用户名: 密码: 验证码:
基于柔性外骨骼人机智能系统基础理论及应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,柔性外骨骼人机智能系统已成为机器人技术、机电工程、自动控制、生物工程以及人工智能等学科领域中一个新的研究热点,并在科研、工业生产、太空或深海探索、娱乐、运动康复和日常生活中逐步得到了广泛地应用。柔性外骨骼人机智能技术以人机一体化技术为核心,充分发挥人和智能机器各自的优势,通过在感知、决策以及执行层面上有机的人机耦合,增强系统的性能。遥操作外骨骼和增力型外骨骼是柔性外骨骼人机智能系统的两个重要研究方向。近几年来国内外相关领域的技术研究和相关产品开发表明,柔性外骨骼人机智能系统具有极大的基础科学研究意义和应用前景。
     “可穿戴”是柔性外骨骼最主要的特点,因此,在柔性外骨骼结构设计过程中必须遵循拟人化,不仅在运动形式上需要保持一致,而且在运动自由度分布上也应一致,保证穿戴者(人)与柔性外骨骼的运动一致性,由此,可通过D-H参数方法建立人的肢体和外骨骼系统的多刚体串联运动学模型。在此模型基础上,分析人体上肢神经肌肉运动及感知机理,并建立人体上肢神经肌肉及各关节的运动模型,选用3RPS并联机构实现肩关节3自由度运动,可充分保证6自由度上肢柔性外骨骼机械手可柔顺地跟随操作者的上肢运动。根据人体下肢运动关节自由度分布及运动机理,设计了由直流伺服电机与滚珠丝杠构成关节直线驱动器来模拟关节运动骨骼肌的4自由度下肢外骨骼系统。并通过对人体下肢行走步态进行分析,提出下肢外骨骼系统人机5杆运动学动力学模型。为确保柔性外骨骼在操作的舒适性和安全性,柔性外骨骼与人的接触位置应选择人体上承压能力较好的区域以及不影响关节运动的区域。同时可以通过采用小质量/惯量运动零件、柔性关节、安全限位等安全设计方法,减少意外碰撞过程中外骨骼对人的冲击力,通过对意外碰撞过程中外骨骼对人的冲击力与人的安全临界冲击力之间比较,可以对柔性外骨骼人机智能技术的安全性能进行评价。
     其次,人机交互控制是柔性外骨骼人机智能系统中体现人机智能耦合的重要组成部分,为此需要人和柔性外骨骼在相互平等的条件下实现感知层中人机信息感知、交互与融合,决策层人机协调控制决策以及执行层人机交互动作。根据上肢柔性外骨骼与下肢运动康复外骨骼的使用目标,分别提出了上肢柔性外骨骼力反馈控制策略以及下肢运动康复外骨骼被动控制、半主动控制以及主动控制三种康复训练控制策略。根据柔性外骨骼人机智能技术中人与外骨骼的协调工作模式,建立系统的n端口网络模型,并通过无源性理论对系统人机交互控制的稳定性作出判别。此外,总线模式的系统通讯网络构架充分保证了柔性外骨骼系统的控制指令和信息传递的准确性和可靠性。而根据系统任务的目标与要求、机器系统模型、人的模型以及工作负荷与匹配信息的动态任务分配模式,充分体现了人与外骨骼之间的协同合作。
     上肢柔性外骨骼以其卓越的人机信息耦合能力,是实现机械手力反馈主从控制的理想方法。本研究中,根据人体上肢模型及所提出的上肢柔性外骨骼结构,采用正交试验方法对结构参数进行优化设计,保证了上肢柔性外骨骼能够最大范围地适应人体上肢的自由运动。首次提出了对主从机械手的运动空间以及欠运动自由度空间的匹配方法,改善了主从异构机械手在运动奇异点、关节运动极限点等运动空间的控制性能,充分实现了上肢柔性外骨骼与从机械手之间的运动协调。在系统气动力反馈控制结构中,通过分布式的混合模糊控制器克服了气动系统非线性强、控制精度差等困难,采用微型气动系统实时地再现机械手遥操作时感知力信号,控制误差小于5%,增强了操作的真实感。为克服以Internet为信息媒介的遥操作系统由于网络数据传输时变延时对控制稳定性的影响,文中提出了基于多事件的控制结构,改变了原有控制结构仅对从机械手运动稳定性检测的缺点,实行了对主从异构机械手遥操作过程中主从机械手的运动状态及控制过程中不确定因素的检测,改善了机器人远程操作系统受时变网络延时的影响。此外,本研究工作中采用膜模型和弯曲梁模型对弯曲气动肌肉弯曲变形与输出力矩关系进行了建模,设计开发了基于弯曲气动肌肉的单自由度力反馈手肘关节外骨骼,在实验中成功实现了对0.5Hz力信号的跟随,稳态误差控制小于1.5%。
     下肢运动康复训练外骨骼是柔性外骨骼人机智能系统向非制造业、服务业,尤其是医疗领域应用的重要拓展。根据下肢外骨骼的结构设计方案,从工程角度对下肢运动康复外骨骼系统软、硬件予以实现。在开创性地引入5杆运动学动力学模型的基础上,分别对被动控制策略和半主动控制策略予以研究。康复患者训练数据库改变了卒中及瘫痪患者原有的定性非定量的训练模式,实现了患者的数字化康复训练。本研究中所研制的原型样机可根据患者病情带动患者进行15分钟以上的连续训练,并可以在0 km/h~2 km/h范围内调节训练步速,减轻了传统康复训练模式中理疗师的工作负担。在系统功能测试及正常人实验研究中,正常工作率达到近95%,充分证实了系统的安全性和可靠性,以及控制策略的可行性。最终的卒中及瘫痪患者实验结果成功地表明系统在决策层、感知层和执行层实现患者(人)与下肢外骨骼作为一个整体的协调运动,充分说明了本论文所提出的柔性外骨骼仿生设计机理以及人机交互控制理论的准确性。
     本研究工作的成果对于我们今后更为深入的理论研究和开发实践具有承上启下的作用,所提出的关键技术及其解决方法具有很好的借鉴和参考价值。
The exoskeleton-type system is a kind of man-machine system centered by human.It is always designed as an external mechanical structure whose joints correspond to those of human body or limbs.It combines the human intelligence and the machine power so that it enhances the intelligence of the machine and the power of the human operator.As a result,the human operator can achieve what he is not capable of by himself.Robot tele-operation and human power augmentation are its two prominent applications.In recent years,the exoskeleton-type systems have been developed rapidly accompanied with great achievements in mechanical and electronic engineering,automation technology,biological,and material science.This reveals that the exoskeleton-type systems have a nice prospect for daily-life application and significance in science research.The work of this paper is to provide a comprehensive discussion of the exoskeleton-type system on the viewpoint of man-machine system.
