites were reduced by further addition of Gr, improving the tribological characteristic in elevated-temperature environment.
     9. The nanometer SiC particles reinforced (Cu-Cr)/SiC composites were investigated. The results indicated that the hardness, tensile strength, electrical conductivity and friction and wear properties of composites were improved with the increase of nanometer SiC particles content when nanometer SiC particles was lower(0.5vol%-3vol%). When nanometer SiC particles content was 5vol%, the nano-particles were agglomerated, which would be harmful to the mechanical properties and lead to fracture mechanism of composites changing. In this thesis, Cu-Cr powders were fabricated by mechanical alloying, and developed forming techniques,obtained the best forming parameters.SiC reforcement Cu and Cu-Cr matrix composites, and the influence of different content, sizes of SiC particles and matrix strength on the properties of composites were investigated. The interface of Cu/SiC was optimized by electroless deposition, and the effects of interfacial modifying on the properties were stuied.The friction and wear behaviors of the composites under room-and elevated-temperature conditions were studied systematically, and micro-wear mechanism were analyzed. The reinforcement mechanism and strengthening effect of nano-SiC particles on Cu-Cr alloy was also studied elementarily. It is of great significances in theory and practice to develop the new type of wear-resistant copper matrix composites and to enrich the tribological research.
引文
[1]D.Coupard,M.C.Castro,J.Coleto.Wear behavior of copper matrix composites.Key Engineering Materials,1997,127-131:1009-1016
    [2]P.W.Taubenblat.Importance of copper in powder metallurgy.International Journal of Powder Metallurgy and Powder Technology,1974,10(3):169-184
    [3]闵光辉,宋立,于化顺等.高强度导电铜基复合材料.功能材料,1997,28(4):342-355.
    [4]吴渝英,张国定,洪骏.C/Cu复合材料在电刷中的应用,机械工程材料,1995,19(1):25-27
    [5]曾汉民主编.高技术新材料要览.中国科学技术出版社,1993
    [6]美国金属学会.金属手册.北京:机械工业出版社,1994
    [7]D.Raabe,K.Miyake,H.Takahara.Processing,microstructure,and properties of ternary high-strengthCu-Cr-Ag in situ composites.Materials Science and Engineering,2000,A291:186-197
    [8]刘平,康布熙,曹兴国.快速凝固Cu-Cr合金时效析出的共格强化效应.金属学报,1999,35(6):561-564
    [9]J.B.Correia,H.A.Davies,C.M.Sellars.Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys.Acta Mater.1997,45:177-190
    [10]赵冬梅,董企铭,刘平等.高强高导铜合金合金化机理.中国有色金属报,2001,11(S2):21-24.
    [11]田莳,李秀臣,刘正堂.金属物理性能.北京:北京航空工业出版社,1994
    [12]Keiichi Kuniya,Hideo Arakawa,Tsuneyuki,et al.Development of copper-carbon fiber composite for electrodes of powder semiconductor devices.IEEE,Transactions on Components,Hybrids and Manufacturing Technology,1983,6(4):467-472
    [13]贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1995
    [14]I.Ahmad,J.M.Barranco.Strengthening of copper with tantalum(continuous) filaments.Metallurgical Transactions,1970,1(14):989-995
    [15]孙世清,毛 磊,刘宗茂等.高强高导铜基复合材料.河北科技大学学报,2000,52(1):19-22
    [16]尹志民,张生龙.高强高导铜合金研究热点及发展趋势.矿冶工程,2002,2(2):1-6
    [17]李超.金属学原理.哈尔滨:哈尔滨工业大学出版社,1996.
    [18]蔡伯壤.固体物理基础.北京:高等教育出版社,1990
    [19]《重有色金属材料加工手册》编写组,重有色金属加工手册(第一分册),北京:冶金工业出版社.1976
    [20]冯瑞等.金属物理学(第三卷).北京:科学出版社.1997
    [21]Lei lu,Yongfeng shen,Xianhua Chen,Lihua Qian,K.Lu.Ultrahigh strength and high electrical conductivity in copper.Science,2004,304(16):422-426
    [22]潘金生,仝健民,田民波 材料科学基础.北京:清华大学出版社,1998
    [23]中国机械工程学会焊接学会.电阻焊理论与实践.北京:机械工业出版社,1994
    [24]M.A.Morfis and D.G Morris.Microstructure and mechanical properties of rapidly solidifed Cu-Cr alloys.Acta Metall,1987,35(10):2511-2522
    [25]M.J.Tenwick,H.A.Davies,Enhanced strength in high conductivity copper alloy.Mater.Sci.Eng.1988,98A:543-546
    [26]H.G.Suzuki,T.Takeuchi,K.Mihara,et al.Development of high strength,high conductive copper-base in-situ composite.Proceedings of the TMS Fall Meeting.1998:359-367.
    [27]S.L Hong and M.A.Hill.Mechanical and electrical properties of heavily drawn Cu-Nb microcomposites with Various Nb contents.J.Mater.Sci.2002,37(b):1237-1245.
