用户名: 密码: 验证码:
铜/碳及氧化硅/磷酸钙纳米功能复合材料的微观结构和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米功能复合材料是纳米科技的重要研究领域之一。本文采用新型粉末冶金技术制备了具有自润滑功能的纳米铜/碳复合材料和具有生物活性功能的纳米氧化硅/磷酸钙复合材料。Cu-C不互溶体系机械合金化24h后,Cu和C实现了原子级的混合,Cu-4%C粉末形成了纳米结构的过饱和固溶体,但是,Cu-6%C和Cu-8%C粉末中还有少量的残余碳,以非晶态碳和层片状石墨形式存在。XPS研究表明,除了少量的碳形成了氧化物及铜碳间隙固溶体外,大部分碳以单质形式固溶在位错、晶界等缺陷处,故为亚固溶。
     冷压成型和放电等离子烧结后铜/碳复合材料仍保持着纳米结构,SPS烧结样品中Cu-C键的数量明显增加,Cu-C界面干净,结合良好。形成过饱和固溶体的铜/碳复合材料表现出更好的减摩耐磨性能,使从轻微磨损向严重磨损的转折点从机械混合冷压样品的100N提高到140N。在磨损过程中,铜/碳复合材料以挤出-涂抹-机械混合的机制形成表面富石墨的润滑膜,Cu-4%C在140N,Cu-8%C在100N载荷时磨损表面形成的润滑膜最完整,显著提高了铜/碳复合材料的摩擦磨损性能。
     氧化硅/磷酸钙复合材料(SCPC)主要由β-NaCaPO4和α-cristobalite晶相组成,在低的压力或温度下,晶粒尺寸在纳米级。随着压力和烧结温度增加,材料的孔隙率、晶粒尺寸和SiO2熔化相百分含量明显增加,导致SCPC的力学性能显著降低。压缩试验表明:纳米SCPC具有优异的抗压强度(105.62~246.64MPa)和弹性模量(9.49~14.07GPa),相当于密质骨的力学性能。
Material, energy and information are three mainstays of the modern science and technology. New materials continually appear and develop towards the composite, high functional or intelligentized direction. Hence, functional nano-composites have been attracting much attention due to their particular properties and new laws, such as nanosized materials, amorphous materials, magnetic materials, superconductive materials, self-lubricating materials, and biomaterials. Self-lubricating metal matrix composites not only have mechanical properties of metal matrix, but also have good tribological properties of solid lubricant. Biomaterials have been used as the graft substitutes or regeneration. The powder metallurgy technology is used to prepare the functional nano-composites because it has the ability of controlling the composition and microstructure of the material in the wide range and taking shape. Powder metallurgy technology gives the new method and thought of developing new functional composites.
     Cu/C composites are a kind of the metal matrix composites combining both structural and functional properties, which have been paid great attention due to combinations of high strength, conductivity, thermal conductivity, and excellent wear resistance. Cu/C composites are always the priority materials for the electric contact and brush. But, the interface between C and Cu is not almost wettable and exists in the form of mechanical bonding. This kind of low bonding strength often leads to the enforcement pulling out and falling out. In general, the matrix alloyed or carbon enforcement surface processed is used to improve the wettability between Cu matrix and carbon enforcement, but the effect is not evident. Therefore, the improvement of strength, hardness and wear resistance has been the central task for the research and development of Cu/C materials.
     In this work, mechanical alloying (MA) of mixtures of copper and graphite were performed in a high-energy ball mill, and Cu/C nano-composites were fabricated by cold press process and spark plasma sintering (SPS), respectively. The microstructure, Cu-C interface, phase composition, properties, frication and wear characteristics were studied, which will lay a solid foundation for the development of novel low-friction and anti-wearing Cu/C self-lubricating nano-composites.
     Copper powders with 2, 4, 6, and 8 wt.% C were mechanical alloyed for various times to obtain the nanostructurally supersaturated solid solution of carbon in copper. The investigations indicate that in the Cu-C immiscible system, copper and graphite powders form the samdwich, and nanocrystalline, amorphous, and supersaturated solid solution appear during milling. After milling for 24 h, Cu-4%C powders form the nanostructurally supersaturated solid solution of carbon in copper. Whereas, there are a few residual carbon atoms in the form of amorphous carbon and lamellar graphite for Cu-6%C and Cu-8%C powders except for the formation of nanostructural solid solution. XPS study reveals that the solid solution of carbon in copper is formed at atomic level during milling. However, it is obvious that most of carbon atoms can locate in graphite regions, namely, segregated in the interfaces and dislocations to form sub-solid solution. Therefore, a high-energy ball mill can largely extend the solid solubility of carbon in copper and 4% C is dissolved in Cu. It is ascribed to the decrease of the grain size and increase of the lattice strain.
     The microstructures of cold-pressed and SPS sintered Cu/C composites keep the nanostructure. It is noted that the carbon particles and strips exist in the interior of copper particles, the interface or pore. In comparison with cold-pressed compacts, the number of the Cu-C boud of SPS compacts increases obviously. Some Cu twins in the width of 20 nm and good Cu-C interface binding are found. A double activation mechanism for the consolidation of Cu/C composites in the MA-SPS processing is proposed, which improves the sintering activity of Cu/C powders. Dense Cu/C nano-composites are able to be obtained by SPS sintering at 600℃for 3 min.
     Cu-4%C compact sintered at 600℃has the relative density of 98%, which is rather high than that of cold-pressed compact of 87% with the same carbon content. On the other hand, the microhardness of SPS compacts is rather high than that of cold-pressed compacts. The cold-pressed compacts for Cu-2%C have a maximum value of 122 HV, and the SPS compacts reach a maximum value of 239 HV.
     Tribological properties of Cu/C nano-composites forming supersaturated solid solution were investigated. The results reveal that the Cu/C composites prepared by different processing show better wear resistance than pure Cu, and tribological properties of Cu/C composites forming supersaturated solid solution are better than the Cu/C mechanically mixed for 1h, which results in the turning point from the light wear to heavy wear increasing from 100N for mechnical mixing to 140 N for mechanical alloying. MA-SPS samples have the best wear resistance. For Cu-4%C nano-composites at the load of 140 N and Cu-8%C at 100 N, the worn surface forms an entire lubricative film with rich-in graphite. Therefore, the friction coefficient and wear rate decrease considerably.
     Salica-calcium phosphate composite (SCPC) was fabricated by the powder metallurgy technology. The microstructure, morphology, phase compositions, and mechanical properties were studied. The results show that SCPC is mainly made ofβ-NaCaPO4 andα-cristobalite crystalline phases. Under low compact pressure or sintering temperature, SCPC grains are nanosized. A melting phase appears under high compact pressure or sintering temperature. In addition, the percent of the melting phase increases significantly with the compact pressure or sintering temperature. SEM-EDX and TEM-EDX reveal the melting phase is a SiO2 amorphous phase. The increase of compact pressure or sintering temperature leads to the increase in the porosity, grain and the percent of the melting phase, which causes the decrease of the mechanical properties of SCPC. Compressive test indicates that SCPC nano-composites have the superior compressive strength of 105.62~246.64MPa and modulus of elasticity of 9.49~14.07GPa, which are comparable to the reported values for cortical bone.