     The wearability is the main characteristic of the exoskeleton-type system.The structure of exoskeleton should be anthropomorphic and ergonomic,not only in shape but also in function and in the distribution of the DOF as well.Due to identity motion between the human operator and the exoskeleton,the kinematic model of the exoskeleton-type system can be described by D-H method. By investigating the atlas of the human upper limb during motion,the biomechanical model of human upper-limb can be established.3RPS parallel mechanism was introduced to realize the 3-DOF motion of human shoulder,which excellently promised to track the human upper-limb motion.According to the DOF distribution and anatomy of human lower-extremity,a 4-DOF lower-limb exoskeleton was developed on the linear actuator composed by DC motor and ball-screw.A 5-link kinematic and dynamic model was set up based on the human gait.In order to guarantee the safety and comfort of the exoskeleton-type system,the support were designed to adapted to the morphology of human limb,thus avoiding misalignments between exoskeleton and limb.In addition,the general safety can be evaluated by employing the critical impact force as a minimal impact force that causes injury to humans and giving the definition of danger index as the producible impact force against the critical impact force.Definitely,the impact force can be minimized by means of reducing the mass and inertia of the moving part,using distributed macro-mini actuation and joint compliance,and mounting stop block.
     Basically,the control architecture of exoskeleton-type systems is quite different from the traditional intelligent robotics.In this control architecture,the human operator is not only the commander or the supervisor of the system,but also a part in the control loop,called 'man-in-the-loop'.This is intuitive that the human operator receives the feedback from environments and optimizes the control target.It puts more emphasis on the combination of the human intelligence and machine power,and their information exchanging,so that the man and the exoskeleton are coupled together and both are irreplaceable.The force feedback control strategy for upper-limb and intelligent control strategy for lower-limb exoskeleton,including passive control, semi-active control and active-control were proposed respectively according to the scopes of these two kinds of exoskeletons.Additionally,an n-port network model is introduced based on the cooperation between the human and the exoskeleton,by which the system stability can be analyzed by passivity.The requirements of application and various different topologies suggest that the most suitable solution for wired networks is a hierarchical bus topology.The function allocation between the human and machine should be handled by fully considering the goal,requirements,system model,and working load.
     Due to the outstanding characteristic of man-machine interaction,the upper-limb exoskeleton is regarded as one of the best methods for robot tele-operation with force feedback.According to the biomechanical model of human-upper limb,optimal mechanical design was carried out by orthogonal experiment method.Due to the different structure between the exoskeleton-type master arm and robotic slave arm,a universal workspace mapping with deficient-DOF space was proposed. Some small sized pneumatic cylinders were chosen as the actuators for force feedback.The distributed hybrid fuzzy control architecture was figured out to realize the pneumatic force-feedback control,by which the tele-operation became more intuitive.In order to minimize the influence of the time-variable time delay in the process of data transmission on internet,a multi-event-based control method was utilized.The stability and unexpected factors in control process of the master exoskeleton and the slave robot arm were both monitored.Additionally,some pre-study on the curved PMA based elbow exoskeleton for force feedback control were made.
     The rehabilitation is an important application of the power augmentation exoskeleton.We implemented technical solution of a lower-limb exoskeleton system in light of the biomechanical model of human lower-limb.Mechanical structure was optimal designed according to the simulation results based on the 5-link model.The passive position control strategy was arranged as the simplest control method for the gait.Additionally,a 5-link model based semi-active trajectory adjusting control strategy was explored to further improve the performance of such a man-machine system.With the exoskeleton and different control strategy,physiological gait patterns and training information were obtained and restored in the database.8 healthy subjects and a paraplegic patient participated in the test experiments respectively and the results were encouraging.
     By the successful implementation of these two kinds of exoskeleton-type system,the basic principle of the biomechanical design and theory of the system control were verified.The work introduced in this paper has significance in the development of exoskeleton-type system in near future.
引文
[1]杨灿军.人机一体化智能系统理论与实践研究探索.浙江大学博士论文.杭州:浙江大学,1997
    [2]李晓明.基于外骨骼技术的机器人远程控制.浙江大学博士论文.杭州:浙江大学,2004
    [3]陈鹰,杨灿军.人机智能系统理论与方法.杭州:浙江大学出版社,2006
    [4]Rosen J,Brand M,Fuchs M B,Arcan M.A myosignal-based powered exoskeleton system.IEEE Transactions on System,Man and Cybernetics,Part A,2001,31(3):210-222
    [5]戴汝为.‘人机结合'的大成智慧.第三届全国智能控制专家讨论会论文集.智能技术与系统国家实验室,1994
    [6]路甬祥,陈鹰.人机一体化系统与技术立论.机械工程学报,1994,30(6):1-9
    [7]杨灿军,陈鹰.人机一体化协同决策研究.系统工程理论与实践,2000,36(5):24-29
    [8]杨灿军,陈鹰,路甬祥.人机一体化智能系统理论及应用研究探索.机械工程学报,2000,36(6):42-47
    [9]James L A.Weir G.Human-Computer interaction and complex systems:an intimate relationship.London:Academic Press,1991