    [28]P.D.Funlcenbush,J.K.Lee,T.H.Courtney.Ductile two-phase alloys:prediction of strengthening at High Strains.Metall.Trans.1987,18A(7):1249-1256
    [29]W.A.Spitzig,A.R.Pelton and F.C.Laabs.Characterization of the strength and microstruture of heavily cold worked Cu-Nb composites.Acta Metall.1987,359(10):2427-2442.
    [30]田荣璋,王祝堂.铜合金及其加工手册.长沙:中南大学出版社,2002.
    [31]Ichikawa Kiyoshi,Achikita Masakazu.Effect of heat treatment on mechanical and electrical properties of compocast dispersion-strengthened coppers.Materials Transactions.JIM,1994,35(11):833-840
    [32]Sauer C.Manufacture and properties of copper alloys dispersion strengthened with titanium carbide[J].Metal powder report,1998,53(1):39-41
    [33]周和平,刘耀成,吴音.氮化铝陶瓷的研究与应用.硅酸盐学报,1998,26(4):517-522.
    [34]张宇民,赫晓东,韩杰才,等.燃烧合成TiN陶瓷.宇航材料工艺,1999,(4):29-32.
    [35]刘德宝,崔春翔.TiN颗粒增强铜基复合材料的制备及性能研究.稀有金属,2004.28(5):856-861.
    [36]湛永钟.非连续增强铜基复合材料的研究现状.材料开发与应用,2005,20(4):41-46.
    [37]Moustafa S F,El-Badry S A,Sanad A M,et al.Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders.Wear,2002,253:699-710
    [38]Yih P,Chung D.A comparative study of the coated filler method and the admixture method of powder metallurgy for making metal-matrix composites.Journal of Materials Science,1997,32(11):2873-2882.
    [39]刘德宝,崔春翔.高强度高导电铜基复合材料制备技术回顾与展望.天津理工学院学报.2003,19(4):29-33
    [40]程建奕,汪明朴,钟卫佳等,内氧化法制备的Cu-Al_2O_3合金的显微组织与性能[J].材料热处理学报,2003,24(1);24-28.
    [41]申玉田,崔春翔,孟凡斌,等.高强度高电导率Cu-Al_2O_3复合材料的制备.金属学报,1999,35(8):887-892.
    [42]A.K.Lee,L.E.Sanchez-Caldera,T.S.Oktay.Liquid-metal mixing process tailors MMC microstructures.Adv.Mater.Proc.,1992,142(8):31-34
    [43]A.Chrysanthou,G.Erbaccio.Production of copper-matrix composites by in-situ processing.Journal of Materials Science,1995,30(24):6339-6344
    [44]Morris D G,Morris M A.Microstructures and mechanical properties of rapidly solidified Cu-Cr alloys.Acta Metallurgica,1987,135(10):2511-2522
    [45]J.B.Correia,H.A.Davies and C.M,Sellars.Strengthening in rapidly solidified age hardened Cu -Cr and Cu-Cr-Zr alloys.Acta Mater.1997,45(1):177-190
    [46]刘平,黄金亮等.快速凝固高强度高导电Cu-Cr合金的组织和性能.兵器材料与工程,1999,22(1):12-16
    [47]杨留栓,杨根仓,周尧和.喷雾沉积快速凝固技术的发展与展望.材料科学与工程,1994,12(2):29-32
    [48]D.L.Zhang.Processing of advanced materials using high-energy mechanical milling.Progress in Materials Science 49(2004) 537-560
    [49]国家自然科学基金委员会.自然科学学科发展战略调研报告-金属材料科学.北京:科学出版社,1995
    [50]Koch C C.Research on metastable structures using high energy ball milling at North Carolina State University.Mater.Trans.JIM,1995,36(2):85-95
    [51]C.Suryanarayana.Mechanical alloying and milling.Progress in Materials Science 46(2001)1-184
    [52]V.V.Savin,V.A.Chayka,R.V.Kostenko.Formation of metastable phase equilibrium and amorphisation in AL_(26)Zr_(74) alloy by gas atomization and by further mechanical alloying.International Journal of Hydrogen Energy,1999,24:115-117
    [53]Yaping Wang and Bingjun Ding.The Preparation and the properties of microcrystalline and nanocrystalline CuCr contact materials.IEEE Transactions on Components and Packaging Technology,1999,22(2):467-472
    [54]Le B P,Delaey L.Modelling of the mechanical alloying process in a planetary ball mill:comparison between theory and in-situ observations.Materials Science & Engineering A:Structural Materials.1993,A161(1):75-82
    [56]Maurice D R,Courtney T H.Physics of mechanical alloying.A first report.Metallurgical Transactions A.1990,21A(2):289-303
    [55]Magini M,Iasorma A.Energy transfer in mechanical(overview).Materials Transactions,JIM. 1995,36(2):123-133
    [57]Gayle F W,Biancaniello F S.Stacking faults and crystallite size in mechanically alloyed Cu-Co.Anoestrus.mater.,1995,6:429-432.