引文
[1]张金升,许凤秀,王英姿等.功能材料综述[J].现代技术陶瓷, 2002,3: 40-44.
    [2]王新林.金属功能材料的几个最新发展动向[J].金属功能材料, 2001,8(1): 1-8.
    [3]郭青蔚.粉末冶金工艺发展现状[J].世界有色金属, 1998,10: 8-9.
    [4] MURTY B S, RANGANATHAN S. Novel materials synthesis by mechanical alloying[J]. Int. Mater. Rev., 1998,43(3): 101-104.
    [5] Hoyt S I. AIME Trans., 1930,89: 9-30.
    [6] BENJAMIN J S. Mechanical alloying[J]. Sci. Amer., 1976,234(5): 40-49.
    [7] YERMAKOV A E, YURCHIKOV E E, BARINOV V A. Amorphous transition in intermetallic compounds induced by high ball milling[J]. Phys. Met. Metallogr., 1981,52(6): 50-57.
    [8] YERMAKOV A E, YURCHIKOV E E, BARINOV V A. Ferromagnetism in YCo 2 powders produced by machine grinding[J]. Phys. Met. Metallogr., 1982,54(5): 935-941.
    [9] KOCH C C, CARVIN O B, MCKAMEY C G, et al. Preparation of“amorphous”Ni60Nb40 by Mechanical alloying[J]. Appl. Phys. Lett., 1983,43: 1017-1025.
    [10] SURYANARAYANA C. Mechnical alloying and milling[J]. Prog. Mater. Sci., 2001,46: 1-184.
    [11] IMAMURA H, SAKASAI N, KAJII Y. Hydrogen absorption of Mg-based composites prepared by mechanical milling: Factors affecting its characteristics[J]. J. Alloys Compd., 1996,232: 218-223.
    [12] WU N Q, WU J M. Amorphization in the Al-C system by mechanical alloying[J]. J. Alloys Compd., 1997, 260(1-2): 121-126.
    [13] TRUDEAU M L, HUOT J Y, SCHULZ R. Nanocrystalline Fe-(Co,Ni)-Si-B: The mechanical crystallization of amorphous alloys and the effects on electrocatalytic reactions[J]. Phys. Rev. B, 1992,45: 4626-4641.
    [14] SCHWARZ R B, JOHNSON W L. Formation of an amorphous alloy by solid state reaction of the pure polycrystalline metals[J]. Phys. Rev. Lett., 1983,51: 415-418.
    [15] GAFFET E, LOUISON C, HARMELIN M, et al. Metastable phase transformations induced by ball-milling in the Cu-W system[J]. Mater. Sci. Eng., 1991,A134: 1380-1384.
    [16] SHEN T D, QUAN M X. Amorphous phase transition mechanism by the mechanical alloying of the Fe-W system[J]. J. Appl. Phys., 1992,71(4): 1967-1971.
    [17] SCHWARZ R B, PETRICH R R, SAW C K. The synthesis of amorphous Ni-Ti alloy powders by mechanical alloying[J]. J. Non-cryst. Solids, 1985,76: 281-302.
    [18] HELLSTERN E, SCHULZ L. Amorphization of transition metal Zr alloys by mechanical alloying[J]. Appl. Phys. Lett., 1986,48: 124-126.
    [19] GAFFET E. Phase-transition induced by ball-milling in Germanium[J]. Mater. Sci. Eng., 1991,A136: 161-169.
    [20] SHEN T D, WANG K Y, QUAN M X, et al. Mater. Sci. Forum., 1992,88-90: 391-398.
    [21] FECHT H J, JOHNSON W L. Destabilization and vitrification of crystalline matter[J]. J. Non-Cryst. Solids, 1990,117-18(2): 704-707.
    [22] SURYANARAYANA C, IVANOV E, BOLDYEREV V V. The science and technology of mechanical alloying[J]. 2001,A304-306: 151-158.
    [23] FORRESTER J S, SCHAFFER G B. The chemical kinetics of mechanical alloying[J]. Met. Mater., 1995,26A(3): 725-730.
    [24]吴年强,李志章.机械合金化的机制[J].材料导报, 1997,11(6): 20-23.
    [25] KLASSEN T, HERR U, AVERBACK R S. Metastable phases and microstructures[J]. Mater. Res. Soc., 1996,400: 25-30.
    [26] ANING A O, WANG Z, COURTNEY T H. Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys[J]. Acta Metall. Mater., 1993,41(1): 165-174.
    [27] SUI H X, ZHU M. The enhancement of solid solubility limits of AlCo intermetallic compound by high-energy ball milling[J]. J. Appl. Phys., 1992,71(6): 2945-1949.
    [28] MA E, HE J H, SCHILLING P. Mechanical alloying of immiscible elements: Ag-Fe contrasted with Cu-Fe[J]. J. Phys. Rev., 1997,B55: 5542-5545.
    [29] SCHULZ R, HUOT J, LIANG G, et al. Recent developments in the applications of nonocrystalline materials to hydrogen technologies[J]. Mater. Sci. Eng., 1999,A267(2): 240-245.
    [30]李法兵,蒋利军,詹锋等.机械合金化直接合成镁基复合储氢材料研究[J].稀有金属材料与工程, 2005,34(5): 750-754.
    [31] TERRY M T, KANATZIDIS M, MAHAN G, et al. Thermoelectric materials: The next generation materials for small scale refrigeration and power generation applications[J]. MRS Proc., 1997,545: 47-54.
    [32] BELYAEV E, MAMYLOV O, LOMOVSKY. Mechanochemical synthesis and properties of thermoelectric materialβ-FeSi2[J]. J. Mater. Sci., 2000,35(10): 2029-2035.
    [33]李成川,任维丽,潘志军等.热电材料CoSi化合物的机械合金化合成[J].上海交通大学学报, 2006,40(6): 889-894.
    [34] POLITIS C. Amorphous superconducting Nb3Ge and Nb3GexAlx powders prepared by mechanical alloying[J]. Phys. B, 1985,135(1-3): 286-289.
    [35] INOUE K, KIKUCHI A. Development of RHQ-processed Nb3Ga wire[J]. IEEE Trans. Appl. Supercond., 2004,14(2): 956-960.
    [36]雷景轩,马学鸣,余海峰.机械合金化制备电触头材料进展[J].材料科学与工程, 2002, 20: 457-460.
    [37]张代东,秦亮.电触头材料的应用与制备研究[J].科技情报开发与经济, 2004, 14(10): 188-190.
    [38]张代东,郑建玉.机械合金化制备纳米材料[J].铸造设备研究, 2004,4: 18-20.
    [39]王庆学,张联盟.机械合金化―新型固态非平衡加工技术[J].中国陶瓷, 2002,38(2): 6-10.