    [10]Weiss R Dances with Robots—The military is betting millions that technology can turn soldiers into superhumans.Science News,2001,159(26):407-408
    [11]Johnsen E G,Corliss W R.Teleoperators and Human Augmentation:An AEC-NASA Technology Survey.NASA SP-5047,Washington,1967
    [12]Repperger D W,Remis S J,Merrill G.Performance measures of teleoperation using an exoskeleton device.Proceedings of the IEEE International Conference on Robotics and Automation,Cincinnati,OH,USA,13-18 May,1990,Vol.27,pp.552-557
    [13]Repperger D W,Remis S J.Use of a multi-axis Fitts' law paradigm to characterize total body motion-a study in teleoperation.Proceedings of the IEEE Conference on System Engineering,9-11 Aug,1990,pp.105-108
    [14]Jau B M.Anthropomorphic Exoskeleton dual arm/hand telerobot controller. Proceedings of the IEEE Workshop on Intelligent Robots and systems,1988,pp.715-718
    [15]Sala R,Milanesi S,Rovett A.Measurement of single phalanges positioin:a new fast and accurate solution.Proceedings of 20th International Conference on Industrial Eletronics,Control and Instrumentation,5-9 Sep,1994,Vol.2,pp.942-945
    [16]Wright A K,Stanisic M M.Kinematic mapping between the EXOS handmaster exoskeleton and the Utah/MiT dextrous hand.Proceedings of IEEE International Conference on System Engineering,1990,pp.101-104
    [17]Giuffrida F,Piaggio M,Guerrasio C.G-EXO,a modular exoskeleton as multi purpose multi media interface.Proceedings of IEEE International Workshop on Robot and Human Communication,11-14 Nov,1996,pp.213-216
    [18]Brown P,Jones D,Singh S K,Rosen J M.The Exoskeleton glove for control of paralyzed hands.Proceedings of IEEE International Conference on Robotics and Automation,2-6 May,1993,Vol.1,pp.642-647
    [19]Lee S,Agah A,Bekey G LROS:an intelligent rehabilitative orthotic system for cerebrovascular accident.Proceedings of IEEE International Conference on Systems,Man and Cybernetics,4-7 Nov,1990,pp.815-819
    [20]Rahman T,Sample W,Seliktar R,Alexander M,Scavina M.A body-powered functional upper limb orthosis.Journal of Rehabilitation Research and Development,2000,37(6):675-680
    [21]Lum P S,Burgar C G,Van der Loos M.The use of a robotic device for poststroke movement therapy.Proceedings of the International Conference on Rehabilitation Robotics,Bath,UK,14-15 Apr,1997,pp.107-110
    [22]Reinkensmeyer D J,Kahn L E,Averbuch M,McKenna-Cole A,et al.Understanding and treating arm movement impairment after chronic brain injury:progress with the arm guide.Journal of Rehabilitation Research and Development,2000,37(6):653-662
    [23]Hogan N,Krebs H I,Charnnarong J,Srikrishna P,et al.MIT-MANUS:A workstation for manual therapy and training I.Proceedings of IEEE International Workshop on Robot and Human Communication,1-3 Sept,1992,pp.161-165
    [24]Lemley B.Future Tech:Really Special Forces.Discover,2002,23(2):33-36
    [25]http://davidszondy.com/future/robot/hardiman.htm
    [26]Jeong Y,Lee D,Kim K,Park J O.A Wearable Robotic Arm with High Force-Reflection Capability.Proceedings of IEEE International Workshop on Robot and Human Interactive Communication,2000,pp.411-416
    [27]Kim I,Chang S,Kim J,Lee C W,Park J O.K1ST Hybrid Master Arm.Proceedings of the ASME Dynamic Systems and Control Division,Nashville,Tennessee,USA,November 14-19,1999,pp.403-404
    [28]Lee S,Lee J,Kim M,Lee C W.A new master-arm for man machine.Proceedings of IEEE International Conference on Systems,Man,and Cybernetics,Tokyo,Japan,12-15 Oct,1999,pp.1038-1043
    [29]Kim Y S,Lee J,Lee S,Kim M.A Force Reflected Exoskeleton-Type Masterarm for Human-Robot Interaction.IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2005,35(2):198-212
    [30]Kim Y S,Lee S,Cho C,Kim M,Lee C W.A New Exoskeleton-type Masterarm with Force Reflection based on the Torque Sensor Beam.Proceedings of the IEEE International Conference on Robotics and Automation,2001,Vol.3,pp.2628-2633
    [31]Tsagarakis N,Caldwell D G,Medrano-Cerda G A.A 7 dof pneumatic Muscle Actuator (pMA)powered Exoskeleton.Proceedings of IEEE International Workshop on Robot and Human Interaction,1999,pp.327-333
    [32]Caldwell D G,Tsagarakis N,Badihi D,Medrano-Cerda G A.Pneumatic Muscle Actuator Technology a light weight power system for a Humanoid Robot.Proceedings of IEEE International Conference on Robotics and Automation,16-20 May,1998,Vol.4 pp.3053-3058
    [33]Rosen J,Hannaford B,Burns S.Neural Control of an Upper Limb Powered Exoskeleton System-Grant Report.First NSF Robotics and Computer Vision (RCV)Workshop,Las Vegas,Nevada,26-27 Oct,2003
    [34]Turner M L,Findley R P,Griffin W B,Cutkosky M R,et al.Development and Testing of a Telemanipulation System with Arm and Hand Motion.Proceedings of the ASME International Mechanical Engineering Congress and Exposition,Dynamic Systems and Controls,2000,pp.1057-1063
    [35]Koyamal T,Yamano I,Takemura K,Maen T O.Multi-Fingered Exoskeleton Haptic Device using Passive Force Feedback for Dexterous Teleoperation.Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,Lausanne,Switzerland,10-13 Oct,2002,pp.2905-2910
    [36]Williams Ⅱ R L,Murphy M A,North D,Berlin J,et al.Kinesthetic Force/Moment Feedback via Active Exoskeleton.Proceedings of the Image Society Conference,Scottsdale,Arizona,2-7 Aug,1998,
    [37]Bouzit M,Burdea G,Popescu G,Boian R.The Rutgers Master Ⅱ-New Design Force-Feedback Glove.IEEE/ASME Transactions on Mechatronics,2002,7(2):256-263
    [38]Amat J,Frigola M,Casals A.Virtual Exoskeleton for Telemanipulation.Lecture Notes in Control and Information Sciences.Experimental Robotics Ⅶ.Eds.D.Rus,S.Singh,Springer,2001,pp.21-31
    [39]Amat J,Casals A,Frigola M,Martin E.Experimental.Bilateral Control Telemanipulation Using a Virtual Exoskeleton.Springer Transactions in Advanced Robotics,2003,5:350-361
