用户名: 密码: 验证码:
转录因子RBP-J通过介导Notch信号调控神经细胞分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中枢神经系统发育是脊椎动物胚胎发育过程中调控最复杂、次序最严谨的事件之一。胚胎神经管中的神经干细胞(neural stem cells,NSCs)是一种维持自我更新的多潜能细胞,可以进一步分化为各种不同类型的神经细胞。在神经发育过程中,NSCs随着发育阶段的不同变换着它们的响应性和发育潜能。在早期扩增阶段,神经干细胞主要进行广泛的增殖来扩大细胞群体。随着发育的进行,一些神经干细胞在区域性神经诱导信号的作用下起始了原神经基因(proneural gene)的表达。Proneural genes是一类碱性-螺旋-环-螺旋(basic helix-loop-helix, bHLH)转录因子,如Mash1、Ngn1/2和Math1等,它们可以诱导神经元特异性基因的表达,从而将多潜能的神经干细胞决定到神经元分化命运上来。随着proneural基因的表达,神经管中原本相对均一的NSCs群体开始形成差异。那些起始表达proneural基因的NSCs分化为神经元前体细胞,而未表达proneural基因的细胞仍然维持干细胞状态。随后,神经元前体细胞开始退出细胞周期,迁移至神经管外侧并分化为神经元。而NSCs仍然维持未分化状态直到神经发生晚期,再在特定神经诱导信号的作用下分化为晚期的神经细胞类型,比如胶质细胞。维持一个适当规模的NSCs群体对于神经发育的正常进行至关重要,如果NSCs提前分化则会导致严重的神经系统发育缺陷。由于NSCs没有得到充分的扩增,会最终导致神经细胞总量的下降。同时,NSCs提前分化只产生早期的神经细胞类型,从而导致晚期神经细胞类型的缺失,因而不能建立正常的中枢神经系统。除此以外,由于NSCs强大的分化潜能和自我更新能力,在医学上还具有治疗神经损伤和神经退行性变等疾病的潜能。
     视网膜是研究神经干细胞/神经前体细胞(Neural progenitor cells, NPCs)增殖分化的优异模型。在神经发育早期,视网膜由间脑的神经上皮向两侧形成突起发育而来,是中枢神经系统地一部分。在哺乳类神经发育过程中,视网膜前体细胞(Retinal progenitor cells, RPCs)可以分化形成视网膜中的7种主要神经细胞类型,这些不同的细胞类型在视网膜神经上皮增殖的同时依次分化出现:神经节细胞、视锥细胞及水平细胞最先生成,接着是无长突细胞和视杆细胞,最后才是双极细胞和Müller氏胶质细胞。分化中的神经细胞要迁移到适当的位置,以形成正确的细胞排列,并最终形成视网膜的五个组织层次,包括三个有核层(nuclear layers)及将它们联系在一起的两个突触层(synaptic layers),从而完成光信号的接受、转换和传导。视网膜丰富的细胞类型和规则的层次结构,是视觉功能实现的生物基础。
     与视网膜相同,小脑(cerebellem)特别是小脑皮层是中枢神经系统最为高度有序的结构之一。与大脑皮层相比,它的特征性和简单性使其成为研究中枢神经系统发育机制的又一经典模型。发育中过程中,由小脑室区和菱脑唇两个生发中心分化出九型神经细胞:包括浦肯野(氏)细胞、高尔基细胞、颗粒细胞、篮状细胞、星形细胞和Lugaro细胞,单极刷(形)细胞,和烛台(状)细胞,以及小脑特异性的Bergmann (氏)胶质细胞。成熟的小脑皮层由这八型神经元和一型胶质细胞排列成精确的立体结构,并形成复杂的神经环路从而实现运动协调、技能学习等重要的生理功能。
     在神经发育过程中,NSC/NPCs的增殖和分化受到多个信号转导途径的精确调控。以细胞膜受体Notch、转录因子RBP-J及其下游效应基因组成的Notch信号途径是调控发育过程的基本信号之一。虽然既往研究揭示出Notch途径在神经细胞分化中发挥重要的调控作用,但操作Notch途径不同分子得到的实验结果具有差别,其发挥作用的下游靶点也存在争议。基于干预单个Notch受体或其下游基因的研究方法,不足以反映Notch信号功能的全貌。由于在哺乳动物中,Rbpj编码的转录因子可以整合并传递来源于四型Notch受体的信号,从而激活下游基因转录。因此在本课题研究中,我们利用Cre-Loxp重组酶系统,在小鼠RPCs和小脑原基的NPCs中特异性剔除Rbpj基因。
     Rbpj敲除视网膜与野生型小鼠视网膜相比,出现明显的发育障碍和视网膜层次结构异常。视网膜发育早期,RPCs分化加速,表现为一系列proneural基因表达上调。然而,仅有神经节细胞和感光细胞增多,中间神经元数目减少,提示RBP-J缺失导致神经元提前分化和RPCs的耗竭;发育晚期,通过活体电穿孔在出生后小鼠视网膜中敲除Rbpj主要导致视杆细胞增加和Müller氏胶质细胞减少。提示RBP-J参与调控感光细胞和Müller氏胶质细胞的定向分化。此外,在Rbpj缺失的视网膜中,层状结构的紊乱伴随着视网膜外表面细胞粘附相关分子β-catenin的表达缺失。更为有趣的是,我们通过活体电穿孔在Rbpj缺失的视网膜中过表达β-catenin,观察到视网膜正常层次结构的恢复。
     Rbpj敲除小脑与野生型小鼠小脑相比体积显著变小,分叶结构消失。发育早期(E10.5、E12.5)小脑原基脑室区proneural基因Mash1表达上调,神经元提前分化,增殖的NPCs显著减少,表明Notch-RBP-J信号途径维持着小脑原基中NPCs的数量,并控制着小脑神经细胞分化的时程。发育晚期浦肯野细胞和颗粒细胞持续性减少,小脑深部核团几乎消失。此外,Rbpj敲除小鼠中决定菱脑峡组织者(Isthmic Organizer)建立和中后脑分界形成的重要因子在相应区域均有表达,表明Rbpj表达失活对于IO的形成没有显著性影响,同时说明Notch-RBP-J信号途径对于小脑原基发育的调控作用是直接的,而并非间接的通过调节IO建立而发挥影响。
     上述研究结果共同揭示RBP-J所介导的经典Notch信号途径通过抑制神经细胞分化(differentiation),从而维持足够的NSC/NPCs直至晚期发育;此外,Notch-RBP-J信号也参与神经细胞定向(specification),发挥诸如抑制视网膜感光细胞分化,以及促进Müller氏胶质细胞形成的作用;在形态发生方面,RBP-J还可能通过调控粘附相关分子β-catenin的表达参与视网膜层次结构形成;同时,我们的研究证明RBP-J对于中后脑分界的形成没有显著影响。综上所述,本课题的研究结果发现,转录因子RBP-J通过介导经典Notch信号途径调控神经细胞的定向、分化;并在特定发育环境中调节神经系统形态形成,从而协调神经发生(Neurogenesis)和形态形成(Morphogenesis)两个发育过程,最终确保神经系统正常的结构形成及功能建立。这些研究对于深入理解神经发育过程中的分子机理以及Notch信号全面的调控作用,以及了解相关人类疾病的发病机制,具有较为重要的理论和实际意义。
The development of the Central nervous system (CNS) is one of the most complicatedly-regulated and highly-ordered process in the embryogenesis in vertebrates. The neural stem cells (NSCs) in the neural tube is a type of multipotent stem cell which while keeping self-renewal, can differentiate into different neural cell types. During neural development, NSCs change their intrinsic potency and response ability to extrinsic signals. At early developmental stages, NSCs experience accelerated proliferation to establish an enlarged progenitor pool. At later developmental stages, on the induction of various neurogenic signals, NSCs express proneural genes, such as bHLH family genes Mash1, Ngn1/2 and Math1, which initiate the expression of neuronal specific genes and promote NSCs differentiate into different types of neurons. On the initiation of bHLH genes expression, the homogeneous NSCs in the neural tube become heterogeneous, with