    [40] JURCZYK M, SMARDZ L, MAKOWIECKA M, et al. The synthesis and properties of nanocrystalline electrode materials by mechanical alloying[J]. J. Phys. Chem. Sol., 2004,65(2-3): 545-548.
    [41] XIAO Z, LI Z, FANG M, et al. Structure evolution of Cu-based shape memory powder during mechanicl alloying[J]. Trans. Nonferrous Met. Soc. China, 2007,17(6): 1422-1427.
    [42] PABI S K, JOARDAR J, MANNA I, et al. Nanocrystalline phases in Cu-Ni, Cu-Zn and Ni-Al systems by mechanical alloying[J]. Nanostructured Mater., 1997,9(1-8): 149-152.
    [43] BENJAMIN J S, VOLIN T E. The mechanism of mechanical alloying[J]. Metall. Trans., 1974, 5: 1929-1934.
    [44] CALKA A, RADLINSKI A P. J. Less Common Met., 1990, 161: L23-L26.
    [45] LEE P Y, KOCH C C. Formation of amorphous Ni-Zr alloy powder by mechanical alloying of intermetallic powder mixtures and mixtures of nickel or zirconium with intermetallics[J]. J. Mater. Sci., 1988,23: 2837-2845.
    [46] SCHULTZ L, HELLSTERN E, ZORN G. J. Phys. Chem., 1988,157: 203-210.
    [47] DAVIS R M, MCDERMOTT B, KOCH C C. Mechanical alloying of brittle materials[J]. Metall. Trans., 1988, 19A: 2867-2874.
    [48] LEE P Y, KOCH C C. Formation of amorphous Ni-Zr alloy by mechanical alloying of mixtures of the intermetallic compounds Ni11Zr9 and NiZr2[J]. Appl. Phys. Lett., 1987, 50: 1578-1580.
    [49]张厚安,陈平,刘心宇.机械合金化对MoSi2烧结致密化的影响[J].稀有金属材料与工程, 2003,32(1): 70-72.
    [50]王志伟. Ti-Al-Al2O3纳米粉体的机械活化-放电等离子烧结[J].材料保护, 2005,38(9): 54-57.
    [51] ZHAO L D, ZHANG B P, LI J F, et al. Thermoelectric and mechanical properties of nano- SiC-dispersed Bi2Te3 fabricated by mechanicl alloying and spark plasma sintering[J]. J. Alloys and Comp., 2008,455: 259-264.
    [52] KUBOTA M, KANEKO J, SUGAMATA M. Properties of mechanically milled and spark plasma sintered Al-AlB2 and Al-MgB2 nano-composite materials[J]. Mater. Sci. Eng., 2008,A475: 96-100.
    [53] LIU K G, DONG X, ZHANG J X. The effects of La on thermoelectric properties of LaxCo4Sb12 prepared by MA-SPS[J]. Mater. Chem. Phys., 2006,96(2-3): 371-375.
    [54]高濂,宫本大树.放电等离子烧结技术[J].无机材料学报, 1997,12(2): 129-133.
    [55] TOKITA M. J. Soc. Trends in advanced SPS spark plasma sintering systems and technology[J]. Powder Tech. Jpn., 1993,30: 790-804.
    [56] Inouse K. US Patent No.3,241,956[P]. 1966.
    [57] TOKITA M. Trends in advanced SPS (spark plasma sintering) systems and technology[J]. J. Soc. Powder. Tech. Jpn, 1993,30(11): 790-804.
    [58]张东明,傅正义.放电等离子加压烧结(SPS)技术特点及应用[J].武汉工业大学学报, 1999,21(6): 15-17.
    [59] QUE W X, KHOR K A, XU J L, et al. Hydroxyapatite/titania nanocomposites derived by combining high-energy ball milling with spark plasma sintering processs[J]. J. Eur. Cer. Soc., 2008,28(16): 3083-3090.
    [60] DU X L, QIN M L, RAUF A,et al. Structure and properties of AlN ceramics prepared with spark plasma sintering of ultra-fine powders[J]. Mater. Sci. Eng., 2008,A496(1-2): 269-272.
    [61] KIMURA H. High-strength intermetallic TiAl synthesized via high-temperature crystallization of the amorphous alloy[J]. Philos. Mag., 1996,A73(3): 723-737.
    [62] MAKINO A, LNOUE A. Nanocrystalline soft magnetic Fe-M-B (M=Zr, Hf, Nb) alloys produced by crystallization of amorphous phase[J]. Mater. Trans. JIM, 1995,36: 924-938.
    [63] ZHANG X H, LI W J, HONG C Q, et al. A novel development of ZrB2/ZrO2 functionally graded ceramics for ultrahigh-temperature application[J]. Scripta. Mater., 2008,59(11): 1214-1217.
    [64] BENJAMIN J S. Fundamentals of Mechanical Alloying[J]. Mater. Sci. Forum, 1992,1: 88-90.
    [65] BHATTACHARYA A K, ARZT E. Temperature Rise during Mechanical Alloying[J]. Scripta Met. Mater., 1992,27(6): 749-754.
    [66] YOSHIMURA M, OHJI T, SANDO M. Synthesis of nanograined ZrO2-based composites by chemical processing and pluse electric current sintering[J]. Mater. Lett., 1999,38:18-21.
    [67] SHERIF M, ESKANDARANY, MAMORU OMORI, et al. Plasma Activated sintering for consolidation of mechanically reacted TiN powder[J]. J. Jpn. Soc. Powder. Powder. Metall., 1997,44(6): 547-553.
    [68]高溓,王宏志,洪金生等.放电等离子超快速烧结SiC-Al2O3纳米复相陶瓷[J].无机材料学报, 1999,14(1): 55-59.
    [69] TAKANO Y, OZAWA T, YOSHINAKA M, et al. Microstructure and mechanical properties of ZrO2(2Y)-Toughened Al2O3 composites densified by spark plasma sintering[J]. J. Eur. Ceram. Soc., 1999,19: 609-613.
    [70] TOKITA M, KAWAHARA M, SONODA M, et al. Preparation and triborogical characterization of Zr2(3Y)+20%Al2O3/SUS410L stainless steel composite functionally graded materials frabricated by spark plasma sintering method[J]. J. Jpn. Soc. Powder. Powder. Metall., 1999,46(3): 269-276.
    [71] KIKUCHI K, KANG Y S, KAWASAKI A. Fabrication of diskshaped symmetric functionally graded materials of Ni/Al2O3 system by SPS process[J]. J. Jpn. Soc. Powder. Powder. Metall., 2000,47(3): 302-307.
    [72] KIMURA H, TODA K. Design and development of functionally graded materials by pluse discharge resistance consolidation with temperature gradient control[J]. Powder. Metall., 1996,39(10): 59-62.
    [73] OHTSUKA A, KAWASAKI A, WATANABE R, et al. Fabrication of Cu/Al2O3/Cu symmetrical functionally graded material by spark plasma sintering process[J]. J. Jpn. Soc. Powder. Powder. Metall., 1998,45(3): 220-224.