    [40]http://gatel.fzi.de/ids/public_html/historical.php
    [41]Vukobratovic M,Borovac B,Surla D,Stokic D.Biped locomotion:Dynamics,Stability,Control,and Application.Berlin:Springer-Verlag,1990
    [42]M 伍科布拉托维奇 著,马培荪,沈乃勳 译.步行机器人和动力学假肢.北京:科学出版社,1983
    [43]http://sanlab.kz.tsukuba.ac.jp/HAL/indexE.html
    [44]http://www.newscientist.com/channel/mech-tech/mg18624945.800
    [45]http://www.technovelgy.com/ct/Science-Fiction-News.asp?NewsNum=402
    [46]Kawamoto H,Sankai Y.Power Assist System HAL-3 for Gait Disorder Person.Proceedings of the 8th International Conference on Computers Helping People with Special Needs,2002,pp.196-203
    [47]http://www.arpa.gov/dso/thrust/matdev/ehpa.htm
    [48]http://www.sarcos.com/
    [49]http://www.ornl.gov/ORNLReview/v33_1_00/human.htm
    [50]http://fourier.vuse.vanderbilt.edu/cim/projects/exoskeleton.htm
    [51]http://www.me.berkeley.edu/hel/
    [52]Liu X P,Low K H.Development and Preliminary Study of the NTU Lower Extremity Exoskeleton.Proceedings of IEEE Conference on Cybernetics and Intelligent Systems,Singaport,12-15 Oct,2004,pp.1243-1247
    [53]Yoshimitsu T,Yamamoto K.Development of a power assist suit for nursing work.SICE Annual Conference,Sapporo,Japan,4-6 Aug,2004,Vol.1,pp.577-580
    [54]Yamamoto K,Ishii M,Noborisaka H,Hyodo K.Stand alone wearable power assisting suit-sensing and control systems.Proceedings of 13th IEEE International Workshop on Robot and Human Interactive Communication,20-22 Sept,2004,pp.661-666
    [55]Kyoungchul K,Doyoung J.Fuzzy Control of a New Tendon-Driven Exoskeletal Power Assistive Device.Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2005,pp.146-151
    [56]http://www.irobotics.re.kr/Research_Develop/project_eng/project03-04-01.htm
    [57]http://www.springwalker.com
    [58]孙中圣,包钢,王祖温.气动力觉再现装置研究现状.机床与液压,2006,第11期,1-3
    [59]孙中圣,王祖温,包钢,李军.力反馈数据手套单关节研究.液压与气动,2006,第7期,14-16
    [60]丑武胜,王田苗.基于互联网的机器人远程实验系统.高技术通讯,2003,8:66-70
    [61]王田苗.新应用领域的机器人医疗外科机器人.机器人,1996,18(增刊):603-606
    [62]陈梦东,李伟,王田苗,田增民.立体定向脑外科机器人系统中的定位和空间映射变换.中国生物医学工程学报,2001,20(5):385-393
    [63]http://www.wired.com/wired/images.html?issue=13.01&topic=ironmen&img=1
    [64]Jezernik S,Colombo G,Morari M.Automatic Gait-Pattern Adaptation Algorithms for Rehabilitation with a 4-DOF Robotics Orthosis.IEEE Transactions on Robotics and Automation,2004,20(3):574-582
    [65]Schimdt H,Piorko F,Bemhardt R,Kruger J,et al.Synthesis of Perturbations for Gait Rehabilitation Robots.Proceedings of IEEE 9th International Conference on Rehabilitation Robotics,Chigago,IL,USA,28 Jun-1 July,2005,pp.74-77
    [66]Riener R,Luenenburger L,Jezernik S,Anderschitz M,at el.Patient-Coorperative Strategies for Robot-Aided Treadmill Training:First Experimental Results.IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(3):380-394
    [67]Neuhaus P D,O'Sullivan M,Eaton D,Carff J,et al.Concept Designs for Underwater Swimming Exoskeletons.Proceedings of IEEE International Conference on Robotics and Automation,New Oleans,LA,USA,26 Apr-1May,2004,pp.4893-4898
    [68]Zhang J F,Yang C J,Chen Y.Design on exoskeleton arm with force feedback for robot bilateral teleoperation.Progress in Natural Science,2007,17(8):948-955
    [69]杨灿军,张佳帆,牛彬,陈鹰等.一种穿戴式外骨骼机械手.发明专利,专利号:200420037222.2,中华人民共和国国家知识产权局,2004
    [70]Yang C J,Niu B,Chen Y.Adaptive Neuro-Fuzzy Control Based Development of a Wearable Exoskeleton Leg for Human Walking Power Augmentation.Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Monterey,CA,USA,24-28 July,2005,pp.467-472
    [71]杨灿军,牛彬,张佳帆,陈鹰.可穿戴式的下肢步行外骨骼.发明专利,专利号:ZL200410053695.6,中华人民共和国国家知识产权局,2004
    [72]Rosen J,Brand M,Fuchs M B,Arcan M.A Myosignal-Based Powered Exoskeleton System.IEEE Transaction on System,Man and Cybernetics-Part A:Systems and Humans,2001,31(3):210-222
    [73]Sanchez S,Hallowell B,Enderle J D.E-GRIP(grasping device for disabled persons).Proceedings of the IEEE 26th Annual Northest on Bioengineering Conference,Storrs,CT,USA,8-9 Apr,2000,pp.169-170
    [74]Choi B H,Choi H R.SKK hand master-hand exoskeleton driven by ultrasonic motors.Proceedings of IEEE/RSJ Intenational Conference on Intelligent Robots and Systems,Takamatsu,Japan,31 Oct-5 Nov,2000,Vol.2,pp.1131-1136
    [75]Choi B H,Choi H R.A semi-direct drive hand exoskeleton using ultrasonic motor.Proceedings of the 8th IEEE International Workshop on Robot and Human Interaction,Pisa,Italy,27-29 Sept,1999,pp.285-290
    [76]Charles P,Constantinos M,Yoseph B C,Benjamin D.Electrorheological Fluid Based Force Feedback Device.Proceedings of SPIE Telemanipulator and Telepresence Technologies Ⅵ Conference,Boston,MA,1999,Vol.3840,pp.88-99
    [77]Yoseph B C,Constantinos M,Mourad B,Benjamin D,et al.Virtual reality robotic telesurgery simulations using MEMICA haptic system.Proceedings of SPIE's 8th Annual International Symposium on Smart Structures and Materials,New Port,CA,USA,5-8 Mar,2001,pp.4329-4347
    [78]熊兵.人体下肢运动学和动力学的研究.天津轻工业学院硕士论文.天津:天津轻工业学院,1999
    [79]Tortora G J,Grabowski S R.Principles of anatomy and physiology,9th Ed.New York:John Wiley,2000
    [80]Premkumar K.The Massage Connection:Anatomy and Physiology.MD:Lippincott Williams & Wilkins,2004
    [81]Theodore D,Day M.Anatomy of the Moving Body:A Basic Course in Bones,Muscles,and Joints.Berkeley,CA:North Atlantic Books,2001
    [82]http://www.kennmadsen.dk/Musklerne.htm
    [83]Morecki A.Biomechanics of engineering:modelling,simulation,control.New York:Spring Verlag,1987
    [84]Badler N I,Phillips C B,Webber B L.Simulating Humans.Oxford:Oxford University Press,1993
    [85]Van der Helm F C T,Veebass R.Modelling the mechanical effects of muscles with large attachment sites:application to the shoulder mechanism.Journal of Biomechanics,1991,24:1151-1163