    [58]张代东,范爱玲.MA过程中W-Cu系纳米粉末的X射线相分析.铸造设备研究,2001,6:14-16
    [59]Eckert J,Holzer J C.Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders.J ourual of Applied Physics.1993,73(6):2794-2802
    [60]T.F.Grigorieva,A.P.Barinova,V V.Boldyrev.The influence of structural relationship on extended solid solubility at mechanical alloying.Solid State Ionics,1997,101-103:17-24.
    [61]刘学然,刘勇兵,曹占义,等.机械合金化制备铜碳过饱和固溶体.材料热处理学报,2006,27(2):31-34.
    [62]G.Veltl,R.B.Schulz,H.D.Kunze,Amorphization of Cu-Ta alloy by mechanical alloying,Mater.Sci.Eng,1991,A134:1410-1413
    [63]R.W J.Bene.A kinetic model for solid-state silicite nucleation,J.Phys.,1987,61,1826-1833.
    [64]Yavari A R,Benameur T.Mechanically driven alloying of immiscible elements.Physical Review Letters.1992,68(14):2235-2238
    [65]M.Bionducci,G.Navarra,R.Bellissent,et al.Local order in amorphous Fe_2Zr prepared by mechanical alloying and mechanical grinding.Journal of Non-Crystalline Solids 1999,250-252:605-610
    [66]Chia Jung Hu,Pee Yew Lee.Formation of Cu-Zr-Ni amorphous powders with significant supercooled liquid region by mechanical alloying technique[J].Materials Chemistry and Physics,2002,74:13-18
    [67]Ermakov A E,Yurchikov E E,Barinov V A.Phase transformations in deformed Fe-Bpowders.Fizika Metallovi Metallovedenie.1992,1:126-131
    [68]T.G..Richaeds,G..P.Johari,Phil.Mag,1988,B58:445
    [69]Wang K Y,Shen T D,Quan M X.Self-sustaining reaction during mechanical alloying of Ni_(60)Ti_(40) in oxygen atmosphere.Scripta Metallurgica Materialia.1992,26(6):933-937.
    [70]A W Weeber,H Bakker.Amorphization by ball milling.A Revier Physica B,1988,153(1-3):93-135
    [71]Gaffet E,Gaffet N.Formation of nano-structure materical induce by mechanical processing.Mater Trans JIM,1995,36(2):198-207
    [72]Schuarz R B,Petrich R R,San C K.The synthesis of amorphous Ni-Sn alloy powders by mechanical alloying.J Non cryst Solids,1985,76:281-301
    [73]T.Fukunaga,K.NaKamura,K.SuzukiandV.Mizutani.Non-Cryst.Solid,1990,729:156-165
    [74]Fecht HJ,Huan G,FuZ.Metastable phase formation in Zr-Al binary system induced by mechanical alloying.Appl.Phys.,1990,68(4):1744-1748
    [75]周兰章,郭建亭,全明秀.NiAl/TiC纳米材料机械合金化合成机理.金属学报,1997,33(11):1222-1225
    [76]郭发强,卢柯.非晶态FeMoSiB合金的机械驱动晶化产物.材料研究学报.1995,9(4):311-314
    [77]吴年强等.机械合金化的机制.材料导报,1997,11(6):20-23.
    [78]席生歧,屈晓燕,刘心宽等.高能球磨固态扩散反应研究.材料科学与工艺,2000,9,18(3):88-91.
    [79]冉旭.吉林大学工学博士学位论文.长春,2006.
    [80]杨朝聪.机械合金化技术及发展.云南冶金,2001,30(1):38-42.
    [81]Benjamin J S.Dispeasion strengthened superaallys by mechanical alloying.Metall trans,1970,1:2943-2951.
    [82]Ezzs.S,Koczac M J.美国粉末冶金代表团来华访问报告文集.1988,125-142.
    [83]沙维.机械合金化氧化物弥散强化合金再结晶过程的研究.材料导报,1996,(增刊):121-125
    [84]Kawanishi S,Jsonish K,Okazaki K.Formation of nanophase niobium aiuminide by mechanical alloying.Mater Trans JIM,1993,34(1):43-48
    [85]Fores F F,SuryarayanaC,Russell k,et al.Synthesis of intermetalics by mechanical alloying.Mater Trans Eng,1995,A 191-192:612-623
    [86]张家敏,史庆南,蒋平等.机械合金化Cu-35%Pb粉体特性研究.昆明理工大学学报,2004,25(2):38-41
    [87]于洋,胡连喜,线恒泽等.机械球磨制备纳米晶Ni-30%Fe固溶体的研究.粉末冶金技术,2004,12(6):328-332.
    [88]Mizutani U,and Lee C H.Mechanical alloying Cu-V and Cu-Ta systems characterized by Positive Heat of Mixing.Mater Trans JIM 1995,36(2):210-221
    [89]郑福前,谢 明,刘建良,等.Ag-10Ni合金的机械合金化.贵金属,1998,19(4):1-3.
