用户名: 密码: 验证码:
机器人系统运动规划与协调的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机、电子、通信、控制、传感器及其它相关技术的发展,机器人技术得到了迅猛发展,应用领域层出不穷。一方面,研究者致力于设计更复杂的机构,在个体机器人上安装更加先进、更多种类的传感器,设计更为复杂高效的算法以提高单个机器人的智能和能力,使其能够更好地完成任务,适应更复杂的环境;另一方面,人们采用多个功能相对简单的机器人相互合作,共同完成单个机器人无法完成的具有复杂性、不确定性、并发性、实时性等特点的任务。
     单机器人系统在执行给定的任务前,需进行路径规划,同样,多机器人系统也需协调各机器人间的运动以规避冲突。当前常用的运动规划与协调方法虽然得到了广泛应用,取得了较好的效果,但均局限于特定的应用场合,与具体任务及系统特性紧密相关,当任务或环境改变后,原来的方法不能应用,因此缺乏灵活性与统一性。另外,现有的方法都是假定任务可完成情况下的规划与协调,而很少涉及系统的能力范围及任务不能完成的情况。
     本文提出一种通用的机器人系统运动规划与协调策略,把单机器人系统的规划问题与多机器人系统的协调问题统一起来,适用于不同环境、不同任务及不同机器人系统中。根据任务要求与系统特性,合理选择状态变量构造系统的状态空间,把系统内部固有的物理约束、外部施加的障碍约束及任务约束映射为状态空间中的不可达区域,则可达区域就表明该机器人系统完成任务的能力范围。将任务的执行过程看作是系统状态在状态可达空间的变迁过程,这样就把机器人系统的规划与协调问题统一转化为状态空间中的轨迹求解。
     给出了任务的可完成条件,即当系统初始状态与任务终止状态均位于可达空间,且可达区域内存在起止状态间的连通路径时,任务可完成,此时可根据给定的性能指标在状态空间求解任务实现的最优解。如以上任一条件不满足,则任务无法完成,通过修改系统配置或任务约束将任务转化为可完成,并求解任务可实现的转化条件,以此指导机器人任务的设计、规划与协调。
     基于状态空间法实现了不同机器人系统任务的规划与协调,验证了该方法的有效性与通用性。针对单机械臂轨迹规划任务,分析了无障碍约束及障碍约束下机械臂系统完成任务的能力范围及特点,在状态空间求解点到点任务的末端执行器路径最短轨迹,并分析了任务无法完成的情况,求得任务实现的临界配置与临界约束条件,从仿真与硬件实体上实现了状态轨迹跟踪;分别实现了单移动机器人与移动机械臂的路径规划,在基于Internet的办公室服务机器人上实现了动态环境下路径的实时规划与跟踪,对于移动机械臂,在状态空间求解出不同任务要求下移动机械臂的最优轨迹;针对多机器人编队任务,在状态空间求解出约束条件下编队的路径最短变迁轨迹,同时对任务无法完成的情况进行了分析,求得任务实现的约束转化条件,通过仿真与实验实现了轨迹跟踪;针对多机械臂协同操作同一物体的任务,在构造的两种不同状态空间中分别求得不同任务要求下的最优解,实现了多机械臂间的协调运动。
With the development of computer, electronics, communication, control, sensor, and other related technologies, robotics develops rapidly and is applied to a wide range of domains. On the one hand, the researchers aim to design more complicated mechanisms, to mount various advanced sensors on robots, and to develop more efficient algorithms, which improve the intelligence and ability of the single robot to make it capable of performing successfully the tasks and adapting to more complex environments. On the other hand, multiple robots with relatively simple functions are employed to complete the tasks with complicated, uncertain, intercurrent, and real-time properties that cannot be done by a single robot.
     Before executing the given task by a single robot, path planning is necessary. It is the same case for a multi-robot system. Motion coordination among the robots is needed in order to avoid collision. It has been widely used for current motion planning and coordination methods in various tasks. However, they can only be exploited on special occasions and are heavily relevant to the tasks and system properties. If the tasks or environments are changed, these methods may not work well. Therefore, they lack of flexibility and generality. In addition, these approaches are able to plan and coordinate the robotic tasks on the implicit condition that the tasks are realizable, whereas the system capability as well as the solutions to unachievable tasks have seldom been addressed.
     In this dissertation, we propose a general motion planning and coordination strategy for robot systems, which offers a unified way for planning of single robot systems and coordination of multi-robot systems. It is available in different environments, tasks, and robot systems. The State Space for robot systems is constructed by choosing rationally state variables according to the task requirements and system characteristics. The internal physical constraints, inherent in the system, and external obstacle constraints and task constraints, imposed externally, are mapped into the unrealizable areas in the State Space. Then reachable areas of the system state denote the system ability to complete the tasks. Task execution is considered as transition of the system state in reachable State Space. Thus, the planning and coordination problem of the robot systems is translated into a trajectory solving problem in State Space.