    [86]Van der Helm F C T,Veeger H E J,Pronk G M,et al.Geometry parameters for musculoskeletal modelling of the shoulder mechanism.Journal of Biomechanics 1992,25:129-144
    [87]http://www.cic-caracas.org/departments/science/Topic11.php
    [88]http://www2.ma.psu.edu/~pt/renee384/anatomy.htm
    [89]http://www.assh.org/Content/NavigationMenu/PatientsPublic/HandAnatomy/H and_Anatomy_.htm
    [90]http://www.courses.vcu.edu/DANC291-003/index_1.htm
    [91]王裕清,邓乐,李建中.生物机械工程导论.北京:机械工业出版社,2006
    [92]Tsai W L.Robot Analysis.Wiley-Inter science Publication,1999
    [93]蔡自兴.机器人学.北京:清华大学出版社,2000
    [94]陆震.冗余自由度机器人原理及应用,北京:机械工业出版社,2007
    [95]Zajac F E,,Neptuno R R,Kautz S A.Biomechanics and muscle coordination of human walking.Part Ⅰ:introduction to concepts,power transfer,dynamics and simulations.Gait and posture,2002,16(3):215-232
    [96]洪嘉振,杨长俊.理论力学.北京:高等教育出版社,1999
    [97]梶田秀司 编著,管贻生 译.仿人机器人.北京:清华大学出版社,2007
    [98]Low K H,Liu X P,Goh C H,Yu H Y.Locomotive Control of a Wearable Lower Exoskeleton for Walking Enhancement.Journal of vibration and control,2006,12(12):1311-1336
    [99]郑建荣.ADAMS虚拟样机技术入门与提高.北京:机械工业出版社,2002
    [100]陈立平,张云清,任卫群,覃刚.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005
    [101]Fitts P M.Human engineering for an effective air navigation and traffic control system.National Research Council,Washington DC,1951
    [102]Older M T,Waterson P E,Clegg C W.A critical assessment of task allocation methods and their applicability.Ergonomics,1997,40(2):151-171
    [103]Hoc J K.From human-machine interface to human-machine cooperation. Ergonomics,2000,43(7):833-843
    [104]Roseborough J.aiding human operators with state estimates.Ph.D.thesis,MIT,Cambridge,MA,1988
    [105]Saridis G N.Self-organizing Control of Stochastic Systems,New York:Marsel Dekker,1977
    [106]Wang F Y,Saridis G N.A Coordination Theory for Intelligent Machine.Automatica,1990,26(5):833-844
    [107]Moed M C,Saridis G N.A Boltzman Machine for The Organization of Intelligent machines.IEEE Transactions on System,Man,and Cybernetic,1990,20(5):1094-1102
    [108]Wyard P.Representational issues for context-free grammar induction using genetic algorithms.Berlin:Springer-verlag,1994
    [109]Vogel G.Part man,part computer:Research tests the limits.Science,2002,295(5):10-20
    [110]Fleischer C,Wege A,Kondak K,Hommel G.Application of EMG signals for controlling exoskeleton robots.Biomedical Engineering,2006,51:314-319
    [111]Ji J,Yu M S,Zhou Y B,Jin Z R.A Wireless EEG sensors system for computer assisted detection of alpha wave in sleep.Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference,Shanghai,China,17-18 Jan,2005,pp.5351-5353
    [112]Kiguchi K,Esaki R,Tsuruta T,Watanabe K,et al.An exoskeleton for human elbow and forearm motion assist.Proceedings of IEEE/RSJ International Conference on Intelligent Robots Systems,27-31 Oct,2003,Vol 3,pp.3600-3605
    [113]Lloyd D G,Beiser T F.An EMG-driven msculoskeletal model to estimate muscle forces and knee joint moments invivo.Journal of biomechanics,2003,36:765-776
    [114]Lambert D A.Grand challenges of information fusion.Proceedings of 6th International Conference of Information Fusion,Cairns,Queensland,10-15 July,2003,pp.213-220
    [115]Ikuta K,Nokata M.Safety evaluation method of design and control for human-care robots.The International Journal of Robotics Research,2003,22:281-297
    [116]Zinn M,Khatib O,Roth B,Salisbury J K.A new actuation approach for human-friendly robot design.International Symposium on Experimental Robotics,S.Angelo dTschia,I,July 2002,pp.379-398
    [117]Avizienis A,Laprie J C,Randell B,Landwehr C.Basic concepts and taxonomy of dependable and secure computing.IEEE Transactions on Dependable and Secure Computing,2004,1 (1):11-33
    [118]Pons J L.Wearable Robots:Biomechatronic Exoskeletons.Souther Gate,Chichester:John Wiley & Sons Ltd,2008
    [119]Hesse S,Uhlenbrock D.A mechanized gait trainer for restoration of gait.Journal of Rehabilitation Research and Development,2000,37(6):701-708
    [120]Landis E.Micro-injection studies of capillary blood pressure in human skin.Heart,1930,15:209-228,
    [121]Krouskop T A,Williams R,Krebs M,Herszkowicz M S,et al.Effectiveness of mattress overlays in reducing interface pressures during recumbency.Journal of Rhabilitation Research and Development,1985,22(3):7-10
    [122]Dandekar K,Raju B I,Srinvasan M A.3-D finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense.Journal of Biomechanical Engineering,2003,125:682-691
    [123]GoonetiUeke R S,Eng T.Contact area effects on discomfort.Proceedings of the 38~(th)Human Factors and Ergonomics Society Conference,1994,pp.688-690
    [124]Maurel W.3D modeling of the human upper limb including the biomechanics of joints,muscles and soft tissues.PhD Thesis,Ecole Polytechnique Federate de Lausanne,Switzerland,1998
    [125]Carton R W,Dainauskas J,Clark J W.Elastic properties of single elastic fibers.Journal of Applied Physiology,1962,17:547-551
    [126]Kenedi R M,Gibson T,Daly C H.Bioengineering studies of the human skin.Biomechanics and Related Bioengineering Topics,Pergamon Press,Oxword,1964
    [127]Rocon E,Ruiz A F,Pons J L,Belda_Lois J M,et al.Rehabilitation robotics:a wearable exoskeleton for tremor assessment and suppression.Proceedings of the IEEE International Conference on Robotics and Automation,18-22 Apr,2005,pp.241-246
    [128]Buchthal F,Kaiser E.The rheology of the cross-striaed muscle fibre with particular refernce to isotonic conditions.Det Kongelige Daske Vedenskabernes Selskab Biologiske Middelser,1951,21(7):233-291
    [129]Ferry J D.Viscoelastic Properties Polymers.John Wiley and Sons,Ltd,1980
