用户名: 密码: 验证码:
磷酸二氢铵晶体生长微观热动力学行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今时代,对微观领域的认识变得越来越迫切和重要,而科技的发展与进步,则使这种需求的实现成为可能,原子力显微镜(atomic force microscope, AFM)正是这样一种使人们得以在微观领域纵横驰骋的有力工具。对于晶体生长领域而言,原子力显微镜的出现,虽极大地促进了其微观生长机理的研究,但晶体生长过程的复杂性,使得这方面的工作还任重而道远,尤其是在无机小分子晶体的微观生长机理研究方面。
     作为应用广泛,生长容易的ADP晶体,历来被选作晶体生长理论研究的重要材料。近年来随着对其特性的深入了解,新用途的开发,ADP晶体在人类生活中也扮演着越来越重要的作用。但在ADP晶体微观生长机理的研究方面,相关的微观实验数据还较为缺乏,这正逐渐制约着该晶体的制备与应用。本文工作即是运用原子力显微镜,从热动力学的角度对ADP晶体的微观生长过程进行实时和非实时的研究。其主要内容为:
     ①运用原子力显微术观测相变驱动力为0.005 kT /ω_s~0.11 kT /ω_s下ADP晶体相变界面的微观形貌。实验数据表明,在相变驱动力为0.01 kT /ω_s~ 0.04 kT /ωs时,ADP晶体(100)面的平均面粗糙度和均方面粗糙度均不到0.3nm,远小于该晶面间距0.75nm,微观结构表现为光滑界面,与杰克逊模型、特姆金模型及卡恩模型相符,观测到螺位错生长;在相变驱动力为0.053 kT /ω_s~ 0.11 kT /ω_s时,ADP晶体的(100)面的平均面粗糙度和均方面粗糙度,介于1.8nm~4.2nm之间,大于该晶面间距0.75nm,微观结构粗糙度增加,趋向于粗糙界面,可用特姆金的弥散界面模型解释,界面上观测到多二维核生长。
     ②运用原子力显微术AFM(atomic force microscopy,AFM)观察了ADP晶体生长时相界面上动态微观形貌的变化并测算了台阶传播速率。实验结果表明,在相变驱动力介于0.005 kT /ω_s~0.05 kT /ω_s,生长温度介于20~40℃之间时,相变界面表现出台阶面的基本特征;相变界面上台阶推移的动力学系数体现出溶质输运趋向于体扩散控制;微晶融合的过程说明ADP晶体生长中,微晶融入与大分子晶体的同类过程有显著不同,不会形成晶体缺陷。
     ③详细研究了在较小的相变驱动力下(0.005 kT /ω_s~0.04 kT /ω_s)ADP晶体生长的纳米级微观形貌。过饱和度σ处于0.005~0.04,生长温度介于20~40℃之间时,晶面上观察到位错生长丘和其它晶体缺陷所形成的生长丘,晶面主要为台阶推进方式生长;位错生长丘上空洞的出现与位错弹性理论相符;台阶露台上的空洞可能造成台阶聚并;随过饱和度σ降低,台阶形貌会发生相应的变化;生长温度为25℃时,台阶棱边能不小于6.2×10~(-3)J/m~2。
     ④开展了点状籽晶的晶体生长实验。相变驱动力f介于0.005 kT /ω_s~ 0.03 kT /ω_s之间时,ADP晶体点状籽晶生长中,(100)晶面的生长速率随过饱和度的增加而线性增加;在相变驱动力一定时,晶面生长速率随温度的升高而呈指数增加;晶面的生长动力学规律与体扩散输运机制下的螺位错生长机制相符;晶体生长存在着热力学因素造成的死区。相变驱动力f介于0.05 kT /ω_s~ 0.11 kT /ω_s之间时(100)晶面的生长速率随过饱和度的增加而呈非线性增加,晶面生长趋近于多二维核生长机制,但同时也存在着其它生长机制。
Today the understanding of the micro-domain is increasingly urgent and important. The development and advancement of the science and technology make the needs realizable. The atomic force microscope (AFM) is just a powerful instrument which helps people move about freely and quickly in the micro-domain. Though the invention of AFM push greatly the research on crystal growth micro-mechanism forward, there are shoulder heavy responsibilities in this area because of the complexity of crystal growth process, especially in the micro-mechanism research fields on inorganic small molecule.