    [90]陈文革,丁秉钧,张晖.机械合金化制备的纳米晶W-Cu电触头材料.中国有色金属学报.2002,12(6):1224-1228
    [91]E.Botcharovaa,M.Heilmaier,J.Freudenberger,et al.Supersaturated solid solution of niobium in copper by mechanical alloying.Journal of Alloys and Compounds 2003,351,119-125
    [92]Morris D G,Morris M A.High strenghth Cu-Zr alloys s prepared by MA technique.Materials Science and Engineering A,1992:111-117.
    [93]D.Raabe,K.Miyake b,H.Takahara.Processing,microstructure,and properties of ternary high-strength Cu-Cr-Ag in situ composites.Materials Science and Engineering 2000,A291:186-197.
    [94]B.L.shen,T.Itoi,T.Yamasaki.Indentation creep of nanocrystalline Cu-TiC alloys prepared by mechanical alloying.Scripta mater,2000,42:893-898
    [95]熊拥军,邓至谦,凌兴珠等.TiB2颗粒增强铜基复合材料的研究.中南工业大学学报,2001,32(3):294-297
    [96]张瑾瑾,王志法,张霞,等.机械合金化制备SiC弥散强化铜基复合材料.湖南有色金属,2005,21(1):23-26
    [97]虞觉奇,易文质,陈邦迪,等编译.二元合金状态图集.上海:上海科学技术出版社,1987
    [98]J.Stobrawa,L.Ciura,Z.Rdzawski.Rapidly solidified strips of Cu-Cr alloys,Scripta Materialia 1996,34(11):1759-1763.
    [99]J.Szablewski,R.Haimann.Influence of thermonechanical treatment on electrical properties of a Cu-Cr alloy,Material Sci and Tech 1985,1:1053-1056.
    [100]T.Fujii,H.Nakazawa,M.Kato,et al.Crystallography and morphology of nanosized Cr particles in a Cu-0.2%Cr alloy,Acta Materialia 2000,48:1033-1045
    [101]N.Gao,E.Huttunen-Sarrivirta,T.Tiainen,M.Hemmila,Influence of prior deformation on the age hardening of a phosphorus containing Cu-0.61wt%Cr alloy.Materials Science and Engineering 2003,A342:270-278
    [102]I.S.Batra,G K.Dey,U.D.Kulkami,S.Banerjee,Precipitation in a Cu-Cr-Zr alloy.Materials science and Engineering 2002,A356,32-36.
    [103]Lockyer S A,Noble F W.Precipitate structure in a Cu-Ni-Si alloy[J].Journal of Materials Science,1994,29(1):218-226.
    [104]贾淑果,刘平,田保红.高强高导Cu-0.1Ag-0.11Cr合金的强化机制.中国有色金属学报,14(7):1144-1148
    [105]Ping LIU,Juanhua SU,Qiming DONG,et al.Microstructure and properties of Cu-Cr-Zr alloy after rapidly solidified aging and solid solution aging.Mater.Sci.Technol,2005,21(4):475-478
    [106]Ming Xie,Jiangliang Liu.Investigation on the Cu-Cr-Re alloy by rapid solidification.Materials science and engineering,2001,979-533
    [107]R.Murakami,K.Matsui.Evaluation of mechanical and wear properties of potassium acid titanate whiske-reinforced copper-matrix composites formed by hot isostatic.Wear,1996,(201):192-198
    [108]凤仪,应美芳,王成福,钟宇.碳纤维含量对短碳纤维铜复合材料性能的影响.复合材料学报,1994,11(1):37-40
    [109]K.Ichikawa,M.Achikita.Electrical conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting.Materials Transactions,JIM,1993,34(8):718-724
    [110]陈民芳,赵乃勤,李国俊.WC对Cu/WCp复合材料性能及组织的影响.兵器材料科学与工程,1998,21(6):22-34.
    [111]王耐艳.Cu-纳米TiB原位复合材料的制备及摩擦磨损性能.浙江大学硕士论文.2002
    [112]张毅,周延春.Ti_3SiC_2弥散强化铜:一种新的弥散强化铜合金.金属学报,2000,6(6):662-666.
    [113]K.G.K.Warrier,P.K.Rohatgi.Mechanical,electrical,and electrical contact properties of Cu-TiO2 composites.Powder Metall.,1986,29(1):65-69
    [114]Y.F.Lee,S.L.Lee,J.C.Lin.Wear and corrosion behaviors of SiCp reinforced copper matrix composite formed by hot pressing.Scan.J.Metall,1999,28:9-16.
    [115]王娜.原位自生TiB_2/fu复合材料显微组织与性能的研究.哈尔滨工业大学硕士论文,2006.
    [116]P.Yih,D.D.L.Chung.Copper-matrix composites of increased thermal conductivity and decreased thermal expansion provided by powder metallurgy processing of copper-coated molybdenum particles.International SAMPE Electronics Conference,1994,20-23,266-270
    [117]A.T.Alpas,J.Zhang.Wear rate transition in cast aluminum-silicon alloys reinforced with SiC particles.Scr.Metall.,1992,26:505-509
    [118]T Sasada.The dependence of wear rate on sliding velocity and sliding distance for dry Cu/Fe and Ni/Fe.Wear of Materials 1985,432-436.