proneural genes positive NSCs differentiate into neuronal progenitors, while those proneural genes negative NSCs maintain the stem cell property. The neuronal progenitor cells then exist the cell cycle, migrate into the mantle zone of the neural tube and terminally differentiate into neurons. On the other hand, the NSCs continue to proliferate, and produce late-generated neural cell types, such as glial cells, on responses to inductive neurogenic signals during late developmental stages. The maintainance of the neural progenitor pool is pivotal for the normal development of the CNS. The precocious differentiation and the insufficiency of NSCs proliferation results in the decrease of overall neural cells. Meanwhile, the precocious differentiation of NSCs only produce the early-generated neural cell types, leading to the loss of late-generated neural cell types, therefore completely impeded the normal formation of the CNS.
     The retina is an excellent model for research on the proliferation and differentiation of NSC/NPCs. During mammalian development, the retina progenitor cells (RPCs) give rise to seven retinal cell types, which are gradually generated in a conserved chronological sequence: ganglion cells and horizontal cells are born first, followed by cone photoreceptors and amacrine cells during the middle stage of retinogenesis. Rod photoreceptors, bipolar cells and Müller glial cells are the last cell types to be generated, mainly during postnatal stages. In addition to adopting specific cell fates, differentiating retinal cells need to migrate into appropriate laminae during retinogenesis, and thus, are eventually organized into three nuclear layers and two synaptic layers, based on which the light photons can be transduced into neural stimuli, and transmitted into the brain during the process of vision.
     Similar to the retina, the cerebellum, especially the cerebellar cortex, is one of the central regions in which ordered organizational patterns are most obvious. Compared with the cerebral cortex, its apparent simplicity and geometrical disposition have made it another ideal model for providing an understanding of the mechanisms involved in the development of the nervous system. During development, eight types of neurons and one type of glial cells are generated from the cerebellar ventricular zone and the rhombic lip, including Purkinje cells, Golgi cells, granule cells, basket cells, stellate cells, Lugaro cells, unipolar brush cells, candelabrum cells and Bergmann glial cells. During development, these cells are arranged into a stereotyped three-dimensional geometry, forming complex and accurate neural circuits responsible for important physiologic functions such as motor-coordinating and skill-learning.
     In neural development, the proliferation and differentiation of NSC/NPCs are regulated by many signaling pathways. Among them, the Notch signaling pathway composed of Notch receptors, transcription factor RBP-J and its downstream effectors, is one of the fundamental regulatory pathways during development. Although previous work has revealed that Notch signaling play important roles in neural proliferation and differentiation, various manipulations of different Notch signaling molecules yielded inconsistent results, and also raised different candidates of downstream genes. These might be attributed to that preceded studies have focused on the roles of single Notch receptor or the functions of individual downstream effector genes, which impeded the uncovering of the full scope of Notch functions in retinogenesis. In mammals, Rbpj encodes the transcription factor that integrates signals from all four Notch receptors and mediates the transcriptional activation of Notch target genes. Therefore, in the present study, we used the Cre-LoxP system to conditionally knock out Rbpj in the mouse RPCs and the NPCs in the cerebellar primordium.