     For the wide application and easy to grow, the ADP crystal is one of the important materials in the crystal growth theory research fields. With the deep understanding of its property and the new purposes to be found recently, ADP crystals have played the more and more important role in the human beings’life, but the lack of the micro-experiment data on the ADP crystal growth micro-mechanism research fields is gradually restricting its preparation and application. In situ and ex situ AFM investigation of the ADP crystal growth have been carried out from the point of thermodynamics and kinetics in the present dissertation. The main works can be summarized as follows:
     ①By atomic force microscopy the micro morphology of the phase interface of ADP crystals were observed under the condition that the phase transition drive force is within 0.005kT/ω_s~0.11kT/ω_s. The results show that both crystal surface average roughness Ra and mean square root roughness RMS are less than 0.3nm and the (100) inter-planar spacing of 0.75nm, the micro-structure of interfaces is characteristic of smoothness when drive force is within 0.01kT/ω_s~0.04kT/ω_s, which are agreement with the theory model from Jackson, Temkin and Cahn, meanwhile the screw dislocation growth is observed. The crystal surface average roughness Ra and mean square root roughness RMS are within 1.8~4.2nm, they are bigger than the inter-planar distances of (100) 0.75nm, surface micro-structure becomes rough when drive force is within 0.053kT/ω_s ~ 0.11kT/ω_s, which is agreement with the model theory from Temkin, in this case, multi-2D nucleation growth is observed.
     ②By in situ atomic force microscopy (AFM) measurement the dynamic topographic changes were observed on the phase interface of ADP crystals and the step propagation rates of ADP crystals were measured when phase transition force was between 0.005kT/ω_s ~ 0.05kT/ω_s and the temperature was between 20~40℃. The results of AFM experiments indicated that the phase interface is basely characterized by step surface. the step kinetic coefficient shows that the mass transfer is controlled by bulk diffusion. The process of ADP micro-crystals incorporation is different from similar process of macromolecular crystals, which doesn’t result in crystal defect.
     ③The {100} surface topography of ADP crystal has been investigated by in-situ and ex-situ atomic force microscopy (AFM). The results show that the step propagation is the main growth mechanism of the crystal face {100} when super-saturation is within 0.005 ~ 0.04 and the growth temperature is between 20~40℃. Hillocks caused by dislocation and other crystal defects are observed. The appearance of hollow cores in the dislocation growth hillock is in accordance with dislocation elastic theory. Hollow cores on step terraces may result in step bunching. Step morphology changes with the decreasing of the super-saturation. The step edge free energy is greater than 6.2×10~(-3)J/m~2 when growth temperature is 25℃.
     ④The point seed crystal growth experiments have been performed. The growth rate of (100) surface increases linearly with the increase of super-saturation when drive force f is within 0.005kT/ω_s ~ 0.03kT/ω_s. The growth rate of (100) surface increases exponentially with the rise of temperature when drive force is constant. The crystal surface growth kinetics mechanism is agreement with the screw dislocation growth under the condition of bulk diffusion transfer mechanism. There are death zone resulted from thermodynamics in crystal growth. The growth rate of (100) surface increases nonlinearly with increasing super-saturation when drive force f is within 0.05kT/ω_s ~ 0.11kT/ω_s. The crystal growth is dominated mainly by the 2D-nucleation mechanism, but meanwhile some other growth mechanism still exists together with it.
引文
[1]苏根博,曾金波.大截面KDP晶体在激光核聚变研究中的应用[J].硅酸盐学报, 1997, 25(6): 717-719.
    [2] Kurtz S K, Jerpjhagnon J, Chog M M. Nonlinear Dielectric Susceptibilities[M]. Berlin, Heidelberg: Springer 1979.
    [3] J. Lasave, S. Koval, N. S. Dalal, et al. Origin of Antiferroelectricity in NH4H2PO4 from First Principles[J]. Physical review letters, 2007:267601-1-4.
    [4]化学系物质结构教研组.磷酸二氢氨单晶的培养[J].厦门大学学报, 1960,2:83-85.
    [5] H. V. Alexandru. A macroscopic model for the habit of crystals grown from solutions[J]. J. Crystal Growth, 1969, 5(2):115-124.
    [6] R. J. Davey and J. W. Mullin. The effect of supersaturation on growth features on the {100} faces of ammonium dihydrogen phosphate crystals[J]. J. Crystal Growth, 1975, 29(1):45-48.