    [74]解迎芳,王兴庆,陈立东等.放电等离子烧结纳米硬质合金的研究[J].硬质合金, 2003,20(3): 138-142.
    [75]张国珍,张光磊,张久兴等.放电等离子烧结技术制备HA/Ti生物活性复合材料的研究[J].粉末冶金技术, 2004,22(1):16.
    [76] GU Y W, LOH N H, KHOR K A, et al. Spark plasma sintering of hydroxyapatite powders[J]. Biomaterials, 2002,23: 37-43.
    [77] RISBUD S H, SHAN C H. Resistivity drops at >240K and diamagnetic ac susceptibility up to 300K in rapidly consolidated YBCO[J]. Mater. Lett., 1994,20: 149-153.
    [78] SUGIYAMA A, KOBAYASHI K, MATSUMOTO A, et al. Preparation of Mn-Si thermoelectric material by MA and plused current sintering[J]. J. Jpn. Soc. Powder. Powder. Metall., 2000,47(3): 327-331.
    [79] SUGIYAMA A, KOBAYASHI K, OZAKI K, et al. Preparation of duplex phase magnetic materials by MA-plused current sintering process[J]. J. Jpn. Soc. Powder. Powder. Metall., 2000,47(7): 737-741.
    [80] ONO H, SHIMADA M, FUJIKI A, et al. Magnetic properties on bulk exchange-spring magnets in Nd-Fe-Co-V-B system formed by spark plasma sintering[J]. J. Jpn. Soc. Powder. Powder. Metall., 2000,76(60): 667-673.
    [81] KOJIMA A, MIZUSHIMA T, MAKINO A, et al. Soft magnetic properties of bulk nanocrystalline Fe90Zr7B3 alloys consolidated by spark-plasma sintering[J]. J. Jpn. Soc. Powder. Powder. Metall., 1996,43(5): 613-618.
    [82] WANG Z, MATSUMOTO M, ABE T, et al. Phase transformation of Ni2MnGa made by the spark plasma sintering method[J]. Mater. Trans., JIM, 1999,40(5): 389-391.
    [83] DU X L, QIN M L, RAUF A,et al. Structure and properties of AlN ceramics prepared with spark plasma sintering of ultra-fine powders[J]. Mater. Sci. Eng., 2008,A496(1-2): 269-272.
    [84] FANG W, KO S H, HASHIMOTO H, et al. Microstructure and mechanical properties of Ti3Al-Nb alloys prepared by pulse dischange sintering[J]. J. Jpn. Soc. Powder. Powder. Metall., 2000,47(3): 315-321.
    [85] CORENO-ALONSO O, CABANAS-MORENO J G, CRUZ-RIVERA J J, et al. Characterization of NiAl intermetallic produced by mechanical alloying and consoled by spark plasma sintering[J]. Mater. Sci. Forum, 2000,343-346: 635-640.
    [86] DIAZ BARRIGA ARCEO L, CRUZ-RIVERA J J, CABANAS-MORENO J G, et al. Characterization of Cu-Co alloys produced by mechanosynthesis and spark plasma sintering[J]. Mater. Sci. Forum, 2000,343-346: 641-646.
    [87] SUGIYAMA S, SUGAWARA Y, KIMURA M, et al. Consolidation of stellite and its bonding to stainless steel by spark plasma sintering[J]. J. Jpn. Soc. Powder. Powder. Metall., 1998,45(7): 675-679.
    [88] NAGAE T, YOKOTA M, NOSE M. Consolidation of hollow shaped compact by pulse discharge pressure sintering[J]. J. Jpn. Soc. Powder. Powder. Metall., 1998,45(2): 169-171.
    [89] OMORI M, OKUBO A, GILHWAN K, et al. Consolidation of thermosetting polyimide by the spark plasma system[J]. J. Mater. Synth. Proc., 1997,54(4): 279-281.
    [90] KIM H, KAWAHARA M, TOKITA M. Sepecimen temperature and sinterability of Ni Powder by spark plasma sintering[J]. J. Jpn. Soc. Powder. Powder. Metall., 2000,47(8): 887-891.
    [91] NOSE M, NAGAE T, YOKOTA M. Sintering mechanisms of mechanically alloyed 2Nb/Al powder by pulse current pressure sintering[J]. J. Jpn. Soc. Powder. Powder. Metall., 1998,45: 670-674.
    [92] WANG S W, CHEN L D, KANG Y S, et al. Effect of plasma activated sintering (PAS) parameters on densification of copper powder[J]. Mater. Res. Bull., 2000,35: 619-628.
    [93] WANG S W, CHEN L D, HIRAI T. Densification of Al2O3 powder using spark plasma sintering[J]. J. Mater. Res., 2000,15(4): 982-987.
    [94] TOKITA M. Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering[J]. Mater. Sci. Forum, 1999,308-311: 83-88.
    [95]陈亚军,邹慧,金松哲等.脉冲电流烧结技术在纳米材料烧结中的应用[J].汽车工艺与材料, 2003,12(3): 23-25.
    [96]宋云芳,张修庆.反应球磨制备TiC/Cu复合材料[J].热加工工艺, 2003,4: 29-31.
    [97]吴渝英,张国定,洪骏. C/Cu复合材料在电刷中的应用[J].机械工程材料, 1995,19(1): 25-27.
    [98] KESTURSATYA M, KIM J K, ROHATGI P K. Wear performance of copper-graphite composite and a leaded copper alloy[J]. Mater. Sci. Eng., 2003,A339: 150-158.
    [99]孙守金.碳铜复合材料的界面特征及力学性能[J].机械工程材料, 1992,16(5): 12-15.
    [100]李华伦,王志英,商宝禄等.碳纤维涂层技术进展[J].复合材料学报, 1990,7(2): 39-44.
    [101]王文芳,许少凡,应美芳等.用镀铜石墨粉制备铜-石墨复合材料[J].机械工程材料, 1999,23(2): 41-43.
    [102]朱满康,杨桦,陈延民.铜镀覆石墨粉末的研制及其性能[J].炭素, 1996,3: 22-25.
    [103]王济国.碳纤维表面的化学镀铜[J].新型碳材料,1996,40(11): 44-48.
    [104]易沛,陈汴琨,吴云书.碳纤维与铜、钴、铁等金属的相容性研究[J].复合材料学报,1987,6(3): 86-89.
    [105]陶宁,查正根,张良等.碳纤维表面电镀铜的研究[J].表面技术,2001,30(4): 1-3.
    [106] MIYASE A, PIEKARSKI K. Application of copper as a diffusion medium for formation of chromium carbideds on carbon fibres[C]. In: proceedings of the 2nd internationalconference on composite materials, New York, 1978,211-215.
    [107]韩绍昌,徐仲榆.碳/铜复合材料研究进展[J].机械工程材料, 1999,23(6): 6-10.
    [108] MORTIMER, NICHOLAS. Effect of alloying additions to copper on the wetting of graphite[J]. 1971.
    [109]罗查林,查吉赫著.兰州碳素厂研究所译.碳和石墨材料手册[M]. 1973,7-8.