    [119]J.Singh,A.T.Alpas.Elevated temperature wear of Al6061 and Al6061-20%Al_2O_3.Scr.Metall.Mater.,1995,32(7):1099-1105.
    [120]W.Ames,A.T.Alpas.Wear mechanisms in hybrid composites of graphite-20 pct SiC in A356 aluminum alloy(Al-7 pet Si-0.3 pct Mg).Metall.Mater.Trans.A,1995,26A:85-98
    [121]A.Sato,R.Meharabian.Aluminum matrix composites:Fabrication and properties.Metall.Trans.A,1976,7B:443-450
    [122]刘德宝,崔春翔.氮化物陶瓷颗粒增强铜基复合材料的干摩擦磨损性能研究.摩擦学学报,2006,26(1):54-59
    [123]A.T.Alpas,J.Zhang.Effect of microstructure(particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites.Metall.Trans.,1994,25A:969-983
    [124]S.Chung,B.H.Hwang.A microstructural study of the wear behavior of SiC_p/Al composites.Tribol.Int.,1994,27,307-314
    [125]S.Skolianos,T.Z.Kattamis.Tribological properties of SiC-reinforced Al-4.5%Cu-1.5%Mg alloy composites.Mater.Sci.Eng.A,1993,A163:107-113
    [126]S.C.Tjong,K.C.Lau.Abrasive wear behavior of TiB_2 particle-reinforced copper matrix composites.Mater.Sci.Eng.A,2000,282(1-2):183-186
    [127]K.Anand.On the wear of aluminum-corundum composites.Wear,1983,85:163-169
    [128]严有为,魏伯康.淬火处理对原位TiC/Fe复合材料组织及耐磨性的影响.摩擦学学报,2000,20(1):6-9.
    [129]Y.M.Pan,M.E.Fine,H.S.Gheng.Aging effects on the wear behavior of P/M aluminum alloy SiC particle composite.Scr.Metall.,1990,24:1341-1345
    [130]孙家枢.金属的磨损.北京:冶金工业出版社,1992
    [131]Rabinowicz E..Friction and wear of materials,New York,1965,15-128.
    [132]Subramanian C..Some consideration towards the design of a wear resistant aluminum alloy.Wear,1992,155(1):193-205.
    [133]Suh N.P.The delamination theory of wear.Wear,1973,25:111-124.
    [134]A.T.Alpas,J.Zhang.Effect of SiC particulate reinforcement on the dry sliding wear of aluminium-silicon alloys(A356).Wear,1992,155:83-104
    [135]崔晓龙,齐民,王来.Cu-Cr难互溶系机械合金化中氧化控制及介稳相形成.大连理工大学学报,2001,(41)2:181-186.
    [136]杨元政.纳米晶Fe及Fe基合金的形成与结构.中国科学院固体物理研究所硕士论文.合肥,1994,
    [137]B.S.Murty and S.Ranganathan.Novel material synthesis by mechanical alloying /milling.Int.Mater.Rev.1998,43(3):1-14
    [138]D.Maurice,T.H.courtney.Modeling of mechanical alloying:part Ⅰ.deformation coalescence,and fragmentation mechanisms.Metal.Mater.Trans.1994,25A(1):147-158
    [139]E.Ma,M.Atzmon.Phase transformations induced by mechanical alloying in binary systems.Materials Chemistry and Physics 39(1995) 249-267
    [140]Ratnesh Gupta,Ajay Gupta.Mechanical alloying of Fe-B powders.Materials Science and Engineering,2001(A304-A306):442-445
    [141]王世中,臧鑫士.现代材料研究方法.北京,北京航天航空大学出版社,1991.
    [142]赵影,熊瑛,杨保和.微观应力和晶粒尺寸的X射线单峰傅立叶分析法.光电子·激光,2003,14(2):160-162.
    [143]Klug H P,Alexander L E.X-ray diffraction procedures for polycrystalline and Amorphous Materials.2~(nd) Edition,1986
    [144]L.K.Tan,Y.Li,S.C.Ng,L.Lu.Structures,properties and responses to heat treatment of Cu -Y alloys prepared by mechanial alloying.Journal of Alloys and Compounds,1998(278):201-208.
    [145]张同俊,杨君友,周卓华,等.高能球磨过程Fe-Ni机械合金化特点.粉末冶金技术,1996,14(1):3-7.
    [146]肖平安.Laves相TiCr_2微粒增强Ti基合金的制备及其组织、性能和力学行为的研究.中南大学博士论文,长沙,2002.
    [147]Lu K.Nano Mater,1993,17(2):3-12
    [148]宋余九.金属的晶界与强度.西安,西安交通大学出版社,1988
    [149]J.Z.Jiang,C.Gente,R.Bormann.Mechanical alloying in the Fe-Cu system.Materials Science and Engineering 1998 A242,268-277.
    [150]FANG Fang,HE Miao.Mechanical alloying of Ag-Cu immiscible alloy system.Journal of Shanghai Jiaotong University,2006,11(1):84-87.