    [7] R.I.Risti , J. Garside, B. i i . Surface features of small ADP crystals[J]. J. Crystal Growth, 1984, 69(2-3):442-448.
    [8] M.Aguiló, C.F.Woensdregt. Theoretical growth and equilibrium forms of ADP (NH4H2PO4) [J]. J. Crystal Growth, 1987, 83(4):549-559.
    [9] Dongli Xu, Dongfeng Xue. Chemical bond analysis of the crystal growth of KDP and ADP[J]. J. Crystal Growth, 2006, 286:108-113.
    [10] H.V.Alexandrua. The kinetics of growth and dissolution of ammonium dihydrogen phosphate crystals in solution[J]. J. Crystal Growth, 1971, 10 (2):151-157.
    [11] R.Rodriquez, M. Aguilóand J. Tejada. Unstable growth of ADP crystals[J]. J. Crystal Growth, 1979, 47 (4):518-526.
    [12] W.J. P. Van Enckevort, R. Janssen-van Rosmalen and W. H. van der Linden. Evidence for spiral growth on the pyramidal faces of KDP and ADP single crystals[J]. J. Crystal Growth, 1980, 49 (3):502-514.
    [13] Y. Murata, S. Sone and K. Wada. The effect of supersaturation swing on crystal growth[J]. J. Crystal Growth, 1982, 58 (1):243-252.
    [14] J. Garside and R. I. Risti .Growth rate dispersion among ADP crystals formed by primary nucleation[J]. J. Crystal Growth, 1983, 61(2):215-220.
    [15] Yoshiharu Murata, Kaoru Wada and Masakuni Matsuoka. Effects of ultrasonic waves on crystal growth[J]. J. Crystal Growth, 1983, 62(3):458-464.
    [16] S.E. Boz?ina and M. S?melcerovi?. Growth of ammonium dihydrogen phosphate microcrystals under nonstationary conditions[J]. J. Crystal Growth, 1983, 65(1-3):487-493.
    [17] Hiroshi Takubo, Shoichi Kume and Mitsue Koizumi. Relationships between supersaturation, solution velocity, crystal habit and growth rate in crystallization of NH4H2PO4[J]. J. Crystal Growth, 1984, 67(2):217-226.
    [18] A. A. Chernov,L. N. Rashkovich. Spiral crystal growth with nonlinear dependence of step growth rate on supersaturation: the {110} faces of KH2PO4 crystals in aqueous solution[J]. J. Crystal Growth, 1987, 84(3):389-393.
    [19] A.I. Malkin, A. A. Chernov and I. V. Alexeev. Growth of dipyramidal face of dislocation-free ADP crystals: free energy of steps[J]. J. Crystal Growth, 1989, 97(3-4):765-769.
    [20] L. N. Rashkovich and B. Yu. Shekunov. Morphology of growing vicinal surface: prismatic faces of ADP and KDP crystals in solutions[J]. J. Crystal Growth, 1990, 100(1-2):133-144.
    [21] P. G. Vekilov and Yu. G. Kuznetsov. Growth kinetics irregularities due to changed dislocation source activity: (101) ADP face[J]. J. Crystal Growth, 1992, 119(3-4):248-260.
    [22] P. G. Vekilov, Yu. G. Kuznetsov and A. A. Chernov. The effect of temperature on step motion: (101) ADP face[J]. J. Crystal Growth, 1992, 121(1-2):44-52.
    [23] P. G. Vekilov, Yu. G. Kuznetsov and A. A. Chernov. Interstep interaction in solution growth: (101) ADP face[J]. J. Crystal Growth, 1992, 121(4):643-655.
    [24] M. M. Harding, R. J. Rule, R. J. Oldman, R. J. Davey. Growth rate dispersion in small crystals and its relation to mosaic spread[J]. J. Crystal Growth, 1992, 123(3-4):373-384.
    [25] Horia V.Alexandru. Growth kinetic of prismatic of ammonium dihydrogen phosphate crystal in solutions[J]. J. Crystal Growth, 1996, 169:347-354.
    [26] S.R.Coriell,A.A.Chernov,B.T.Murray,et al. Step bunching: generalized kinetics[J]. J. Crystal Growth, 1998, 183:669-682.