     Rbpj-deficient retinae exhibited severe developmental disorders accompanied by reduced eye size, compared with that in wild-type animals. In the early retinogenesis, RPCs differentiation was accelerated in the absence of Rbpj expression, as reflected by the enhanced expression of proneural genes for all retinal neurons compared with the controls. However, only photoreceptors and ganglion cells were overrepresented, and other neuronal populations were diminished in the later retinogenesis. These results suggest that RBP-J deficiency led to the precocious differentiation of early born neurons and the depletion of RPCs. In the late retinogenesis, postnatal deletion of Rbpj in retina at P0, P3 and P5 led to increased photoreceptor production and decreased gliogenesis, indicating that RBP-J regulates the cell fate specification of photoreceptors and Müller glial cells. In addition, the retinal laminar structure was distorted accompanied with the gaps in the expression ofβ-catenin, the cell adhension-associate molecule, at the apical surface of the retina. And interestingly, lamination defects in Rbpj-deficient retinae were rescued by the induced-overexpression ofβ-catenin using in vivo electroporation.
     Rbpj-deficient cerebellum were severely reduced in size, and lost the folial structure compared with the wild-type cerebellum. At early developmental stages, the expression of proneural gene Mash1 was upregulated in the cerebellar ventricular zone, with neurons prematurely differentiated and NPCs significantly reduced. These results suggests that Notch-RBP-J signaling maintains the NPCs in cerebellar primordium and regulates the timing of cerebellar neurogenesis. At late developmental stages, Purkinje cells and granule cells were greatly reduced and Tbr1 positive deep cerebellar nuclei were almost lost. In addition, the transcription factors and secreted factors of the isthmic organizer (IO) were all expressed in the midbrain hindbrain boundary of the Rbpj-deficient embryos, indicating that the inactivation of Rbpj expression have no obvious effect on the formation of IO. These results also elucidate that Notch-RBP-J signaling directly involved in cerebellar development, instead of regulating cerebellar neurogenesis via affecting IO formation.
     In summary, our data indicate that RBP-J and, by extension, canonical Notch signaling inhibit neuronal cell type differentiation in neurogenesis, and therefore maintain the amount of NSC/NPCs till late developmental stages. In addition, Notch-RBP-J signaling participates in retinal cell specification, such as inhibiting photoreceptor production and promoting Müller glial cell differentiation in the retina developmental context. On the other hand, Notch-RBP-J signaling is likely to be involved in morphogenesis as well during neural development. RBP-J participates in retinal lamination through regulating the expression of cell adhesion molecules, such asβ-catenin. Meanwhile, our results also indicate that RBP-J dose not affect the pattern formation of midbrain hindbrain boundary. Taken together, our research demonstrate that transcription factor RBP-J is essential as a multifunctional regulator in NSC/NPCs specification and differentiation; In addition, RBP-J is also involved in morphogenesis in specific developmental context, therefore coordinates neurogenesis and morphogenesis, and ensures the normal establishment of the structure and function of the CNS. In that way, our research work has offered theoretical and practical significances in the understanding of the mechanisms of neural development, the uncovering of the full-scale Notch function, and the elucidating of the pathological mechanisms underlying related diseases of the CNS.
引文
1. Young RW (1985) Cell differentiation in the retina of the mouse. Anat Rec 212:199-205.
    2. Marquardt T, Gruss P (2002) Generating neuronal diversity in the retina: one for nearly all. Trends in Neurosciences 25:32-38.
    3. Hatakeyama J, Kageyama R (2004) Retinal cell fate determination and bHLH factors. Semin Cell Dev Biol 15:83-89.
    4. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678-689.
    5. Louvi A, Artavanis-Tsakonas S (2006) Notch signalling in vertebrate neural development. Nat Rev Neurosci 7:93-102.
    6. Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T, Ikuta K, Honjo T (2002) Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 14:637-645.
    7. Hua Han, Kenji Tanigaki, Norio Yamamoto, Kazuki Kuroda, Momoko Yoshimoto, Tatsutoshi Nakahata, Koichi Ikuta, Tasuku Honjo. (2002) Rbpj deficient mouse reveals essential role of Notch in T versus B lineage determination but not in later stages of thymocyte development. Int Immunol; 14:637-645.
    8. Kenji Tanigaki, Hua Han*, Norio Yamamoto, Kei Tashiro, Masaya Ikegawa, Kazuki Kuroda, Akira Suzuki, Toru Nakano, Tasuku Honjo. (2002) Notch-Rbpj signaling is involved in cell fate determination of marginal zone B cells. Nat. Immunol. 3:443-450. (*co-first authors)
    9. Kenji Tanigaki, Masayaki Tsuji, Norio Yamamoto, Hua Han*, Jun Tsukada, Hiromasa Inoue, Masato Kubo, Tasuku Honjo. (2004) Regulation of ab/gd Tcell lineage commitment and peripheral T cell responses by Notch/Rbpj signaling. Immunity 20:611-622. (*co-first authors)
    10. Mizutani, K., Yoon, K., Dang, L., Tokunaga, A., Gaiano, N., 2007. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature. 449, 351–355
    11. Fang Gao,Qi Zhang,Min-hua Zheng,Hui-ling Liu,Yi-yang Hu,Ping Zhang,Zheng-ping Zhang,Hong-yan Qin,Lei Feng,Li Wang,Hua HanCA and Gong Ju. Transcription factor RBP-J-mediated signaling represses the differentiation of neural stem cells into intermediate neural progenitors. Mol. Cell. Neurosci. 2009; (in press).
    12. Fortini M. E., Rebay I., Caron L. A. and Artavanis-Tsakonas S. (1993) An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye. Nature 365: 555–557
    13. Lindsell C. E., Boulter J., diSibio G., Gossler A. and Weinmaster G. (1996) Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural dvelopment. Mol. Cell. Neurosci. 8: 14–27.