    [130]Shadmehr R,Mussa-Ivaldi F A.Adataptive representation of dynamics during learning of a motor task.Journal of Neuroscience,1994,14:3208-3224
    [131]Gribble P L,Ostry D J.Compesation for loads during arm movements using equilibrium-point control.Experimental Brain Research,2000,135,474-482
    [132]Dolan J M,Friedman M B,Nagurka M L.Dynamic and loaded impedance componenets in the maintenance of human arm posture.IEEE Transactions on Systems,Man and Cybernetics,1993,23:698-709
    [133]Hogan N.Impedance control:an approach to manipulation:Part Ⅰ-Theory,Part Ⅱ-Implementation,Part Ⅲ-Application.Journal of Dynamics Systems,Measurement and Control,1985,107:1-24
    [134]Flash T.The control of hand equilibrium trajectories in multi-joint arm movements.Biological Cybernetics,1987,57:257-274
    [135]Feldman A G.Once more on the quilibrium point hypothese for motor control.Journal of Motor Behaviour,1986,18:17-54
    [136]Vukobratovic M.How to control robots interacting with dynamic environment.Journal of Intellignet and Robotic Systems,1997,19:119-152
    [137]Colgate J E.The control of dynamically interacting systems.PhD Thesis,MIT,Cambridge,Massaechusetts,1998
    [138]Fasse E D.Stability robustness of impedance controlled manipulators coupled to passive environments.MSc Thesis,MIT,Cmabridges,Massachusetts,1987
    [139]Kazerooni H.A robust design method for impedance control of constrained dynamics systems.PhD Thesis,MIT,Cambridge,Massachusetts,1985
    [140]王保国,王新泉,刘淑艳,霍然.安全人机工程学.北京:机械工业出版社,2007
    [141]Vertut J,Coiffet P.Robot technology:Vol.B.Teleoperation and robotics:Evolution and development.Englewood Cliffs,HJ:Prentice-Hall,1986
    [142]Sheridan T B.Telerobotics,automation and human supervisory control.Cambridge:MIT Press,1992
    [143]牛彬.可穿戴式的下肢步行外骨骼控制机理研究与实现.浙江大学硕士论文.杭州:浙江大学,2006
    [144]黄真,孔令富.并联机器人机构学理论及控制.北京:机械工业出版社,1997
    [145]Alexei S,Paul X.Kinematics of a 3-DOF parallel manipulator with an R-P-S joint structure.Robotica,2005,23:207-217
    [146]《正交试验设计法》编写组编.正交试验设计法.上海:上海科学技术出版社.1979
    [147]马希文.正交设计的数学理论.北京:人民教育出版社,1981
    [148]Amago T.Sizing optimization using response surface method in FOA.R&D Review of Toyota CRDL,2002,37(1):1-7
    [149]Wang N,Gao X Q,Han J X.Simultaneous detection of HBV and HCV by multiplex PCR normalization.World Journal of Gastroenterol,2004,10(16):2439-2443
    [150]金波,朱世强,张光琼,林建亚.用正交试验法整定PID控制器参数.中国机械工程,2000,11(6):682-685
    [151]Zhang J F,Yang C J,Chen Y.Use Orthogonal Experimental Method to the Optimal Design for Exoskeleton Arm.WEASA Transactions on Systems,2007,6(6):1095-1101
    [152]Jadran L,Nives K.Positional kinematics of humanoid arms.Robotica,2005,23:1-8
    [153]Griffin W B,Findley R P,Turner M L,Cutkosky M R.Calibration and Mapping of a Human Hand for Dexterous Telemanipulation.Haptic Interfaces for Virtual Environments and Teleoperator Systems Symposium.ASME IMECE 2000 Conference,2000,pp.1-8
    [154]Bouzit M.Design,Implementation and Testing of a Data Glove with Force Feedback for Virtual and Real Objects Telemanipulation,Ph.D.Thesis,Laboratoire de Robotique de Paris,University of Pierre Et Marie Curie,France,1996
    [155]Liu J,Zhang Y R.Dataglove based grasp planning for multi-fingered robot hand.Proceedings of the 11th World Congress in Mechanism and Machine Science,Tianjin,China,3-6 Apr,2004,Vol.4,pp.1827-1831
    [156]Fischer M,Smagt P V D Hirzinger G.Learning techniques in a dataglove based telemanipulation system for the DLR hand.IEEE Proceedings of the International Conference on Robotics and Automation,Leuven,Belgium,1998,Vol.2,pp.1603-1608
    [157]Kyriakopoulos K J.Kinematic analysis and position/force control of the Anthrobot dexterous hand.IEEE Transactions on Systems,Man and Cybernetics-Part B,1997,27(1):95-104
    [158]Rohling R N,Hollerbach J M.Optimized fingertip mapping for teleoperation of dexterous robot hands.Proceedings of IEEE International Conference on Robotics and Automation,Atlanta,GA,USA,1993,Vol.3,pp.769-775
    [159]Yang C J,Niu B,Zhang J F,Chen Y Different Structure Based Control System of the PUMA Manipulator with an Arm Exoskeleton.Proceedings of IEEE Conference on Robotics,Automation and Mechatronics,Singapore,12-15 Dec,2004,pp.572-577
    [160]Cheng F T,Hour T L,Sun Y Y,Chen T H.Study and Resolution of Singularities for a 6-DOF PUMA 560 Manipulator.IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,1997,27 (2):332-343
    [161]Chiaverini S,Egeland O.A solution to the singularity problem for six-joint manipulators.Proceedings of IEEE International Conference on Robot and Automation,Cincinnati,OH,13-18 May,1990,pp.644-649
    [162]Nakamura Y,Hanafusa H.Inverse kinematic solution with singularity robustness for robot manipulator control.ASME Journal of Dynamic Systems Measurement and Control,1986,108:163-171
    [163]Wampler C W.Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods.IEEE Transaction on Systems,Man,and Cybernetics,1986,16:93-101
    [164]Schiele A.Development of a Human Arm Exoskeleton for Space Robotics Telepresence:From Biomechanics to Mechanism Design.ESA Final Report,EWP-2161,November 2001
    [165]Richer E,Hurmuzlu Y.A High Performance Pneumatic Force Actuator System.ASME Journal of Dynamic Systems Measurement and Control,2000,122(3):416-425
    [166]Tressler J M,Clement T,Kazerooni H,Lim M.Dynamic Behavior of Pneumatic Systems for Lower Extremity Extenders.Proceedings of the IEEE International Conference on Robotics & Automation,Washington DC,USA,11-15 May,2002,pp.2348-2353
    [167]Bobrow J E,Jabbari F.Adaptive Pneumatic Force Actuation and Position Control.Journal of Dynamic Systems,Measurement,and Control,1991,113:267-272
    [168]Kaitwanidvilai S,Parnichkun M.Force control in a pneumatic system using hybrid adaptive neuro-fuzzy model reference control.Mechatroincs,2005,15:23-41