    [110]王成福,应美芳,范文宇等.烧结工艺对碳纤维增强银、铜复合材料物理性能的影响[J].复合材料学报,1992,9(1): 19-21.
    [111]许少凡,顾斌,李政等.镀铜碳纤维-镀铜石墨-铜基复合材料的制备与性能研究[J].兵器材料科学与工艺, 2006,29(5): 1-4.
    [112] GHOUSE M, RAMACHANDRAN E G. Antifriction properties of electrodeposited composites of graphite and molybdenum disulfide with copper[J]. Metal. Finishing, 1981,79(6): 85-89.
    [113] MOUSTAFA S F, EI-BADRY S A, SANAD A M, et al. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders[J]. Wear, 2002,253(7-8): 699-710.
    [114]胡勇,吴渝英.连续碳(石墨)纤维增强铜基复合材料的摩擦磨损行为[J].上海金属, 1997,19(2): 50-53.
    [115]胡锐.石墨/铜基复合材料真空液相浸渗过程动力学研究[J].西北工业大学学报, 2004,20(3): 296-230.
    [116]车建明.载荷、速度对碳/铜复合材料摩擦表面自润滑固体膜性能的影响[J].润滑与密封, 2004(2): 1-3.
    [117] ZHU Z, KUANG X, CAROTENUTO G, et al. Fabrication and properties of carbon fibre-reinforced copper composite by controlled three-step electrodeposition[J]. J. Mater. Sci., 1997,32: 1061-1067.
    [118] DONG S R, TU J P, ZHANG X B. An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes[J]. Mater. Sci. Eng., 2001,A313: 83-87.
    [119]董树荣,张孝彬.纳米碳管增强铜基复合材料的滑动磨损特性研究[J].摩擦学学报, 1999,19(1): 1-6.
    [120]山口喬,柳田博明编.窦筠,窦庆春,孙志毅译.生物陶瓷[M].北京:化学工业出版社,1992.
    [121] KURASHINA K, KURITA H. In vivo study of calcium phosphate cements, implantation ofan alpha-tricalcium phosphate/dicalcium phosphate monoxide cement paste[J]. Biomaterials, 1997,18: 539-543.
    [122] DACULSI G, LEGEROS R Z, NERY E, et al. Transformation of biphasic calcium phosphate ceramics in vivo: Ultrastructural and physicochemical characterization[J]. J. Biomed. Mater. Res., 1989,23: 883-894.
    [123] QUE W X, KHOR K A, XU J L, et al. Hydroxyapatite/titania nanocomposites derived by combining high-energy ball milling with spark plasma sintering processes[J]. J. Eur. Ceram. Soc., 2008,28: 3083-3090.
    [124] BAKAR M S A, CHEANG P, KHOR K A. Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites[J]. Comp. Sci. Tech., 2003,63: 421-425.
    [125]林开利,常江,卢建熙等.β-磷酸三钙/硅酸钙复合生物陶瓷的制备及性能研究[J].无机材料学报, 2006, 21(6): 1429-1434.
    [126] PETER S J, MILLER M J, YASKO A W, et al. Crosslinking characteristics of an injectable poly (propylene fumarate)/β-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement[J]. Biomed. Mater., 1999, 44: 314-321.
    [127] ERISKEN C, KALYON D M, WANG H J. Functionally graded electrospun polycaprolactone andβ-tricalcium phosphate nonocomposites for tissue engineering application[J]. Biomaterials, 2008,29: 4065-4073.
    [128] CROTEAU S, RAUCH F, SILVESTRI A, et al. Bone morphogenetic proteins in orthopaedics: from basic science to clinical practice[J]. Orthopaedics, 1999,22: 686-695.
    [129]凌翔,陈卫民,王罡.胶原/纳米磷酸三钙复合人工骨骨膜下引导成骨实验研究[J].华中科技大学学报(医学版), 2002,12(31): 700-702.
    [130]李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000.
    [131] SHACKELFORD J F. History and scope of biomaterials. In advance ceramics vol.1 Bioceramics[M]. Shackelford J F ed., Gordon and Breach Science publishers, 1999.
    [132] HENCH L L, SPLINTER R J, ALLEN W C, et al. Bonding mechanisms at the interface of ceramics prosthetic materials[J]. J. Biomed. Mater. Res., 1971,2: 117-141.
    [133] HENCH L L, WILSON J. Surface-active biomaterials[J]. Science, 1984,9: 630-636.
    [134] GRAVES G A, HENTRICH R L, STEIN H G, et al. Resortable ceramics implants[J]. J. Biomed. Mater. Res., 1972,2: 91-96.
    [135] JARCHO M. Hydroxyapatite synthesis and characterization in dense polycrystallineforms[J]. J. Mater. Sci., 1976,11: 2027-2035.
    [136] JARCHO M. Calcium phosphate ceramics as hard tissue prosthetics[J]. Clin. Prthopaedics Related Res., 1981,157:259-265.
    [137] KAWAKITA H, GYOTOKU A, SETO H, et al. Dextran formation on hydroxyapatite by immobilized dextransucrase to control protein adsorption[J]. Carbohydrate Polymers, 2008,74: 627-631.
    [138] NARASARAJU T S B, PHEBE D E. Some physico-chemical aspects of hydroxyapatite[J]. J. Mater. Sci., 1996,4: 85-90.
    [139] ALLIOT-LICHT B, DE LANGE G L, GREGOIRE M. Effects of hydroxyapatite particles on periodontal ligament fibroblast-like cell behavior[J]. J. Periodontol, 1997,68: 158-165.
    [140] KOKUBO T, KIM H M, KAWASHITA M. Novel bioactive materials with different mechanical properties[J]. Biomaterials, 2003,24: 2161-2175.
    [141]武晓泓,刘超,覃又文等. Graves’病病人甲状腺细胞凋亡的初步研究[J].中华内分泌代谢杂志, 2002,18(1): 33-35.
    [142] CALES B, STEFANI Y, LILLEY E. Long-term in vivo and in vitro aging of a zirconia ceramic used in orthopaedy[J]. J. Biomed. Mater. Res., 1994, 28(5): 619-624.
    [143] KONG L J, CAO Y, CAO W L, et al. J. Biomed. Mater. Res., 2005,75A(2): 275-282.
    [144] DENG X M, HAO J Y, WANG C S. Preparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals[J]. Biomaterials, 2001, 22(21): 2867-2873.
    [145]李玉宝,顾宁,魏于金.纳米生物医药材料[M].北京:化学工业出版社,2004.
    [146] HAMAGAMI J, ATO Y, KANAMURA K. Fabrication of highly ordered macroporous apatite coatiing onto titanium by electrophoretic deposition method[J]. Solid State Ionics, 2004,172: 331-334.
    [147] GAN Y, DAI K R, ZHANG P, et al. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion[J]. Biomaterials, 2008,29: 3973-3982.