    14. Bao Z. Z. and Cepko C. L. (1997) The expression and function of Notch pathway genes in the developing rat eye. J.Neurosci. 17: 1425–1434.
    15. Ahmad I., Dooley C. M. and Polk D. L. (1997) Delta-1 is a regulator of neurogenesis in the vertebrate retina. Dev. Biol. 185: 92–103.
    16. Dorsky R. I., Chang W. S., Rapaport D. H. and Harris W. A. (1997) Regulation of neuronal diversity in the Xenopus retina by Delta signalling. Nature 385: 67–70.
    17. Sasai Y., Kageyama R., Tagawa Y., Shigemoto R. and Nakanishi S. (1992) Two mammalian helix-loop-helix factors structurally related to Drosophilahairy and Enhancer of split. Genes Dev. 6: 2620–2634.
    18. Jarriault S., Le Bail O., Hirsinger E., Pourquie O., Logeat F., Strong C. F. et al. (1998) Delta-1 activation of notch-1 signaling results in HES-1 transactivation. Mol. Cell. Biol. 18: 7423–7431.
    19. Wettstein D. A., Turner D. L. and Kintner C. (1997) The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 124: 693–702.
    20. Tomita K., Ishibashi M., Nakahara K., Ang S. L., Nakanishi S., Guillemot F. et al. (1996) Mammalian hairy and Enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 16: 723–734.
    21. Perron M., Kanekar S., Vetter M. L. and Harris W. A. (1998) The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev. Biol. 199: 185–200
    22. Dorsky RI, Vetter ML and Harris WA. (1995) Notch inhibits cell differentiation in the Xenopus retina. Neuron 14:487-496.
    23. Henrique D., Hirsinger E., Adam J., Le Roux I., Pourquie O.,Ish-Horowicz D. et al. (1997) Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr. Biol. 7: 661–670
    24. Austin C. P., Feldman D. E., Ida J. A. Jr and Cepko C. L. (1995) Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development121: 3637–3650.
    25. Raymond, P. A., Stenkamp, D. L. and Barthel, L. K. (1998) How is a fish eye like a fly eye? Abstract in Fourth visual system development workshop, p. 50, Asilomar, CA.
    26. Ishibashi M, Ang SL, Shiota K, Nakanishi S, Kageyama R, Guillemot F.(1995) Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix–loop–helix factors, premature neurogenesis, and severe neural tube defects.Genes Dev. 9:3136–48.
    27. Hojo M, Ohtsuka T, Hashimoto N, Gradwohl G, Guillemot F,Kageyama R. (2000) Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development. 127:2515–22.
    28. Dyer MA, Cepko CL. (2000) Control of Muller glial cell proliferation and activation following retinal injury. Nat Neurosci. 3:873–80.
    29. Fischer AJ, Reh TA. (2001) Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci. 4:247–52.
    30. Furukawa T, Mukherjee S, Bao ZZ, Morrow EM, Cepko CL (2000a) Rax, Hes1, and notch1 promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron 26:383-394.
    31. Jadhav AP, Cho SH, Cepko CL (2006a) Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proc Natl Acad Sci USA 103:18998-19003.
    32. Satow T, Bae SK, Inoue T, Inoue C, Miyoshi G, Tomita K, et al. (2001) The basic helix–loop–helix gene hesr2 promotes gliogenesis in mouse retina. J Neurosci. 21:1265–73.
    33. Jadhav AP, Mason HA, and Cepko CL. (2005) Notch1 inhibits photoreceptor production in the developing mammalian retina. Development 133:913-923.
    34. Yaron O, Chen F, Marquardt T, Applebury M, and Ashery-Padan R. (2006) Notch1 functions to suppress con-photoreceptor fate specification in the developing mouse retina. Development 133:1367-1378.
    35. Bailey A. M. and Posakony J. W. (1995) Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev. 9: 2609–2622.
    36. Lecourtois M. and Schweisguth F. (1995) The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling. Genes Dev. 9: 2598–2608
    37. Hinz U., Giebel B. and Campos-Ortega J. A. (1994) The basic-helix-loop-helix domain of Drosophila lethal of scute protein is sufficient for proneural function and activates neurogenic NICD genes. Cell 76: 77–87.
    38. Kunisch M., Haenlin M. and Campos-Ortega J. A. (1994) Lateral inhibition mediated by the Drosophila neurogenic gene delta is enhanced by proneural proteins. Proc. Natl. Acad. Sci. USA 91: 10139–10143
    39. Ma Q., Kintner C. and Anderson D. J. (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87: 43–52
    40. Perron M., Opdecamp K., Butler K., Harris W. A. and Bellefroid E. J. (1999) X-ngnr-1 and Xath3 promote ectopic expression of sensory neuron markers in the neurula ectoderm and have distinct inducing properties in the retina. Proc. Natl. Acad. Sci. USA 96: 14996–15001.
    41. Ishibashi M, Ang SL, Shiota K, Nakanishi S, Kageyama R, Guillemot F.(1995)Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix–loop–helix factors, premature neurogenesis, and severe neural tube defects.Genes Dev. 9:3136–48.
    42. Yan R. T. and Wang S. Z. (1998) NeuroD induces photoreceptor celloverproduction in vivo and de novo generation in vitro. J. Neurobiol. 36: 485–496.
    43. Morrow E. M., Furukawa T., Lee J. E. and Cepko C. L. (1999) NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126: 23–36.