    [27] S.R. Coriell , B.T. Murray, A.A. Chernov, et al. Step bunching on a vicinal face of a crystal growing in a flowing solution[J]. J. Crystal Growth, 1996, 169:773-785.
    [28] M. Bohenek, A.S. Myerson, W.M. Sun. Thermodynamics, cluster formation and crystal growth in highly supersaturated solutions of KDP, ADP and TGS[J]. J. Crystal Growth, 1997, 179:213-225.
    [29]许承晃. ADP结晶过程中杂质效应的初步研究[J].山东大学学报, 1963,1:43—52.
    [30] R. J. Davey and J. W. Mullin. Growth of the {101} faces of ammonium dihydrogen phosphate crystals in the presence of ionic species[J]. J. Crystal Growth, 1974, 23(2):89-94.
    [31] J. Fontcuberta, R. Rodriguez and J. Tejada. Mechanism of habit change of ADP crystals by Fe3+, based on M?ssbauer studies[J]. J. Crystal Growth, 1978, 44(5):593-598.
    [32] B. i i ,R. J. Davey and S. egarac, et al.. The growth of ADP crystals in the presence of manganese ions[J]. J. Crystal Growth, 1980, 49(4):675-680.
    [33] S. Gits, M. C. Robert and F. Lefaucheux. Doping effect on the crystalline quality of ADP doped with chromium I. Comparison of solution-grown and gel-grown crystals[J]. J. Crystal Growth, 1985, 71(1):203—208.
    [34] N.P. Rajesh a, V. Kannana, P. Santhana Raghavana, et al. Nucleation studies and crystal growth of NH4H2PO4 doped with thiourea in supersaturated aqueous solutions[J]. Materials Chemistry and Physics, 2002, 76:181—186.
    [35] N.P. Rajesh, K. Meera, K. Srinivasan, et al. Effect of EDTA on the metastable zone width of ADP[J]. J. Crystal Growth, 2000, 213:389—394.
    [36] F. Lefaucheux, M. C. Robert and E. Manghi. A comparison between gel grown and solution grown crystals—case of ADP and KDP[J]. J. Crystal Growth, 1982, 56(1):141—150.
    [37] F. Lefaucheux, M. C. Robert and Y. Bernard. Gel growth followed by holographic interferometry case of ADP crystals grown by T-decrease[J]. J. Crystal Growth, 1988,88 (1):97—106.
    [38] Etsuro Hirano, Tomoya Ogawa. Measurements of the concentration gradient around a growing crystal in an aqueous solution by moiréfringes[J]. J. Crystal Growth, 1981, 51(1):113—118.
    [39] D. Cunningham, R.J. Davey, K.J. Roberts, et al. Structural studies of the crystal/ solution interface using synchrotron radiation[J]. J. Crystal Growth, 1990, 99(1-4):1065—1069.
    [40]张炳楷,颜明山,王曼芳.磷酸二氢铵单晶培养的一些问题[J].福州大学学报, 1962, 02:47—54.
    [41]王希敏,常新安,张克从. ADP晶体生长的稳定性[J].人工晶体学报, 1991, z1:289.
    [42]王希敏,许实,张克从. ADP晶体快速生长及其相关性能研究[J].人工晶体学报, 1994, 23(1):33—38.
    [43]李征东,黄祥金,熊克明. ADP晶体电光系数测量[J].人工晶体学报, 2001, 30 (2) : 163—166.
    [44]韩代朝,马素敏,蔡玉平. NH4H2PO4晶体反铁电相的对称性及序参量[J].人工晶体学报, 2004, 33 (2) :254—257.
    [45]王越,常新安,刘国庆等. ADP及KDP晶体纵向压电系数d33的计算及其验证[J].人工晶体学报, 2006, 35 (4) :702—704.
    [46] G. Ravi, K. Srinivasan, S. Anbukumar, et al. Growth and characterization of sulphate mixed L-arginine phosphate and ammonium dihydrogen phosphate/potassium dihydrogen phosphate mixed crystals[J]. J. Crystal Growth, 1994, 137(3-4):598—604.
    [47]常新安,王希敏,张克从. KADP晶体生长研究[J].人工晶体学报, 1995, 24(4):304—309.
    [48]孙玉平,常新安,臧和贵.点状籽晶法生长DKDP晶体的研究[J].人工晶体学报, 2004, 33 (1):71—76.