    [151]中国金属学会.金属物理性能及测试方法.冶金工业出版社,1987
    [152]黄培云.粉末冶金原理.北京,冶金工业出版社,1982
    [153]王盘鑫.粉末冶金学.北京,冶金工业出版社,1997
    [154]李勇.氧化铝颗粒弥散强化铜基复合材料的研究.华中科技大学硕士学位论文.2005.
    [155]梁淑华,范志康,肖鹏.Al_2O_3颗粒增强铜基复合材料的组织.铸造设备研究.1998.3:20-22.
    [156]杨德庄.位错与金属强化机制.哈尔滨:哈尔滨工业大学出版社,1991.
    [157]J.弗里埃德尔,王煜译.位错.北京,科学出版社,1984.
    [158]孙旭东,李继光等.Al_2O_3/SiC纳米陶瓷材料的强化机理.金属学报,1999,35(8):879-882
    [159]梁淑华,范志康,时惠英等.超细Al_2O_3颗粒增强铜基复合材料的研究.复合材料学报,1998,15(3):44-48.
    [160]Batra I S,Dey G.K,Kulkarni U D,et al.Microstructure and Properties of Cu-Cr-Zr Alloy.Journal of Nuclear Materials,2001(8):91-100
    [161]毛为民,赵新兵.金属的再结晶与晶粒长大.北京:冶金工业出版社.
    [162]Szablewsk J,Kuznlcka B.Electrical Properties of RS Cu-Cr Alloys,Materials Science and Technology,1991,7:407-409
    [163]张瑞丰,沈宁福.快速凝固高强高导Cu-Cr合金的性能.中国有色金属学报,2001,11(1):105-109
    [164]熊兆贤编著.材料物理导论.北京:科学出版社,2001
    [165]侯增寿,卢光熙.金属学原理,上海:上海科学技术出版社,1990
    [166]曹茂盛,蒋成禹等.纳米材料导论.哈尔滨:哈尔滨工业大学出版社,2001
    [167]I.A.Ibrahim,F.A.Moharned,E.J.Lavernia,Particulate reinforced metal matrix composites-a Review,J.Mater.Sci.,1991,26:1137-1156
    [168]J.W.Kaczmara,K.Pietrzakb,.The production and application of metal matrix composite materials.Journal of Materials Processing Technology,2000(106):58-67
    [169]张红霞,胡树兵,涂江平.颗粒增强铜基复合材料的研究进展[J].材料科学与工艺,2005,13(4):357-364
    [170]Groza J.R.,Gibeling J.C.Principles of particle selection for dispersion-strengthened copper.Materials Science and Engineering,1993,A 171:115-125
    [171]K.Achikita.Electric conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting.Materials Transactions,JIM,1993,34(8):718-724
    [172]王日初,毕豫,黄伯云等.SiC颗粒表面处理对6066Al基复合材料力学性能的影响.中南大学学报,2005,36(3):369-374
    [173]Kuen-Ming Shu,G.C.Tu.The microstructure and the thermal expansion characteristics of Cu/SiCp composites.Materials Science and Engineering A349(2003):236-247
    [174]Leon L,Mishnaevky J.Three-dimensional numerical testing of microstructures of particle reinforced composites.Acta Materialia,2004,52(14):4177- 4188
    [175]郭成,程羽,尚春阳等.SiC颗粒增强铝合金基复合材料断裂与强化机理.复合材料学报,2001,18(4):54-57
    [176]Pandey A B,Majumdar B S,Mircle D B.Deformation and fracture of a panicle-reinforced aluminum alloy composite:PartⅠ.Experiments.Metal Mater Trans A,2000,31A:921-927.