    44. Guillemot F., Lo L. C., Johnson J. E., Auerbach A., Anderson D. J. and Joyner A. L. (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75: 463–476
    45. Tomita K., Nakanishi S., Guillemot F. and Kageyama R.(1996) Mash1 promotes neuronal differentiation in the retina.Genes Cells 1: 765–774
    46. Ahmad I., Dooley C. M. and Afiat S. (1998) Involvement of Mash1 in EGF-mediated regulation of differentiation in the vertebrate retina. Dev. Biol. 194: 86–98
    47. Le TT, Wroblewski E, Patel S, Riesenberg AN, Brown NL (2006) Math5 is required for both early retinal neuron differentiation and cell cycle progression. Dev Biol 295:764-778.
    48. Inoue T, Hojo M, Bessho Y, Tano Y, Lee JE, Kageyama R (2002) Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129:831-842.
    49. Ma,W. and Wang,S.Z. (2006). The final fates of neurogenin2-expressing cells include all major neuron types in the mouse retina. Mol. Cell. Neurosci.31, 463-469.
    50. Poggi L, Zolessi FR, Harris WA (2005) Time-lapse analysis of retinal differentiation. Current Opinion in Cell Biology 17:676-681.
    51. Neumann CJ (2001) Pattern formation in the zebrafish retina. Semin CellDev Biol 12:485-490.
    52. Chow RL, Lang RA (2001) Early eye development in vertebrates. Ann Rev Cell Dev Biol 17:255-296.
    53. Raymond SM, Jackson IJ (1995) The retinal pigmented epithelium is required for development and maintenance of the mouse neural retina. Curr Biol 5:1286-1295.
    54. Rothermel A, Willbold E, Degrip WJ, Layer PG. (1997). Pigmented epithelium induces complete retinal reconstitution from dispersed embryonic chick retinae in reaggregation culture. Proc Biol Sci. 264:1293-302.
    55. Shkumatava A, Fischer S, Muller F, Strahle U, Neumann CJ (2004) Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development 131:3849-3858.
    56. Willbold E, Rothermel A, Tomlinson S, Layer PG (2000) Muller glia cells reorganize reaggregating chicken retinal cells into correctly laminated in vitro retinae. Glia 29:45-57.
    57. Erdmann,B., Kirsch,F.P., Rathjen,F.G., and More,M.I. (2003). N-cadherin is essential for retinal lamination in the zebrafish. Dev. Dyn. 226, 570-577.
    58. Masai,I., Lele,Z., Yamaguchi,M., Komori,A., Nakata,A., Nishiwaki,Y., Wada,H., Tanaka,H., Nojima,Y., Hammerschmidt,M. et al. (2003). N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development 130, 2479-2494.
    59. Radice,G.L., Rayburn,H., Matsunami,H., Knudsen,K.A., Takeichi,M., and Hynes,R.O. (1997). Developmental defects in mouse embryos lackingN-cadherin. Dev. Biol. 181, 64-78.
    60. Kostetskii,I., Moore,R., Kemler,R., and Radice,G.L. (2001). Differential adhesion leads to segregation and exclusion of N-cadherin-deficient cells in chimeric embryos. Dev. Biol. 234, 72-79.
    61. Luo,Y., Ferreira-Cornwell,M., Baldwin,H., Kostetskii,I., Lenox,J., Lieberman,M., and Radice,G. (2001). Rescuing the N-cadherin knockout by cardiac-specific expression of N- or E-cadherin. Development 128, 459-469.
    62. Fu, X., Sun, H., Klein,W. H., and Mu, X. (2006). b-catenin is essential for lamination but not neurogenesis in mouse retinal development. Dev. Biol.299, 424-437.
    63. Koike C, Nishida A, Akimoto K, Nakaya MA, Noda T, Ohno S, Furukawa T. (2005). Function of atypical protein kinase C lambda in differentiating photoreceptors is required for proper lamination of mouse retina. J Neurosci. 25:10290-8
    64. Takatsuka K, Hatakeyama J, Bessho Y, Kageyama R (2004) Roles of the bHLH gene Hes1 in retinal morphogenesis. Brain Res 1004:148-155.
    65. Lee HY, Wroblewski E, Philips GT, Stair CN, Conley K, Reedy M, Mastick GS, Brown NL (2005) Multiple requirements for Hes1 during early eye formation. Dev Biol 284:464-478.
    66. Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, Weber G, Lee K, Fraioli RE, Cho SH, Yung R, Asch E, Ohno-Machado L, Wong WH, Cepko CL (2004) Genomic analysis of mouse retinal development. PLoS Biol 2:E247.
    67. Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH (2006) SOX2 is a dose-dependent regulator of retinal neuralprogenitor competence. Genes Dev 20:1187-1202.
    68. Chen J, Rattner A, Nathans J (2005) The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes. J Neurosci 25:118-129.
    69. Baek,J.H., Hatakeyama,J., Sakamoto,S., Ohtsuka,T., and Kageyama,R. (2006). Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133, 2467-2476.
    70. Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R (1999) Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 18:2196-2207.
    71. Peng YR, He S, Marie H, Zeng SY, Ma J, Tan ZJ, Lee SY, Malenka, RC, Yu X. (2009) Coordinated changes in dendritic arborization and synaptic strength during neural circuit development. Neuron 15:71-84
    72. Matsuda T, Cepko CL (2004) Inaugural Article: Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 101:16-22.
    73. Rowan S, Cepko CL (2004) Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev Biol 271:388-402
    74. Dai JX, Han HL, Tian M, Cap J, Xiu JB, Song MM, Huang Y, Xu XL, Ding YQ, Xu L (2008) Enhanced contextual fear memory in central serotonin-deficient mice. Proc Natl Acad Sci USA 105: 11981-11986.
    75. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70-71.
    76. Xiang M (1998) Requirement for Brn-3b in early differentiation ofpostmitotic retinal ganglion cell precursors. Dev Biol 197:155-169.