    [49] Takatoms Sasaki, Atsushi Yokotani. Growth of large KDP crystals for laser fusion experiments[J]. Journal of Crystal Growth, 1990, 99:820—826.
    [50] Yang S F, Su G B, Tang J et al. Surface topography of rapidly grown KH2PO4 crystals with additives: ex situ investigation by atomic force microscopy[J]. J. Crystal Growth, 1999, 203: 425—433.
    [51] K. Tsukamoto. In Situ observation of mono-molecular growth steps on crystals growing in aqueous solution[J]. J. Crystal Growth, 1983, 61:199—209.
    [52] K. Tsukamoto, T. Abe, I. Sunagawa. In situ observation of crystals growing in high temperature melts or solutions[J]. J. Crystal Growth, 1983, 63:215—218.
    [53]罗豪甦,仲维卓,殷之文.水溶液中晶体生长台阶运动的实时观察方法[J].人工晶体学报. 1994, 23 (1):56—61.
    [57]于锡玲,孙毅.亚稳相DKDP晶体生长动力学的全息研究[J].人工晶体学报, 1995, 24 (4) : 265—271.
    [55] Xiling Yu, Youchen Liu, Xuefeng Yu, et al. Some new optical measurement techniques for the study of crystal growth and electrode processes[J]. Optics and Lasers in Engineering, 1996, 25: 191—204.
    [56] De Yoreo J J ,Land TA ,et al. The Effect of Dislocation Cores on Growth Hillock Vicinality and Normal Growth Rates of KDP {101} Surfaces[J]. J. Crystal Growth, 1997, 182:442—460.
    [57] De Yoreo J J ,Land T A ,et al. Limits on Surface Vicinality and Growth Rate due to Hollow Dislocation Cores on KDP {101}[J]. Physical Review Lettters, 1997, 78(23):4462—4465.
    [58] Yu. Potapenko S. Moving of Step Through Impurity Fence[J]. J. Crystal Growth, 1993, 133: 147—154.
    [59] Nakada Toshitaka , Sazaki Gen , et al1 Direct AFM Observations of Impurity Effects on a Lysozyme Crystal[J]. J. Crystal Growth, 1999, 196:503—510.
    [60] van Enckevort W J P , van den Berg A C J F. Impurity Blocking of Crystal Growth :a Monte Carlo Study[J]. J. Crystal Growth, 1998, 183:441—455.
    [61] Land Terry A ,Tracie L Martin ,et al. Recovery of Surfaces from Impurity Poisoning during Crystal Growth. Nature.1999, 399: 442—445.
    [62] Pina C M,Becker U ,et al. Molecular2Scale Mechanisms of Crystal Growth in Barite[J]. Nature, 1998, 395:483—486.
    [63] Malkin A J ,Kuznetsor Y G,et al. In Situ Atomic Force Microscopy Study of Surface Morphology, Growth Kinetics, Defect Structure and Dissolution in Macromolecular Crystallization[J]. J. Crystal Growth, 1999, 196:471—488.
    [64] Malkin A J . Land A A ,et al. Investigation of Virus Crystal Growth Mechanisms by In Situ AFM[J]. Physical Review Letters, 1995, 75(14):2778—2781.
    [65] Kuznetsov Y G,Malkin A J ,et al. AFM Study of the Nucleation and Growth Mechanisms of Macromolecular Crystals[J]. J. Crystal Growth, 1999, 196:489—502.
    [66] Binning G, Rohrer H, Gerber Ch, et al. Surface studies by scanning tunneling microscopy[J]. Phys. Rev. Lett., 1982, 49 (1):57—60.
    [67]白春礼.扫描隧道显微术及其应用[M].上海:上海科学技术出版社, 1992.
    [68] Binning G, Quate F, Gerber Ch. Atomic force microscopy. Phys[J]. Rev. Lett., 1986, 58(9): 930—933.
    [69] C. F. Quate. The AFM as a tool for surface imaging[J]. Surface Science.1997, 299/300: 980—995.
    [70] Kossel W.. Extending the Law of Bravais[M]. Nach Ges: WissGottingen, 1927.
    [71] Frank. F C. In: Discussions of the Faraday Society, No 5(1949)[M]. London:Butter Worth Scientific Publications, 1959.