     The realizable conditions for the tasks are given. If the system’s initial state and the task’s goal state are both in the reachable space, as well as there exists a connectable path in between within the reachable areas, the task is realizable. The optimal strategy for task fulfillment can be investigated and obtained according to the given performance index. If any condition above is not satisfied, the task is unrealizable. It could be transformed to be realizable by adjusting the system’s configuration and/or task constraint, and the transformation condition for task realization could also be figured out. This lends itself to task designing, planning, and coordination.
     It is applied to planning and coordination of different robot systems and tasks in order to validate the effectiveness and generalization of the proposed method. In manipulator path planning tasks, the system ability and characteristic with/without obstacle constraints are analyzed. The shortest trajectory of the end-effector is obtained in the State Space for a Point-to-Point task. The unrealizable task is also addressed, as well as the conditions of critical configurations and critical constraints are derived. The state trajectory trackings are conducted both in simulation and experiment. Path planning for a mobile robot and a mobile manipulator are conducted. Real-time path planning and tracking are realized on an internet-based office robot in dynamic environment. The optimal trajectories of the mobile manipulator under different task requirements are obtained in State Space. For a multi-robot formation task, the minimal path transition trajectory of the formation is solved in State Space. The unrealizable task is addressed, and the constraint transformation contion for task realization is derived. The trajectory trackings are done both in simulation and experiment. In a multi-manipulator task of operating cooperatively a single object, the optimal solutions under different task requirements are obtained in different State Space. Then motion coordination between multiple manipulators is realized.
引文
Alami98 R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi-robot cooperation in the artes project. IEEE Robotics and Automation Magazine, vol. 5, no.1, pp. 36-47, 1998.
    Antonelli04 G. Antonelli, S. Chiaverini, M. Palladino, G. P. Gerio, and G. Renga. Cartesian space motion planning for robots: an industrial implementation. In the 4th International Workshop on Robot Motion and Control, pp.279-284, 2004.
    Arai02 Y. Arai, H. Asama, and H. Kaetsu. Map acquisition in multi-robot systems based on time sharing scheduling. Distributed Autonomous Robotic Systems, vol. 5, pp. 383-392, 2002.
    Balch98 T. Balch and R. C. Arkin. Behavior-based formation control for multi-robot teams. IEEE Trans. on Robotics and Automation, vol. 14, no. 6, pp. 926-939, 1998.
    Balch00 T. Balch and M. Hybinette. Social potentials for scalable multirobot formations. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 73-80, 2000.
    Barrett01 A. Barrett, G. Rabideau, T. Estlin, and S. Chien. Coordinated continual planning methods for cooperating rover. In Proc. of IEEE Aerospace Conf., vol. 1, pp. 1/133-1/140, 2001.
    Batalin02 M. A. Batalin and G. S. Sukhatme. Spreading out: a local approach to multi-robot coverage. Distributed Autonomous Robotic Systems, vol. 5, pp. 373-382, 2002.
    Beard02 R. W. Beard, T. W. McLain, and M. Goodrich. Coordinated target assignment and intercept for unmanned air vehicles. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2581-2586, 2002.
    Behnke00 S. Behnke, R. Rojas, and G.Wagner. A hierarchy of reactive behaviors handles complexity. In Proc. of ECAI2000 Workshop Balancing Reactivity Social Deliberation in Multi-Agents Systems, pp. 125-136, 2000.
    Bo01薄喜柱.基于多智能体的多机器人系统协作策略研究.博士论文,哈尔滨工业大学,2001.
    Bobrow90 J. E. Bobrow, J. M. Mccarthy, and V. K. Chu. Minimum time trajectories for two robots holding the same workpiece. In Proc. of the 29th IEEE Conf. on Decision and Control, pp. 3102-3107, 1990.
    Bouloubasis03 A. K. Bouloubasis, G. T. McKee, and P. S. Schenker. A behaviour-based manipulator for multi-robot transport tasks. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp.2287-2292, 2003.
    Bruce03 J. Bruce, M. Bowling, B. Browning, and M. Veloso. Multi-robot team response to a multi-robot opponent team. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2281-2286, 2003.
    Burgard05 W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider. Coordinated multi-robot exploration. IEEE Trans. on Robotics, vol. 21, no. 3, pp. 376-386, 2005.
    Butler00 Z. J. Butler, A. A. Rizzi, and R. L. Hollis. Cooperative coverage of rectilinear environments. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2722-2727, 2000.
    Cai88蔡自兴.机器人原理及其应用.中南工业大学出版社,1988.
    Cao02曹志强.未知环境下多机器人协调与控制的队形问题研究.博士论文,中国科学院自动化研究所,2002.
    Carriker89 W. F. Carriker, P. K. Khosla, and B. H. Krogh. An approach for coordinating mobility and manipulation. In Proc. of IEEE Int. Conf. on Robotics and Automation, Vol. 1, pp. 59-63, 1989.
    Chaimowicz01 L. Chaimowicz, T. Sugar, V. Kumar, and M. F. M. Campos. An architecture for tightly coupled multi-robot cooperation. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2292-2297, 2001.
    Chantemargue99 F. Chantemargue and B. Hirsbrunner. A collective robotics application based on emergence and self-organization. In Proc. of the 5th Int. Conf. Young Computer Scientists, pp. 1-8, 1999.