    77. Liu W, Khare SL, Liang X, Peters MA, Liu X, Cepko CL, Xiang M (2000) All Brn3 genes can promote retinal ganglion cell differentiation in the chick. Development 127:3237-3247.
    78. Marquardt T, shery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43-55.
    79. Haverkamp S, Ghosh KK, Hirano AA, Wassle H (2003) Immunocytochemical description of five bipolar cell types of the mouse retina. J Comp Neurol 455:463-476.
    80. Chen H, Weber AJ (2002) Expression of glial fibrillary acidic protein and glutamine synthetase by Muller cells after optic nerve damage and intravitreal application of brain-derived neurotrophic factor. Glia 38:115-125.
    81. Nelson,B.R., Gumuscu,B., Hartman,B.H., and Reh,T.A. (2006). Notch activity is downregulated just prior to retinal ganglion cell differentiation. Dev. Neurosci 28, 128-141.
    82. Brown,N.L., Patel,S., Brzezinski,J., and Glaser,T. (2001). Math5 is required for retinal ganglion cell and optic nerve formation. Development 128, 2497-2508.
    83. Wang,S.W., Kim,B.S., Ding,K., Wang,H., Sun,D., Johnson,R.L., Klein,W.H., and Gan,L. (2001). Requirement for math5 in the development of retinal ganglion cells. Genes Dev. 15, 24-29.
    84. Dullin,J.P., Locker,M., Robach,M., Henningfeld,K.A., Parain,K., Afelik,S., Pieler,T., and Perron,M. (2007). Ptf1a triggers GABAergic neuronal cell fates in the retina. BMC Dev.Biol. 7, 110.
    85. Fujitani,Y., Fujitani,S., Luo,H., Qiu,F., Burlison,J., Long,Q., Kawaguchi,Y., Edlund,H., MacDonald,R.J., Furukawa,T. et al. (2006). Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development 133, 4439-4450.
    86. Nakhai,H., Sel,S., Favor,J., Mendoza-Torres,L., Paulsen,F., Duncker,G.I., and Schmid,R.M. (2007). Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134, 1151-1160.
    87. Matter-Sadzinski,L., Puzianowska-Kuznicka,M., Hernandez,J., Ballivet,M., and Matter,J.M. (2005). A bHLH transcriptional network regulating the specification of retinal ganglion cells. Development 132, 3907-3921.
    88. Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, Furukawa T (2003) Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 6:1255-1263.
    89. Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui Cc, Clevers H, Dotto GP, Radtke F (2003) Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33:416-421.
    90. Hayward P, Kalmar T, Martinez Arias A (2008) Wnt/Notch signalling and information processing during development. Development 135:411-424.
    91. Hayward P, Brennan K, Sanders P, Balayo T, DasGupta R, Perrimon N, Arias AM (2005) Notch modulates Wnt signalling by associating with Armadillo/b-catenin and regulating its transcriptional activity. Development 132:1819-1830.
    92. Osakada,F., Ikeda,H., Mandai,M., Wataya,T., Watanabe,K., Yoshimura,N., Akaike,A., Sasai,Y., and Takahashi,M. (2008). Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat. Biotech. 26, 215-224.
    93. Hori K, Cholewa-Waclaw J, Nakada Y, Glasgow SM, Masui T, Henke RM, Wildner H, Martarelli B, Beres TM, Epstein JA, Magnuson MA, Macdonald RJ, Birchmeier C, Johnson JE (2008) A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes Dev 22:166-178.
    94. Hatakeyama,J., Bessho,Y., Katoh,K., Ookawara,S., Fujioka,M., Guillemot,F., and Kageyama,R. (2004). Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539-5550.
    95. Kageyama,R., Hatakeyama,J., Ohtsuka,T. (2006). Roles of Hes bHLH factors in neural development. Transcription factors in the nervous system. (ed. G. Thiel), pp. 3-22. Germany: Wiley-VCH Press Co.
    96. Hirata,H., Tomita,K., Bessho,Y., and Kageyama,R. (2001). Hes1 and Hes3 regulate maintenance of the isthmic organizer and development of the mid/hindbrain. EMBO J. 20, 4454-4466.
    97. Taylor,M.K., Yeager,K., and Morrison,S.J. (2007). Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 134, 2435-2447.
    98. Iso,T., Sartorelli,V., Chung,G., Shichinohe,T., Kedes,L., and Hamamori,Y. (2001). HERP, a new primary target of notch regulated by ligand binding. Mol. Cell. Biol. 21, 6071-6079.
    99. Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, Aburatani H, Taga T (2008) Stablilized b-catenin functions through ECF/LEF proteins and te Notch/RBPJ complex to promote proliferation and suppress differentiation of neural precursor cell. Mol Cell Biol 28:7427-7441.
    1. Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog. in Neurobio. 72:295–339.
    2. De Camilli, P., Miller, P.E., Levitt, P., Walter, U., Greengard, P., (1984) Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker. Neuroscience 11:761–817.
    3. Feldman, J.D. (Eds.), Development in the Nervous System. Cambridge University Press, Cambridge, pp. 61–83.
    4. Laine, J., Axelrad, H., (1996) Morphology of the Golgi-impregnated Lugaro cell in the rat cerebellar cortex: a reappraisal with a description of its axon. J. Comp. Neurol. 375: 618–640.
    5. Laine, J., Axelrad, H., (2002) Extending the cerebellar Lugaro cell class. Neuroscience 115: 363–374.
    6. Laine, J., Axelrad, H., (1994) The candelabrum cell: a new interneuron in the cerebellar cortex. J. Comp. Neurol. 339: 159–173.
    7. Mugnaini, E., Floris, A., (1994) The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J. Comp. Neurol. 339:174–180.