    [148] GROOT K DE. Effect of porosity and physico-chemical properties on the stability, resorption and strength of calcium phosphate ceramics[J]. Ann. NY Acad. Sci., 1998,253: 227-233.
    [149] BURG K J I, PORTER S, KELLAM J F. Biomaterial developments for bone tissue engineering[J]. Biomaterials, 2000,21: 2347-2359.
    [150] DUCHEYNE P, QIU Q. Bioactive ceramics: the effect of surface reactivity on boneformation and bone cell function[J]. Biomaterials, 1999,20: 2287-2303.
    [151] LU J, DESCAMPS M, DEJOU J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone[J]. J. Biomed. Mater. Res., 2002,63: 408-412.
    [152] LU J, GALLUR A, FLAUTRE B, et al. Comparative study of tissue reaction to calcium phosphateceramics among cancellous, cortical and medullar bone sites in rabbits[J]. J. Biomed. Mater. Res., 1998,42: 357-367.
    [153] SAITO M, SHIMIZU H, BEPPU M, et al. The role ofβ-tricalcium phosphate in vascularized periosteum [J]. J Orthop Sci, 2000, 5:275- 282.
    [154] DONG J, UEMURA T, SHIRASAKI Y, et al. Promotion of bone formation using highly pure porousβ-TCP combined with bone marrowderived osteoprogenitor cells[J]. Biomaterials, 2002, 23: 4493-4502.
    [155] RAWLING C A. Modern bone substitutes with emphasis on calcium phosphate ceramics and osteoinduction[J]. Neurosurgery, 1993,33: 935-938.
    [156] LAFFARGUE P, FIALDES P. A sorption and release of insulin-like growth factor-I on porous tricalcium phosphate implant[J]. Biomed. Mater., 2000,49(3): 415-421.
    [157] KAWAMURA H, ITO A, MIYAKAWA S, et al. Stimulatory effect of increasing calcium phosphate implant on bone formation in rabbit femora[J]. Biomed. Mater., 2000, 50(2): 184-190.
    [158] BERUTO D T, MEZZASALMA S A, CAPURRO M, et al. Use of alpha-tricalcium phosphate (TCP) as powders and as an aqueous dispersion to modify processing, microstructure, and mechanical properties of Polymethylmethacrylate (PMMA) bone cements and to produce bone substitute compounds[J]. Biomed. Mater., 2000,49(4): 498-505.
    [159] TSATSOULIS A. The role of apoptosis in thyroid disease[J]. Minerva Med., 2002, 93(3): 169-180.
    [160] OHTSUKI C, KOKUBO T, TAKATSUKA K, et al. Compositional dependence of bioactivity of glasses in the system CaO-SiO2-P2O5: its in vitro evaluation[J]. J. Ceram. Soc. Jpn., 1991,99: 1-6.
    [161] OHTSUKI C, AOKI Y, KOKUBO T, et al. Transmission electron microscope observation of glass-ceramic A-W and apatite layer formed on its surface in a simulated body fluid[J]. J. Ceram. Soc. Jpn., 1995,103: 449-454.
    [162] CLAVEL-SAINZ, LOPEZ-PRATS F, MESEGUER-ORTIZ C L. In vitro behavior of adult mesenchyamal stem cells seeded on abioactive glass ceramic in the SiO2-CaO-P2O5system[J]. Acta Bimaterialia, 2008,4: 1104-1113.
    [163] EIBATAL F H, EIKHESHEN A. Preparation and characterization of some substituted bioglasses and their ceramic derivatives from the system SiO2-Na2O-CaO-P2O5 and effect of gamma irradiation[J]. Mater. Chem. Phy., 2008,110: 352-362.
    [164] KIVRAK N, TAS A L. Synthesis of calcium hydroxyapatite-tricalcium phosphate composite bioceramic powder and their sintering behavior[J]. J. Am. Ceram. Soc., 1998,81: 2245-2252.
    [165] HYAKUNA K, YAMAMURO T, KOTOURA Y, et al. Surface reactions of calcium phosphate ceramics to various solutions[J]. J. Biomed Mater. Res., 1990,24: 471-488.
    [166] RAMAY H R R, ZHANG M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering[J]. Biomaterials, 2004,25: 5171-5180.
    [167] EI-GHANNAM A R. Advanced bioceramic composite for bone tissue engineering design principles and structure-bioactivity relationship[J]. J. Biomed. Mater. Res., 2004,69A: 490-501.
    [168] EI-GHANNAM A, NING C Q. Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro[J]. J. Biomed. Mater. Res., 2006,76A: 386-397.
    [169] EI-GHANNAM A, NING C, MEHTA J. Cyclosilicate nancomposite: A novel resorbable scaffold for BMP and bone marrow cell delivery[J]. J. Biomed. Mater. Res. A, 2004,71: 377-390.
    [170] EI-GHANNAM A, CUNNINGHAM L, PIENKOWSKI D, et al. Bone engineering of the rabbit ulna[J]. J. Oral. Maxillofac Surg., 2007,65: 1495-1502.
    [171] SAJI S, KADOKURA T, ANADA H, et al. Solid solubility of carbon in copper during mechanical alloying[J]. Mater. Trans., JIM 1998,39: 778-781.
    [172] YAMANE T, OKUBO H, OKI N, et al. Impact consolidation of mixed copper and carbon powders mechanically alloyed[J]. J. Jpn. Soc. Powder. Powder. Metall., 2001,48: 9-14.
    [173] LIU X R, LIU Y B, RAN X, et al. Fabrication of the supersaturated solid solution of carbon in copper by mechanical alloying[J]. Mater. Char., 2007,58: 504-508.
    [174] RAN X, LIU Y B, BAO X J, et al. Carbon solubility in Cu-based composite by mechanical alloying[J]. Trans. Nonferrous Met. Soc. China, 2006,16: 107-111.
    [175]刘学然,刘勇兵,曹占义等.机械合金化制备铜碳过饱和固溶体[J].材料热处理学报, 2006,2: 31-33.
    [176]周玉.材料分析方法[M].北京:机械工业出版社, 2000,53-55.
    [177] ECKERT J, HOLZER JC, KRILL III CE, et al. Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders[J]. J. Appl. Phys., 1993,73: 2794-2802.
    [178] GERASIMOV KB, MYTNICHENKO SV, PAVLOV SV. Microstructure of the products of mechanical alloying in the Cu-Cr system[J]. Dokl. Phys. Chem., 1996,351: 310-317.
    [179] BOTCHAROVA E, HEILMAIER M, FREUDENBERGER J, er al. Super-saturated solid solution of niobium in copper by mechanical alloying[J]. J. Alloys. Compd., 2003,351: 119-125.
    [180] ISHIHARA K N, KUBO F, IRIE K, et al. Mechanical alloying of lithium-base systems[J]. J. Alloys Comp., 2007,434-435: 542-545.
    [181] FANG F, ZHU M, DENG H Q, et al. Self-diffusion of Al and Pb atoms in Al-Pb immiscible alloy system[J]. Mater. Sci. Eng., 2004,B108(3): 253-257.