    [177]吕毓雄,毕敬,陈礼清等SiC_p尺寸及其体强度对铝基复合材料破坏机制的影响.金属学报,1998,34(11):1188-1192
    [178]Miehal B,Jozef I,Ladislav K,et al.Strain and fracture mechanism of Cu-TiC.Materials Letters,1999,38:270-274
    [179]何肇基.金属的力学性质.北京:冶金工业出版社,1989
    [180]Flom Y,Arsenault R J.Effect of Particle Size on Fracture Toughness of SiC/Al Composite Material.Acta Metall.1989,37(9):2413-2423
    [181]Weber L,Dorn J,Mortensen A.On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions.Acta Materialia,2003,51:3199-3211
    [182]Chang Shouyi,Chen Chifang,Lin Sujien.Electrical resistivity of metal composites.Acta Materialia,2003,51:6191-6197
    [183]Vaidya R U,Chairla K K.Thermal expansion of metal matrix composites.Composites Science and Technology,1994,50(1):13-22
    [184]Rajendra U V,Chairla K K.Thermal expansion in particle reinforced metal-matrix composite.In:Komleshwar U-padhyaed.Developments in ceramic and metal-matrix composite.The Minerals,Metals & Materials Society,1991,253-273
    [185]Sharma S C.Effect of albite particles on the coefficient of therma lexpansion behavior of the Al6061 alloy composites.Metallurical and Materials Transactions,2000,31A(3):773-780
    [186]Dautzenberg J H,Zaat H.Qualitative determination of deformation by sliding wear.Wear,1973,23:9-19
    [187]Venkataraman B,Sundararajan G.Correlation between the Characteristics of the mechanically mixed layer and wear behaviour of aluminum.Al-7075 alloy and Al-MMC s.Wear,2000,245:22-38
    [188]R.J.Arsenault,C.S.Pande.Interfaces in metal matrix composites.Scripta Metall.1984,18:1131-1134
    [189]K.K.Chawla.Interfaces in metal matrix composites.Comp.Interf.,1996,4(5):287-298
    [190]张国定.金属基复合材料界面问题.1997,11(6):649-657
    [191]郭建.合金元素及增强体表面状况对SiC_p/Al复合材料界面的影响及其交互作用.郑州大学博士论文.2003
    [192]韩绍昌,李学谦,徐仲榆.铬对改善铜与炭石墨材料润湿性的作用.湖南大学学报,1998,25(5):30-33
    [193]S.F.Moustafa,Z.Abdel-Hamid,A.M.Abd-Elhay.Copper matrix SiC and Al_2O_3 particulate composites by powder metallurgy technique.Materials Letters 2002(53) 244-249
    [194]宿辉.(SiC)_(<p>)表面修饰、表征及应用的研究.哈尔滨工业大学博士论文,2005
    [195]Chung D D L.Interface engineering for cement-matrix composites.Composite Interface,2001,8(1):67-81
    [196]Asthana R,Rohatgi.On the melt infiltration of plain and nickel-coated reinforcements with aluminium alloys.Journal of Materials Science Letters,1993,12:442-445
    [197]Zhan Y,Zhang G The effect of interfacial modifying on the mechanical and wear properties of SiC_p/Cu composites.Mater Lett,2003,57:4583-4591
    [198]Nikolopoulos P.Study of the admixture method of powder metallurgy for metal-matrix composites.Journal of Materials Science,1994,32:23-28
    [200]Qin,P.Thermal Management Materials and Designs.Electronic Packaging,1998,(10):59-63.
    [201]Lee,H.K,Lee,J.Y.Copper matrix SiC particulate composites by powder metallurgy technique.Materials Science Letters,1992,11,550-551
    [202]Zhangmin Wang,P.Wynblatt.Study of a Reation at the Solid Cu/α-SiC Interface.Journal of Materials Science,1998,33:1177-1181
    [203]C.rado,B.drevet,N Eustathopoulos.The Role of Compound Formation in Reactive Wetting:the Cu/SiC System.Acta Mater,2000,48:4486-4491
    [204]尹延国.铜基石墨自润滑材料及其摩擦学研究.合肥工业大学博士论文,2006
    [205]刘君武,吕珺,王建民,等.SiC粉体化学镀铜工艺研究.电镀与涂饰,2005,24(12):15-18
    [206]湛永钟,张国定,蔡宏伟.界面改性对SiCp/Cu复合材料力学性能的影响.稀有金属,2004,28(2):318-321
    [207]S Qin,C Chen,G Zhang,W Wang,et al.The effect of particle shape on ductility of SiCp reinforced 6061 Al matrix composites.Mater Sci Eng.1999,A272:363-370
    [208]Wynblatt.P.The effects of Interracial segregation on wetting in solid metal-on-metal and metal-on-ceramic systems.Acta Materialia.2000,48:4439-4447
    [209]Villars P,Prince A,Okamoto H.Hand of ternary alloy phase diagrams.Ohio:ASM,1997,8734-8735
    [210]樊建中,肖伯律,左 涛,等.热处理对SiCp/Al复合材料强度和塑性的影响[J].中国有色金属学报,2006,16(2):228-233
    [211]Doel TJA,Bowen P.Tensile properties of particulate metal-matrix composites.Composites.Part A 1996;27 A:655-665
    [212]陈民芳,夏立明,赵乃勤,等.电阻焊电极用WC/Cu(Cu-Cr)复合材料的开发及应用研究.材料工程,1998,6:42-45
    [213]Xu X Q,Watt D F.Basic role of hard particle in a metal matrix subjected to tensile loading [J].Acta Metall Mater,1994,42(11):3717-3729
    [214]Chawla N,Shen Y L.Mechanical behavior of particle reinforced metal matrix composites [J].Adv Eng Mater 2001;3(6):357-70
    [215]Maire E,Wilkinson D S,Embury D,et al.Role of damage on the flow and fracture of particulate rein-forced alloys and metal matrix composites.Acta Mater,1997,45(12):5261-5347
    [216]湛永钟,张国定,蔡宏伟.高导电耐磨铜基复合材料的研究.机械工程材料,2003,27(11):19-21.
    [217]D.Tabor,in J.M.Blakely(ed.):Surface Physics of Materials,vol.2,Academic Press,New York 1975.