    [72] MINNai-Ben. Defect mechanisms of crystal growth and their kinetics[J]. J. Crystal Growth, 1993, 128:104—112.
    [73] MINNai-Ben,Tsukamoto K,Sunagawa Iet al. Stacking faults as self-perpetuating step sources[J]. J. Crystal Growth, 1988, 91:11—19.
    [74] JINJian-Min,MINNai-Ben. A comparison between the growth mechanism of stacking fault and of screw dislocation[J]. J. Crystal Growth, 1989, 96:442—444.
    [75] MINNai-Ben,Sunagawa I. Twin lamellae as possible self-perpetuating step sources[J]. J. Crystal Growth.1988, 87:13—17.
    [76] MINNai-Ben, LIHua. Twin lamella mechanism of fcc crystal growth: the Monte-Carlo simulation approach[J]. J. Crystal Growth, 1991, 115:199—202.
    [77] LIHua, PEN Xing-Dong, MIN Nai-Ben. Re-entrant corner mechanism of fcc crystal growth of a-type twin lamella: the Monte-Carlo simulation approach[J]. J. Crystal Growth.1994, 139: 129—133.
    [78] LIHua, MINNai-Ben. Growth mechanism and kinetics on re-entrant corner and twin lamellae in an fcc crystal[J]. J. Crystal Growth, 1995, 152:228—234.
    [79] Jackson.K. A. Liquid Metals and Solidification[M]. Ohio: Amer.Soc. MET., Novelty, 1958.
    [80] Temkin D. E. In: Crystallization Processes[M]. New York: Consultants Bureau, 1960.
    [81] Cahn J.W.,Hillig. W.B. and Sears G.W[J]. Acta Met., 1964, 12:1421—1435.
    [82] Jackson, K.A., Uhlman, D.R.and Hunt, J.D. On the nature of crystal growth from the melt[J]. J. Crystal Growth, 1967, 1:1—36.
    [83] Tenzer L, Frazer B C. A. Neutron Structure Analysis of Tetragonal NH4H2PO4[J]. Acta Crystallographica, 1958, 11:505—509.
    [84]许东利,薛冬峰. ADP晶体的化学键和微观生长规律[J].人工晶体学报, 2005, 34(5):823—827.
    [85]张克从,张乐惠.晶体生长科学与技术[M].北京:科学出版社, 1997.
    [86]闵乃本.晶体生长的物理基础[M]。上海:科学出版社, 1982.
    [87]张克从,王希敏.非线性光学晶体材料科学[M]。北京:科学出版社, 2005.
    [88]姚连增.晶体生长基础[M].合肥:中国科学技术大学出版社, 1995.
    [89] Herring C. Some Theorems on the Free Energies of Crystal Surfaces[J]. Phys.Rev., 1951, 82: 87—93.
    [90] Thomas T N, Land T A, Martin T et al. AFM Investigation of Step Kinetics and Hillock Morphology of the {100} Face of KDP[J]. J. Crystal Growth, 2004, 260:566—579.
    [91] Kaldis, E. and Scheel, H. J.. Crystal Growth and Materials[M]. Amsterdam: North-Holland, 1977.
    [92]罗豪苏,仲维卓,殷之文等. CdI2晶体生长机制的实时观察研究[J].人工晶体学报. 1994,23(4):299-304.
    [93] Atsushi Yokotani, Hiroshi Koide, Takatomo Sasaki, et al. Fast growth of KDP single crystals by electrodialysis method[J]. J. Crystal Growth, 1984, 67(3):627—632.
    [94]曾丹苓.工程非平衡热动力学[M].北京:科学出版社, 1991.
    [95] P. Bennema. Interpretation of the relation between the rate of crystal growth from solution and the relative supersaturation at low supersaturation[J]. J. Crystal Growth, 1967, 1(5):287—292.
    [96] P. Bennema. Surface diffusion and the growth of sucrose crystals[J]. J. Crystal Growth, 1968, 3/4:331—334.
    [97] P. Bennema. The importance of surface diffusion for crystal growth from solution[J]. J. Crystal Growth, 1969, 5(1):29—43.
    [98] J. Szewczyk, J. Karniewicz, W. Kolasi ski. Growth kinetics of lithium formate crystals in normal and heavy water solutions[J]. J. Crystal Growth, 1982, 60(1):14—20.