    [182]刘平,黄金亮,顾海澄等.快速凝固高强度高导电Cu-Cr合金的组织和性能[J].兵器材料科学与工程, 1999,22(1): 12-16.
    [183]方芳,朱敏.互不溶合金体系的机械合金化研究[J].自然科学进展, 2001,11(10): 1026-1031.
    [184] BABICH M N, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices[J]. Phys. Rev. Lett., 1988,61(21):2472-2475.
    [185] YAMANE T, OKUBO H, OKI N, et al. Consolidation of mechanically alloyed powder mixture of Cu-Zn alloy and graphite[J]. Mater. Sci. Eng., 2003,350A: 173-178.
    [186] MURTY B S, RANGANTHAN S. Novel materials by mechanical alloying[J]. Int. Mater. Rev., 1998,43(3): 101-141.
    [187] WATANABE R, HASHIMOTO H, YONG-HO P. Production of amorphous powder of Ti-Al intermetallic compound by vibratory ball milling[J]. Adv. Powder Metall., Aero. Refract. Adv. Mater., 1991,6: 119-130.
    [188] FECHT H J, HELLSTERN E, FU Z. Nanocrystalline metals prepared by high-energy ball milling[J]. Metall. Trans., 1990,A21(9): 2333-2337.
    [189] ECKERT J, HOLZER J C, KTILL C E, et al. Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition[J]. J. Mater. Res., 1992,7: 1751-1761.
    [190] AASHISH R, KENNETH S, GEORGE T G. Metal. Mater. Trans, 2001,32A: 1223-1230.
    [191] YAMAKOV V, WOLF D, PHILLPOT S R, GLEITER H. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation[J]. Acta. Mater., 2002,50: 5005-5020.
    [192]卢秋虹,赵伟松,隋曼龄等.液氮温度下动态塑性形变法制备的纳米孪晶铜结构的研究[J].金属学报, 2006,42(9): 909-913.
    [193]黄建宇,吴玉琨,叶恒强.纯铜在球磨过程中的形变机制研究[J].电子显微学报, 1994,6: 499-499.
    [194] HUANG J Y, WU Y K, YE H Q. Deformation structures in ball milled copper[J]. Acta Mater., 1996,44(3): 1211-1221.
    [195]李斗星,平德海,黄建宇等.纳米固体材料的显微结构[J].电子显微学报, 1997,16: 255-260.
    [196] LU L, SHEN Y F, CHEN X H et al. Ultrahigh strength and high electrical conductivity in copper[J]. Sci., 2004, 304: 422-426.
    [197] SALVER-DISMA F, TARASCON J M, CLINARD C, et al. Transmission electon microscopy studies on carbon materials prepared by mechanical milling[J]. Carbon, 1999,37: 1941-1959.
    [198] FUKUNAGA T, NAGANO K, MIZUTANI U, et al. Structural change of graphite subjected to mechanical milling[J]. J. Non-Cry. Solids, 1998,232-234: 416-420.
    [199] ZHOU W L, IKUHARA. A transmission electron microscopy study of amorphization of graphite by mechanicl milling[J]. Carbon, 1995,33(8): 1177-1180.
    [200] OVIDKO I A. On mechanisms for solid state amorphizing transforms in metallic materials[J]. J. Phys. D: Appl. Phys., 1991,24: 2190-2195.
    [201] ECKERT J, HOLZER J C, JOHNSON W L. Thermal stability and grain growth behavior of mechanically alloyed nanocrystalline Fe-Cu alloys[J]. J. Appl. Phys., 1993,73: 131-141.
    [202] HUANG J Y, HE A, WU Y K, et al. Structure evolution in the Cu-Fe system during mechanical alloying[J]. J. Mater. Sci. 1996,31: 4165-4171.
    [203] HELLSTERN E, FECHT H J, FU Z, et al. Structure and thermodynamic properties of heavily mechanically deformed ruthenium and aluminum-ruthenium[J]. J. Appl. Phys., 1989,65(1): 305-310.
    [204] MARQUES M T, CORREIA J B, CONDE O. Carbon solubility in nanostructured copper[J]. Scr. Mater., 2004,50: 963-967.
    [205] LóPEZ G A, MITTEMEIJER E J. The solubility of C in solid Cu[J]. Scr. Mater., 2004,51(1): 1-5.
    [206] CHU J P, CHUNG C H, LEE P Y, et al. Metall. Mater. Trans., 1998:29A: 647-658.
    [207] WANG S B, ZHU P R, WANG W J. Sur. Coatings. Tech., 2000,123: 173-176.
    [208] GENTE C, OEHRING M, BORMANN R. Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloy[J]. Phys. Rev. B, 1993,48(18):13244-13252.
    [209] BLAVETTE D, CLDEL E, FRACZKIEWIEZ A, et al. Three-dimensional atomic-scale imaging of impurity segregation to line-defects[J]. Sci., 1999,286: 2317-2319.
    [210] ESTRIN Y, RABKIN E. Zener drag in the case of anisotropic grain boundary energy[J]. Scripta. Mater., 1998,39(12): 1631-1637.
    [211] VELTL G. Amorphization of Cu-Ta alloys by mechanical alloying. Mater. Sci. Eng., 1991,A134: 1410.
    [212] YAVARI A R, DESRE P J, BEMARNEUR T. Mechanically driven alloying of immiscible elements[J]. Phy. Rev. Lett., 1992,68: 2235-2238.
    [213] DORFMAN S, FUKS K, SUERY M. Diffusivity of carbon in copper and silver-based composites[J]. J. Mater. Sci., 1999,34: 77-81.
    [214] CHAUSSE C, NARDOU F, GAFFET E. Modification induced by milling on liquid phase sintering[J]. Mater. Sci. Forum, 1995,179-181: 391-396.
    [215] DORFMAN S, FUKS D. Diffusivity of carbon in the copper matrix. Influence of allying[J]. Comp., 1996,A27: 697-701.
    [216] DORFMAN S, MUNDIM K C, FUKS D, et al. Atomistic study of interaction zone at copper-carbon interfaces[J]. Mater. Sci. Eng., 2001,C12: 191-193.
    [217] GUO Z X, DERBY B. Solid-state favrication and interfaces of fibre reinforced metal matrix composites[J]. Prog. Mater. Sci., 1995,39:411495.
    [218] MATSUGI K, HATAYAMA T, YANAGISAWA O. J. Jpn. Inst. Metals, 1995,59:740-745.
    [219]张利波,彭金辉,张世敏等.等离子活化烧结新技术及应用[J].昆明理工大学学报, 2002,27(4): 22-25.
    [220]高一平编著.粉末冶金新技术-电火花烧结[M].北京:冶金工业出版社, 1992.
    [221]果世驹.粉末烧结理论[M].北京:冶金工业出版社, 2002.
    [222]斯科特等.上海市机械工程学会摩擦学组译.工业摩擦学[M].北京:机械工业出版社, 1982.
    [223] LOVá?ACIK J, EMMER ?, BIELEK J, et al. Effect of composition on friction coefficient of Cu-graphite composites[J]. Wear, 2008,265(3-4): 417-421.