    8. Nunzi, M.G., Birnstiel, S., Bhattacharyya, B.J., Slater, N.T., Mugnaini, E., (2001) Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex. J. Comp. Neurol. 434:329–341.
    9. Sotelo, C., Changeux, J.P., 1974. Bergmann fibers and granular cell migration in the cerebellum of homozygous weaver mutant mouse. Brain Res. 77:484–491.
    10. Eccles, J.C., Llinas, R., Sasaki, K., (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. Lond. 182: 268–296.
    11. Gould, B.B., (1979) The organization of afferents to the cerebellar cortex in the cat: projections from the deep cerebellar nuclei. J. Comp. Neurol.184:27–42.
    12. Tolbert, D.L., Bantli, H., Bloedel, J.R., (1978) Organizational features of the cat and monkey cerebellar nucleocortical projection. J. Comp. Neurol.182, 39–56.
    13. Desclin, J.C., (1974) Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res.77: 365–384.
    14. Gould, B.B., (1980) Organization of afferents from the brain stem nuclei to the cerebellar cortex in the cat. Adv. Anat. Embryol. Cell Biol. 62:1–90.
    15. Matsushita, M., Hosoya, Y., Ikeda, M.,(1979) Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 184:81–106.
    16. Sotelo, C., Arsenio-Nunes, M.L., (1976) Development of Purkinje cells in absence of climbing fibers. Brain Res. 111:289–295.
    17. Sotelo, C., (1978) Purkinje cell ontogeny: formation and maintenance of spines. Prog. Brain Res. 48:149–170.
    18. Sotelo, C., Wassef, M., (1991) Cerebellar development: afferent organization and Purkinje cell heterogeneity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 331:307–313.
    19. Sotelo, C., Hillman, D.E., Zamora, A.J., Llinas, R., (1975) Climbing fiber deafferentation: its action on Purkinje cell dendritic spines. Brain Res. 98:574–581.
    20. Sotelo, C., Alvarado-Mallart, R.M., (1987) Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature327: 421–423.
    21. Liu, A. and Joyner, A. L. (2001). Early anterior/posterior patterning of the midbrain and cerebellum. Annu. Rev. Neurosci. 24:869-896.
    22. Nakamura, H., Katahira, T., Matsunaga, E. and Sato, T. (2005). Isthmus organizer for midbrain and hindbrain development. Brain Res. Brain Res. Rev. 49:120-126.
    23. Wurst, W. and Bally-Cuif, L. (2001). Neural plate patterning upstream and downstream of the isthmic organizer. Nat. Rev. Neurosci. 2: 99-108.
    24. Crossley, P. H. and Martin, G. R. (1995). The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121: 439-451.
    25. Crossley, P. H., Martinez, S. and Martin, G. R. (1996). Midbrain development induced by FGF8 in the chick embryo. Nature 380:66-68.
    26. Martinez, S., Crossley, P. H., Cobos, I., Rubenstein, J. L. and Martin, G. R.(1999). FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression.Development 126:1189-1200.
    27. Nakamura, H., Nakano, K. E., Igawa, H. H., Takagi, S. and Fujisawa, H.(1986). Plasticity and rigidity of differentiation of brain vesicles studied in quailchick chimeras. Cell Differ. 19:187-193.
    28. Chi, C. L., Martinez, S., Wurst, W. and Martin, G. R. (2003). The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130:2633-2644.
    29. Meyers, E. N., Lewandoski, M. and Martin, G. R. (1998). An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat. Genet. 18:136-141.
    30. Reifers, F., Bohli, H., Walsh, E. C., Crossley, P. H., Stainier, D. Y. and Brand, M.(1998). Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125:2381-2395.
    31. McMahon, A. P., Joyner, A. L., Bradley, A. and McMahon, J. A. (1992). The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69: 581-595.
    32. McMahon, A. P. and Bradley, A. (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073-1085.
    33. Joyner, A. L. (1996). Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet. 12:15-20.
    34. Joyner, A. L., Liu, A. and Millet, S. (2000). Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr. Opin. Cell Biol. 12: 736-741.
    35. Liu, A. and Joyner, A. L. (2001). EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development 128:181-191.
    36. Simeone, A. (2000). Positioning the isthmic organizer: where Otx2 and Gbx2 meet. Trends Genet. 16:237-240.
    37. Simeone, A., Puelles, E. and Acampora, D. (2002). The Otx family. Curr. Opin. Genet. Dev. 12:409-415.
    38. Wurst, W. and Bally-Cuif, L. (2001). Neural plate patterning upstream and downstream of the isthmic organizer. Nat. Rev. Neurosci. 2: 99-108.
    39. Broccoli, V., Boncinelli, E. and Wurst, W. (1999). The caudal limit of Otx2expression positions the isthmic organizer. Nature 401: 164-168
    40. Liu, A. and Joyner, A. L. (2001). Early anterior/posterior patterning of the midbrain and cerebellum. Annu. Rev. Neurosci. 24, 869-896
    41. Millet, S., Campbell, K., Epstein, D. J., Losos, K., Harris, E. and Joyner, A. L.(1999). A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401, 161-164.
    42. Rhinn, M., Dierich, A., Shawlot, W., Behringer, R. R., Le Meur, M. and Ang, S. L. (1998). Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development 125: 845-856.
    43. Rhinn, M., Dierich, A., Le Meur, M. and Ang, S. (1999). Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development 126: 4295-4304.
    44. Ye, W., Bouchard, M., Stone, D., Liu, X., Vella, F., Lee, J., Nakamura, H., Ang, S. L., Busslinger, M. and Rosenthal, A. (2001). Distinct regulators control the expression of the mid-hindbrain organizer signal FGF8. Nat. Neurosci. 4, 1175-1181.