    [218]D.A.Rigney,J.P.Hirth.Plastic deformation and sliding friction of metals.Wear,1979,53:345-370
    [219]湛永钟.铜基复合材料及其摩擦磨损行为的研究.上海交通大学博士学位论文,2003
    [220]B.Venkataraman,G.Sundararajan.Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminum,Al-7075 alloy and Al-MMCs. Wear,2000,245:22-38
    [221]万怡灶,王玉林,成国祥,等.Al_2O_3/铜合金复合材料的磨损特性研究.材料工程,1997,(11):6-8
    [222]A.Pertek,M.Kulka.Characterization of single tracks after laser surface modification of borided 41Cr4 Steel.Applied Surface Science,2003,205(1-4):137-142.
    [223]M.F.Ashby,J.Abulawi,H.S.Kong.Temperature maps for frictional heating in dry sliding.Tribol.Trans.,1991,34:577-587
    [224]P.Heilmann,J.Don,T.C.Sun,D.A.Rigney,W.A.Glaeser.Sliding and transfer.Wear,1983,91:171-190
    [225]X.Y.Li,K.N.Tandon.Mechanical mixing induced by sliding wear of an Al-Si alloy against M2 steel.Wear,1999,225-229:640-648
    [226]C.Subramanian.On mechanical mixing during dry sliding of aluminium-12.3wt.%silicon alloy against cooper.Wear,1993,161:53-60
    [227]Suh N.P..The delamination theory of wear.Wear,1973,25:111-124.
    [228]温诗铸,黄平.摩擦学原理.北京:清华大学出版社,2002
    [229]宋 波.AM60镁合金的稀土改性及摩擦磨损行为研究.吉林大学博士学位论文,2006
    [230]Wyn-Roberts D.New frontier for space tribology.Tribology International,1990,23(1):49-155
    [231]孟军虎,吕晋军,王静波等.两种镍基合金的高温摩擦学性能研究.摩擦学学报,2002,22(3):184-188
    [232]孔晓丽,刘勇兵,陆有等.粉末冶金高温金属基固体自润滑材料.粉末冶金技术,2001,19(2):86-92
    [233]郑会錞,王锦夏,田卫平,王峻等.新型电阻焊电极材料弥散强化铜.电焊机,1997(4):38-41
    [234]J.Singh,A.T.Alpas.Elevated temperature wear of A16061 and A16061-20%A1203.Scr.Metall.Mater,1995,32(7):1099-1105
    [235]S.Das,S.V.Prasad,T.D.Ramachandran.Microstructure and wear of cast(Al-Si-graphite)composites.Wear,1989,133:173-187
    [236]王恩泽,徐雁平,鲍崇高,等.Al_2O_3颗粒/耐热钢复合材料的制备及高温磨料磨损性能.摩擦学报,2004,21(1):56-60
    [237]J.M.challen,P.L.B.Oxley,B.S.Hockennull.prediction of Archard's wear coefficient assuming a low-cycle fatigue mechanism,wear,1986(111):275-288
    [238]刘建秀.铜基粉末冶金摩擦材料研制及其高温疲劳磨损和冲击性能研究.中国工程物理研究院,2003.
    [239]Sto tt F H,Glasco tt J,Wood G C.Facto rs Affecting the Progressive Development of Wear Protective Oxides on Iron-Based A lloys during Sliding at Elevated Temperatures.Wear,1984,97:93-106
    [240]Ko,P.L,Brockley.The measurement of friction and friction-induced vibration.ASME Journal of lubrication technology.1970:543-549
    [241]A.R.Rosenfield.A shear instability model of sliding wear.Wear,1987,116:319-328
    [242]沃丁柱编,复合材料大全,化学工业出版社,2000
    [243]张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2005
    [244]Prabhu B,Suryanarayana C,AN L.Synthesis and characterization of high volume fraction Al-Al_2O_3 nanocomposite powders by high-energy ball milling[J].Materials Science and Engineering A,2006,425:192-200.
    [245]丁俭,赵乃勤,师春生.纳米相增强铜基复合材料制备技术的研究进展.兵器材料科学与工程,2005,28(5):65-68
    [246]D.Y.Ying,D.L.Zhang.Processing of Cu-Al_2O_3 metal matrix nanocomposite materials by using high energy ball milling.Materials Science and Engineering 2000,A286:152-156
    [247]Varma V K,Karnat S V,Kutumbarao V V.Tensile behavior of powder metallurgy processed(Al-Cu-Mg)/SIC_p composites.Mater Sci Technol,2001,17(1):93-101
    [248]陈刚,许蕾,金立国,等.掺杂纳米Al_2O_3的石墨/Cu基复合材料性能研究.哈尔滨理工大学学报,2003,8(2):75-77
    [249]A.Hasnaoui,H.Van Swygenhoven,P.M.Derlet,Dimples on Nanocrystalline Fracture Surfaces As Evidence for Shear plane formation.Science,2003,300:1550-1552
    [250]Y.M.Wang,E.Ma,strain hardening,strain rate sensitivity,and ductility of nanostructured metals,Mater.Sci.Eng A.2004,375-377:46-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700