    [169]Barth E J,Zhang J L,Goldfarb M.Control Design for Relative Stability in a PWM-Controlled Pneumatic System.Journal of Dynamic Systems,Measurement,and Control,2003,125:504-508
    [170]Yin Y B,Araki K.Modelling and Analysis of an Asymmetric Valve-Controlled Single-Acting Cylinder of a Pneumatic Force Control System.SICE,Chiba,Japan,29-31 Jun,1998,pp.1099-1104
    [171]Ann K,Yokota S.Intelligent switching control of pneumatic actuator using on/off solenoid valves.Mechatroincs,2005,15:683-702
    [172]Shih M C,Ma M A.Position control of a pneumatic cylinder using fuzzy PWM control method.Mechatronics,1998,8:241-253
    [173]Messina A,Giannoccaro N I,Gentile A.Experimenting and modelling the dynamics of pneumatic actuators controlled by the pulse width modulation (PWM) technique.Mechatroincs,2005,15:859-881
    [174]Al-Ibrahim A M,Otis D R.Transient Air Temperature and Pressure Measurements during the Charging and Discharging Processes of an Actuating Pneumatic Cylinder.Proceedings of the 45th National Conference on Fluid Power,1992
    [175]http://www.festo.com
    [176]Passino K M,Yurkovich S.Fuzzy Control.Addison-Wesley Longman,Inc.,1998
    [177]Jenkins D,Passino K M.An introduction to nonlinear analysis of fuzzy control systems.Journal of Intelligent and Fuzzy Systems 1999;7(1):75-103
    [178]许文琳,吴蓉晖.模糊控制系统的李亚普诺夫第二法稳定性分析.湖南大学学报(自然科学版),2004,31(3):86-89
    [179]李士勇.模糊控制·神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998
    [180]Thompson RL.Integration of Visual and Haptic Feedback for Teleoperation.PhD thesis,Department of Engineering Science University of Oxford,2001
    [181]Vogel G,Muehlberger E.神奇的气动技术世界.上海:上海科学普及出版社,2003
    [182]Caldwell D,Medrano-Cerda G,Bowler C.Investigation of Bipedal Robot Locomotion using Pneumatic Muscle Actuators.IEEE International Conference on Robotics and Automation,Albuquerque,MN,USA,20-25 Apr,1997,pp.799-804
    [183]Daerden F,Lefeber D,Verrelst B,Van Ham R.Pleated Pneumatic Artificial Muscles:Compliant Robotic Actuators.Proceedings of 2001 IEEE/RSJ International Conference on Intel Robots and Systems,IROS 2001,Maui,HA,29 Oct-3 Nov,2001,pp.1958-1963
    [184]Daerden F,Lefeber D.Pneumatic artificial muscles:actuators for robotics and automation.European Journal of Mechanical and Environmental Engineering,2002,47(1):10-21
    [185]Petrovic PB.Modeling and Control of an Artificial Muscle,Part one:Model building.Transactions on mechanics,2002,47:61-68
    [186]Toudu B,Lopez P.Modeling and Control of McKibben Artificial Muscle Robot Actuators.IEEE Control Systems Magazine,2000,20(4):15-28
    [187]Marie S,Nedelec M.Elastic Stresses in Elbow submitted to In-Plane Bending Moment.Journal of Pressure Vessel Technology,2003,125 (5):209-220
    [188]Schmidt P.An Investigation of Space Suit Mobility with Applications to EVA Operations.MIT,PhD Thesis Summary,2001
    [189]Newman DJ,Schmidt P,Rahn DB,Metaxas D,et al.Modeling the Extravehicular Mobility Unit (EMU)Space Suit:Physiological Implications for Extravehicular Activity (EVA).ALAA and SAE International Conference on Environmental Systems,Toulouse,France,July 2000
    [190]Lawrence D.Stability and transparency in bilateral teleoperation.IEEE Transaction on Robotics and Automation,1993,9(5):624-637
    [191]Ferrell W R.Delayed force feedback.IEEE Transactions on Human Factors Electron,1966,Vol.HFE-86,pp.449-455
    [192]Sheridan T B.Human and Automation:System Design and Research Issues.New York:John Wiley,2002
    [193]Brady K,Tarn T J.Internet-Based Teleoperation.Proceedings of the IEEE International Conference on Robotics and Automation,Seoul,Korea,May,2001,pp.644-649.
    [194]Olbrot A W,Stabilizability,Detectability,and Spectrum Assignment for Linear Autonomous Systems with general Time Delays.IEEE Transactions on Automatic Control,1978,23(5):887-890
    [195]Watanabe K,Ito M.An Observer for Linear Feedback Control Laws of Multivariable Systems with Multiple Delays in Controls and Output.Systems and Control Letters,1981,1(1):54-59
    [196]Klamka J.Observer for Linear Feedback Control of Systems with Distributed Delays in Controls and Outputs.Systems and Control Letters,1982,1(5):326-331
    [197]Garcia C E.Supervisory control for a telerobotic system:a hybrid control approach.Control Engineering Practice,2003,11:805-817
    [198]Anderson R J,Spong M W.Bilateral Control of Teleoperators with Time Delay.IEEE Transactions on Automation Control,1989,34:494-451
    [199]Anderson R J,Spong M W.Asymptotic stability for force reflecting teleoperators with time delay.The International Journal of Robotics Research,1992,11:135-149
    [200]Niemeyer G,Slotine J E.Stable Adaptive Teleoperation.IEEE Journal of Oceanic Engineering,1991,16(1):152-162
    [201]Ferrell W R.Remote manipulation with transmission delay.IEEE Transactions on Human Factors in Electronics HFE-6 (1)
    [202]Ferrell W R,Sheridan T B.Supervisory control of remote manipulation.IEEE Spectrum,4(10):81-88
    [203]Zhu W H,Salcudean S E.Stability guaranteed teleoperation:An adaptive motion/force control approach.IEEE Transactions on Automatic Control,2000,45(11):1951-1969
    [204]Hung N V Q,Narikiyo T,Tuan H D.Nonlinear adaptive control of master-slave system in teleoperation.Control Engineering Practice,2003,11:1-10
    [205]Kang W,Xi N,Tan JD.Analysis and Design of Non-time Based Motion Controller for Mobile Robots.Proceedings of the IEEE International Conference on Robotics & Automation,Detroit,USA,MI,10-15 May,1999,pp.2964-2969
    [206]Tarn T J,Song M,Xi N.Intelligent Planning and Control for Hybrid System.Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,Victoria,BC,Canada,13-17 Oct,1998,pp.972-977
    [207]Li X M,Yang C J,Chen Y,Hu X D.Hybrid event based control architecture for tele-robotic systems controlled through Internet.Journal of Zhejiang University (Science),2004,5(3):296-302