    [224] TANG Y P, LIU H Z, ZHAO H J, et al. Friction and wear properties of copper matrix composites reinforced with short carbon fibers[J]. Mater. Design, 2008,29(1): 257-261.
    [225] MA X C, HE G Q, HE D H, et al. Sliding wear behavior of copper-graphite composite material for use in maglev transportation system[J]. Wear, 2008,265(7-8): 1087-1092.
    [226] XU J C, YU H, XIA L, et al. Effects of some factors on the tribological properties of theshort carbon fiber-reinforced copper composite[J]. Mater. Des., 2004,25: 489-493.
    [227]浩宏奇,丁华东,李雅文等.石墨含量对铜基材料摩擦磨损性能的影响[J].中国有色金属学报,1999,7(3): 120-124.
    [228] MOUSTAFA S F, EI-BADRY S A, SANAD A M. Effect of graphite with and without copper coating on consodidation behaviour and sintering of copper-graphite composite[J]. Powder Metall., 1997,40(3): 2002-206.
    [229]刘学然,刘勇兵,曹占义等.铜碳复合材料的组织及磨损性能的研究[J].哈尔滨工业大学学报, 2006,6: 126-128.
    [230]冉旭,刘勇兵,包晓军等.石墨对C/Cu复合材料微观组织及摩擦磨损性能的影响[J].材料热处理学报, 2007,28(2): 12-16.
    [231] LIU Y B, ROHATGI P K, RAY S. Tribological characteristics of aluminum-50 vol pct graphite composite[J]. Metall. Trans., 1993,A24: 151-159.
    [232] LIU Y B, LIM S C, RAY S. Friction and wear of aluminum-graphite composites: The smearing process of graphite during sliding[J]. Wear, 1992,159: 201-205.
    [233] ROHATGI P K, LIU Y B, BARR T L. Tribological behavior and surface analysis of tribodeformed Al alloy-50 pct graphite particle composites[J]. Metal. Trans., 1991,22A: 1435-1441.
    [234] AN J, LIU Y B, LU Y. Dry sliding wear behavior of hot extruded Al-Si-Pb alloys in the temperature range 25-200℃[J]. Wear, 2004,256: 374-385.
    [235] AN J, LIU Y B, LU Y. Hot roll bonding of Al-Pb-bearing alloy strips and steel sheets using an aluminized interlayer[J]. Mater. Char., 2001,17: 451-454.
    [236]许少凡,王文芳.碳纤维-中铜-石墨复合材料的摩擦磨损性能研究[J].摩擦学报, 1998,9: 254-25.
    [237]赵海军,刘磊,唐谊平等.电铸制备铜-石墨复合材料的研究[J].材料工程, 2006,5: 12-15.
    [238]尹延国,刘君武,郑治祥等.石墨对铜基自润滑材料高温摩擦磨损性能的影响[J].摩擦学学报, 2005,25(3): 216-220.
    [239] SUN J L, ZHANG X M. The evaluation of lubricating performances of lubricants for cold rolling aluminum strips[J]. J. Cen. South Univer. Tech., 1997(1): 65-67.
    [240] DAS S, PRASAD S V. RAMACHANDRAN T R. Microstructure and wear of cast (Al-Si alloy)-graphite composites[J]. Wear, 1989,133:173-187.
    [241] CASSTEVENS J M, RYLANDER H G. Friction and wear characteristics of powdermetallurgy copper-graphite brush at high sliding speeds[J]. Wear, 1978,49: 169-178.
    [242] SENOUCI A, FRENE J. Wear mechanism in graphite-copper electrical sliding contact[J]. Wear, 1999, 949-953.
    [243] ALEXANDER H, BRUNSKI J B, COOPEER S I, et al. Classes of materials used in medicine[M]. In: Biomaterials Science, 1996.
    [244]张兴栋.生物医学材料的发展动态和趋势[J].稀有金属材料与工程, 2000,29: 53-57.
    [245] SUCHANEC W, YOSHIMURA M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants[J]. J. Mater. Res., 1998,13(1): 94-117.
    [246] BURG K J L, PORTER S, KELLAM J F. Biomaterials developments for bone tissue engineering[J]. Biomaterials, 2000,21: 2347-2359.
    [247] DE GROOT K. Clinical applications of calcium phosphate biomaterials: A review[M]. Ceram. Int., 1993,19: 363-366.
    [248] SUCHANEC W, YOSHIMURA M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants[J]. J. Mater. Res., 1998,13(1): 94-117.
    [249] ZHAO W Y, CHANG J, WANG J Y. In vitro bioactivity of novel tricalcium silicate ceramics[J]. J. Mater. Sci. Mater. Med., 2007,18: 917-923.
    [250] SOUS M, BAREILLE R, ROUAIS F, et al. Cellular biocompatibility and compression of macroporousβ-tricalcium phosphate ceramics[J]. Biomaterials, 1998,19: 2047-2053.
    [251] EI-GHANNAM A R. Advanced bioceramic composite for bone tissue engineering design principles and structure-bioactivity relationship[J]. J. Biomed. Mater. Res., 2004,69A: 490-501.
    [252] EI-GHANNAM A, NING C Q. Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro[J]. J. Biomed. Mater. Res., 2006,76A: 386-397.
    [253] GUPTA G, EI-GHANNAM A, KIRAKODU S, et al. Enhancement of osteoblast gene expression by mechanically compatible porous Si-rich nanocomposite[J]. J. Biomed. Mater. Res., 2007,81B: 387-396.
    [254] ALTAMIRANO-JUáREZ D C, CARRERA-FIGUEIRAS C, GARNICA-ROMO M G, et al. Effects of metals on the structure of heat-treated sol-gel SiO2 glasses[J]. J. Phys. Chem. Solids, 2001,62: 1911-1917.
    [255] VENEZIA A M, PAROLA V L, LONGO A, et al. Effect of alkali ions on the amorphous tocrystalline phase transition of silica[J]. J. Sod. State Chem., 2001,161:373-378.
    [256] BRüCKNER R. Properties and structure of vitreous silica. ?[J]. J. Non-Cryst. Solids, 1970,5: 123-175.
    [257] YAMAHARA K, OKAZAKI K, KAWAMURA K. Molecular dynamics study of the thermal behaviour of silica glass/melt and cristobalite[J]. J. Non-Cryst. Solids, 2001,291: 32-42.
    [258] THANGAMANI N, CHINNAKALI K, GNANAM F D. The effect of powder processing on densification, microstructure and mechanical properties of hydroxyapatite[J]. Ceram. Int., 2002,28: 355-362.
    [259] RICE R W. Comparison of stress concentration versus minimum solid area based mechanical property–porosity relations[J]. J. Mater. Sci., 1993,28: 2187-2190.
    [260] JONES J R, EHRENFRIED L M, HENCH L L. Optimising bioactive glass scaffolds for tissue engineering[J]. Biomaterials, 2006,27: 964-973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700