    [99] L.N.Rashkovich, T.G.Chernevich, N.V.Govozdev, et al. Steps wandering on the lysozyme and KDP crystals during growth in solution[J]. Surface science, 2001, 492:L717—L722.
    [100] W.K.Burton, N.Cabrera, F.C.Fran. The growth of crystals and the epuilibrium strcture of their surfaces[J]. Phil. Trans. Soc., 1951, 243:299—358.
    [101]傅宏刚,陈国美,马天斌,等. Cis-HOPO分子的振动频率与精确电子结构[J].黑龙江大学自然科学学报, 2001,18(4):77-80.
    [102] P. Bennema. Analysis of crystal growth models for slightly supersaturated solutions[J]. J. Crystal Growth, 1967, 1(5):278—286.
    [103] P. Bennema, G.H.Gilmer. In: Crystal Growth: an introduction[M]. Amsterdam:North-holland, 1973.
    [104] A. A. Chernov, L. N. Rashkovich, A. A. Mkrtchan. Solution growth kinetics and mechanism: Prismatic face of ADP[J]. J. Crystal Growth, 1986, 74(1):101—112.
    [105] Chernov A A. Step Bunching and Solution Flow[J]. Journal of Optoelectronics and Advanced Materials.2003, 5:575—587.
    [106] A. A. Chernov. Sov.Phys[J]. Uspekhi 4, 1961, 116.
    [107]张克从,王希敏.非线性光学晶体材料科学[J].北京:科学出版社, 2005.
    [108] H.E.Bridgers, J.H.Scaff, J.N.Shive. Transistor Technology[M]. Van Nostrand, 1958.
    [109] N. Zaitseva, I. Smolsky, L. Carman. Growth phenomena in the surface layer and step generation from the crystal edges[J]. J. Crystal Growth, 2001, 222:249—262.
    [110] J. J. De Yoreo, T. A. Land, L. N. Rashkovich, et al. The effect of dislocation cores on growth hillock vicinality and normal growth rates of KDP {101} surfaces[J]. J. Crystal Growth, 2001, 222:442—460.
    [111] V.I. Bredikhin, G.L. Galushkina, A.A. Kulagin, et al. Competing growth centers and step bunching in KDP crystal growth from solutions[J]. J. Crystal Growth, 2003, 259:309—320.
    [112] Harry F. Robey, Serge Yu. Potapenko. Ex situ microscopic observation of the lateral instability of macrosteps on the surfaces of rapidly grown KH2PO4 crystals[J]. J. Crystal Growth, 2000, 213:355—367.
    [113] N. A. Booth, A. A. Chernov, P. G. Vekilov. Characteristic lengthscales of step bunching in KDP crystal growth: in situ differential phase-shifting interferometry study[J]. J. Crystal Growth, 2002, 237/239:1818—1824.
    [114] L. N. Rashkovich, O. A. Shustin, T. G. Chernevich. Atomic force microscopy of KH2PO4 crystallization in moist media[J]. J. Crystal Growth, 1999, 206:252—254.
    [115] Mariusz J. Krasinski, Ranieri Rolandi. Ex situ investigation of surface topography of as-grown potassium dihydrogen phosphate crystals by atomic force microscopy[J]. J. Crystal Growth, 1996,169:548—556.
    [116] Terry A. Land, James J. De Yeroo. The evolution of growth modes and activity of growth sources on canavalin investigated by in situ atomic force microscopy[J]. J. Crystal Growth, 2000, 208:623—637.
    [117] K. Sangwal. Growth kinetics and surface morphology of crystals grown from solutions: recent observations and their interpretations[J]. Prog. Crystal growth and Charact, 1998, 36(3): 163—248.
    [118] Yu. Potapenko S. Moving of Step Through Impurity Fence[J]. J. Crystal growth, 1993, 133: 147—154.
    [119] Nakada Toshitaka , Sazaki Gen , et al. Direct AFM Observations of Impurity Effects on a Lysozyme Crystal[J]. J. Crystal Growth.1999, 196:503—510.
    [120] van Enckevort W J P , van den Berg A C J F. Impurity Blocking of Crystal Growth:a Monte Carlo Study[J]. J. Crystal Growth.1998, 183:441—455.
    [121] Land Terry A ,Tracie L Martin ,et al. Recovery of Surfaces from Impurity Poisoning during Crystal Growth[J]. Nature, 1999, 399:442—445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700