    [208]Chen Y,Zhang J F,Yang C J,Niu B.The Workspace Mapping with Deficient DOF Space for the PUMA 560 Robot and its Exoskeleton-Arm by Using Orthogonal Experiment Design Method.Robotics and Computer Integrated Manufacturing,2007,23(4):478-487
    [209]丛爽,李泽湘.实用运动控制技术.北京:电子工业出版社,2006
    [210]Khalil H K.Nonlinear Systems.Third Edition.New Jersey:Prentice Hall,2002
    [211]Schaft A V D.L2-Gain and Passivity Techniques in Nonlinear Control.London:Springer-Verlag,2000
    [212]Sheridan T B.Telerobotics.Automatica,1989,25(4):487-507
    [213]Raju G J,Verghese G C,Sheridan T B.Design Issue in 2-port network models of bilateral remote manipulation.Proceedings of the IEEE international conference on robotics and automation,Scottsdale,Arizona,USA,14-19 May,1989,pp.1316-1321,
    [214]Hesse S,Bertelt C,Jahnke M T,et al.Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients.Stroke,1995,26:976-981
    [215]Colombo G,Joerg M,Schreier R,Dietz V.Treadmill training of paraplegic patients using robotic orthosis.Journal of Rehabilitation Research and Development,2000,37(6):1-14
    [216]Dietz V,Colombo G,Jensen L,Baumgartner L.Locomotor capacity of spinal cord in paraplegic patients.Annals of Neurology,1995,37:574-582
    [217]Reinkensmeyer D J,Wynne J H,Harkema S J.A robotic tool for studying locomotor adaptation and rehabilitation.Proceedings of the IEEE International Conference on EMBS and BMES,23-25 Oct,2002,Vol.3,pp.2353-2354
    [218]Ekkelenkamp R,Veneman J F.LOPES:A Lower extremity powered exoskeleton.IEEE International Conference on Robotics and Automation Roma,Italy,10-14 April,2007,pp.3132-3133
    [219]Veneman J F,Ekkelenkamp R.A series elastic and bowden-cable-based actuation system for use as torque actuator in exoskeleto-type robots.International Journal of Robotics Research,2006,25(3):261-281
    [220]卢本兴,韩文仲.气压膝关节下肢假肢的分析与研究.华北航天工业学院学报,2003,13(2):1-5
    [221]张杰.脑卒中瘫痪下肢外骨骼康复机器人的研究.浙江大学硕士论文.杭州:浙江大学,2007
    [222]Mu X P,Wu Q.Development of a complete dynamic model of a planar five-link biped and slideing mode control of its locomotion during the double support phase.International Journal of Control,2004,77(8):789-799
    [223]Fabio Z.Theoretical and Experimental Issues in Biped Walking Control Based on Passive Dynamics.Doctoral dissertation,University Italy,2004
    [224]Mitobe K,Moil N,Nasu Y,Adachi N.Control of a biped walking robot during the double support phase.Autonomous Robots,1997,4:287-296
    [225]饶运涛.现场总线CAN原理与应用技术.北京:北京航空航天大学出版社,2007
    [226]Winter D A.Biomechanics and Motor Control of Human Movement,3rd Edition.John Wiley & Sons,Inc.,2004
    [227]Rose J,Gamble J G.HumanWalking,2~(nd) Edition.Baltimore:Williams &Wilkins,1994
    [228]董亦明.下肢康复医疗外骨骼训练控制系统研究与实现.浙江大学硕士论文.杭州:浙江大学,2008
    [229]http://www.ruskrehab.com/AutoAmbulator.pdf
    [230]http://www.hoise.com/vmw/01/articles/vmw/LV-VM-08-01-27.html
    [231]Jezernik S,Colombo G,Morari M.Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis.IEEE Transactions on robotics and automation,2004,20(3):574-582
    [232]Riener R,Liunenburger L,Jezernik J,Colombo G,et al.Patient-cooperative strategies for robot-aided treadmill training:First experimental results.IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(3):380-394
    [233]Jarm T,Kramar P,Zupanic A.Patient-cooperative rehabilitation robotics in Zurich.11th Mediterranean Conference on Medical and Biomedical Engineering and Computing,Ljubljana,Slovenia,26-30 June,2007,Vol.16,pp.7-9
    [234]Bernhardt M,Frey M,Colombo G,Riener R.Hybrid force-position control yields cooperative behaviour of the rehabilitation robot LOKOMAT.9th International Conference on Rehabilitation Robotics,June 28-July 1,2005,Chicago,IL,USA,pp.536-539
    [235]杨寅.基于模型的下肢运动康复外骨骼半主动控制策略研究.浙江学士论文.杭州:浙江大学,2008
    [236]Wagner A,Arkin R C.Representing and Analyzing Social Situations for Human-Robot Interaction.Interaction Studies,2008,9(2):277-300
    [237]Duffy B R.Anthropomorphism and the Social Robot.Robotics & Autonomous Systems,2003,42(3-4):170-190
    [238]S(o|¨)ffker D,Weber J.On Designing Machines and Technologies in the 21st Century.An Inter-disciplinary Dialogue.International Review of Information Ethics,2006,6(12):91-108
    [239]Sawyer R J.Robot Ethics.Science,2007,318(5853):1037
    [240]http://en.wikipedia.org/wiki/Three_Laws of_Robotics
    [241]http://www.associatedcontent.com/article/186947/south_korea_drafts_?cat=15
    [242]www.roboethics.org/
    [243]http://ethicbots.na.infn.it/meetings/firstworkshop/abstracts/virk.html
    [244]Jonas H."Toward a Philosophy of Technology," in Philosophy of Technology:The Technological Condition.Oxford:Blackwell Publishing,2003
    [245]Kristin S F.Technology and Ethics.The Technological Condition,Oxford:Blackwell Publishing,2003
    [246]Manoj V R.Cybofree-Cyborgs,Fantasy,Reality,Ethics and Education.Eubios Journal of Asian and International Bioethics,2001,11:178-183
    [247]Talwar S K,Xu S H,Hawley E S,et al.Rat navigation guided by remote control.Nature,2002,417(6884):37-38
    [248]http://www.aarclibrary.org/publib/church/reports/bookl/contents
    [249]Salvini P,Datteri E,Laschi C,Dario P.Scientific models and ethical issues in hybrid bionic systems research.AI & Soc,2008,22:431-448
    [250]Beauchamp T,Childress J F.Principle of Biomedical Ethics.Oxford University Press,Oxford,1979
    [251]Zhang J F,Yang C J,Chen Y Ethical issues in exoskeleton based man-machine systems.Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2008,in press
    [252]Devon R.Towards a Social Ethics of Technology:A Research Prospect.Research in Philosophy and Technology,2004,8(1):1-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700