    45. Ding, Y. Q., Marklund, U., Yuan, W., Yin, J., Wegman, L., Ericson, J., Deneris, E., Johnson, R. L. and Chen, Z. F. (2003). Lmx1b is essential for the development of serotonergic neurons. Nat. Neurosci. 6:933-938.
    46. Ding, Y. Q., Yin, J., Kania, A., Zhao, Z. Q., Johnson, R. L. and Chen, Z. F.(2004). Lmx1b controls the differentiation and migration of the superficial dorsal horn neurons of the spinal cord. Development 131: 3693-3703.
    47. Guo,C., Qiu HY., Huang Y., Chen HX., Yang RQ., Chen SD., Johnson RL., Chen ZF., Ding YQ,.(2007) Lmx1b is essential for Fgf8 and Wnt1expression in the isthmic organizer during tectum and cerebellum development in mice. Development 134:317-325
    48. Martinez, S., Crossley, P. H., Cobos, I., Rubenstein, J. L. and Martin, G. R.(1999). FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression.Development 126: 1189-1200
    49. Miale, I.L., Sidman, R.L., (1961). An autoradiographic analysis of histogenesis in the mouse cerebellum. Expl. Neurol. 4:277–296.
    50. Pierce, E.T., (1975). Histogenesis of the deep cerebellar nuclei in the mouse: an autoradiographic study. Brain Res. 95: 503–518.
    51. Altman, J., Bayer, S.A., (1978). Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J. Comp. Neurol. 179:23–48.
    52. Zhang, L., Goldman, J.E., (1996). Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron 16:47–54.
    53. Wingate, R.J., Hatten, M.E., (1999). The role of the rhombic lip in avian cerebellum development. Development 126:4395–4404.
    54. Lin, J.C., Cai, L., Cepko, C.L., (2001). The external granule layer of the developing chick cerebellum generates granule cells and cells of the isthmus and rostral hindbrain. J. Neurosci. 21:159–168.
    55. Mallet, J., Huchet, M., Pougeois, R., Changeux, J.P., (1976). Anatomical, physiological and biochemical studies on the cerebellum from mutant mice. III. Protein differences associated with the weaver, staggerer and nervous mutations. Brain Res. 103:291–312.
    56. Sotelo, C., (1990). Cerebellar synaptogenesis: what we can learn from mutant mice. J. Exp. Biol. 153:225–249.
    57. Sotelo, C., Changeux, J.P., (1974). Transsynaptic degeneration‘en cascade’in the cerebellar cortex of staggerer mutant mice. Brain Res. 67:519–526.
    58. Mariani, J., Changeux, J.P., (1980). Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the adult staggerer mutant mouse. J. Neurobiol. 11:41–50.
    59. Smeyne, R.J., Chu, T., Lewin, A., Bian, F., S-Crisman, S., Kunsch, C.,Lira, S.A., Oberdick, J., (1995). Local control of granule cell generation by cerebellar Purkinje cells. Mol. Cell. Neurosci. 6: 230–251.
    60. Das, G.D., (1977). Experimental analysis of embryogenesis of cerebellum in rat. I. Subnormal growth following X-ray irradiation on day 15 of gestation. J. Comp. Neurol. 176:419–434.
    61. Hallonet, M.E., Teillet, M.A., Le Douarin, N.M., (1990). A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108: 19–31.
    62. Alvarez Otero, R., Sotelo, C., Alvarado-Mallart, R.M., (1993). Chick/quail chimeras with partial cerebellar grafts: an analysis of the origin and migration of cerebellar cells. J. Comp. Neurol. 333:597–615.
    63 Irvin D.K., Zurcher S.D., Nguyen T., Weinmaster G., Kornblum HI., (2001) Expression Patterns of Notch1, Notch2, and Notch3 Suggest Multiple Functional Roles for the Notch-DSL Signaling System During Brain Development. J. Comp. Neurol. 436:167–181.
    64. Lütolf S., Radtke F., Aguet M., Suter U.,Taylor V. (2002) Notch1 is required for neuronal and glial differentiation in the cerebellum. Development 129:373-385
    65. Weller M., Krautler N., Mantei N., Suter U. Taylor V.(2006) Jagged1Ablation Results in Cerebellar Granule Cell Migration Defects and Depletion of Bergmann Glia. Dev Neurosci 28:70–80
    66. Machold RP., Kittell DJ., Fishell G. (2007)Antagonism between Notch and bone morphogenetic protein receptor signaling regulates neurogenesis in the cerebellar rhombic lip. 2007 23;2:5
    67. Weinmaster, G. & Kintner, C. (2003) Modulation of Notch signaling during somitogenesis. Annu. Rev. Cell Dev.Biol. 19: 367–395.
    68. Zeltser, L. M., Larsen, C. W. & Lumsden, A. (2001)A new developmental compartment in the forebrain regulated by Lunatic fringe. Nature Neurosci. 4:683–684.
    69. Cheng, Y. C. et al. (2004) Notch activation regulates the segregation and differentiation of rhombomere boundary cells in the zebrafish hindbrain. Dev. Cell 6:539–550.
    70. Baek JH., Hatakeyama, J., Sakamoto S., Ohtsuka T., Kageyama R. (2006) Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133:2467-2476.
    71. Louvi A, Artavanis-Tsakonas S (2006) Notch signalling in vertebrate neural development. Nat Rev Neurosci 7:93-102.
    72. Hatakeyama J, Kageyama R. (2006) Notch1 expression is spatiotemporally correlated with neurogenesis and negatively regulated by Notch1-independent Hes genes in the developing nervous system. Cereb Cortex. 16 Suppl 1:132-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700