    Chen04 C. Y. Chen and T. H. Li. A real-time role assignment mechanism for five-on-five robot soccer competition. In Proc. of IEEE Int. Conf. on Networking, Sensing and Control, vol. 2, pp. 1099–1104, 2004.
    Cheng91 F. T. Cheng and D. E. Orin. Efficient formulation of the force distribution equations for simple closed chain robotic mechanisms. IEEE Trans. on Systems, Man, and Cybernetics, vol. 21, no. 1, pp. 25-32, 1991.
    Dai04戴光明.避障路径规划的算法研究.博士论文,华中科技大学,2004.
    Das01 A. Das, R. Fierro, V. Kumar, J. Ostrowski, J. Spletzer, and C. Taylor. A vision based formation control framework. IEEE Trans. on Robotics and Automation, vol. 18, no. 5, pp. 813–825, 2001.
    Desai98 J. P. Desai, J. Ostrowski, and V. Kumar. Controlling formation of multiple mobile robots. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2864-2869, 1998.
    Dias02 M. D. Dias and A. Stentz. Opportunistic optimization for market-based multirobot control. In Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots Systems, pp. 2714-2720, 2002.
    Dissanayake91 M. W. M. Dissanayake, C. J. Goh, and N. Phenthien. Time optimal trajectories for robotic manipulators. Robotica, vol. 9, no. 2, pp. 131-138, 1991.
    Emery02 R. Emery, K. Sikorski, and T. Balch. Protocols for collaboration, coordination and dynamic role assignment in a robot team. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3008-3015, 2002.
    Farinelli03 A. Farinelli, L. Iocchi, and D. Nardi. An analysis of coordination in multi-robot systems. In Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 1487-1492, 2003.
    Farinelli04 A. Farinelli, L. Iocchi, and D. Nardi. Multirobot systems: a classification focused on coordination. IEEE Trans. on Systems, Man, and Cybernetics, Part B, vol. 34, no. 5, pp. 2015-2028, 2004.
    Ferraresso00 M. Ferraresso, C. Ferrari, E. Pagello, R. Polesel, R. Rosati, A. Speranzon, and W. Zanette. Collaborative emergent actions between real soccer robots. In Proc. RoboCup-2000: Robot Soccer World Cup IV, pp. 297-302, 2000.
    Fierro01 R. Fierro, A. K. Das, V. Kumar, and J. P. Ostrowski. Hybrid control of formation of robots. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3672-3677, 2001.
    Fontan98 M. Fontan and M. Mataric. Territorial multi-robot task division. IEEE Trans. on Robotics and Automation, vol. 14, no. 5, pp. 815-822, 1998.
    Fukuda02 T. Fukuda, Y. Ikemoto, F. Arai, and T. Higashi. Graduated spatial pattern formation of micro robot group. Distributed Autonomous Robotic Systems, vol. 5, pp. 340-348, 2002.
    Gerkey00 B. Gerkey and M. J. Mataric. Principled communication for dynamic multi-robot task allocation. In Proc. of Int. Symp. Experimental Robotics, pp. 353-362, 2000.
    Goldberg02 D. Goldberg and M. J. Mataric. Robot teams: from diversity to polymorphism. In Design and Evaluation of Robust Behavior-Based Controllers for Distributed Multi-Robot Collection Tasks, T. Balch and L. E. Parker, Eds. Wellesley, MA: AK Peters, 2002.
    Goodrich98 M. A. Goodrich, W. Stirling, and R. Frost. A theory of satisficing decisions and control. IEEE Trans. on Systems, Man, and Cybernetics (Part A), vol. 28, no. 11, pp. 763-779, 1998.
    Gowda83 I. G. Gowda, D. G. Kirkpatrick, D. T. Lee, and A. Naamad. Dynamic Voronoi diagrams. IEEE Trans. on Information Theory, vol. 29, no. 5, pp. 724-731, 1983.
    Guibas85 L. Guibas and J. Hershberger. Computing the visibility graph of n line segments in O (n2) time. Theoret Comput Sc., vol. 26, pp. 13-20, 1985.
    Gulec05 N. Gulec and M. Unel. A novel coordination scheme applied to nonholonomic mobile robots. In Proc. of the 44th IEEE Conf. on Decision and Control and the European Control Conf. 2005, pp. 5089-5094, 2005.
    Hirata00 Y. Hirata, K. Kosuge, H. Asama, H. Kaetsu, and K. Kawabata. Coordinated transportation of a single object by multiple mobile robots without position information of each robot. In Proc. of the 2000 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.2024-2029, 2000. Http1 http://theory.stanford.edu/~amitp/GameProgramming/ Http2 http://creativesoft.home.shangdu.net/AStart1.html/
    Howard02 H. Howard, M. J. Mataric, and G. S. Sukhatme. An incremental deployment algorithm for mobile robot teams. In Proc. of the 2002 Int. Conf. on Intelligent Robots and Systems, pp. 2849-2854, 2002.
    Huang05黄心汉,陈国良,王敏.机械手Pick-and-Place运动规划.高技术通讯, vol. 15,no. 5,pp. 25-30,2005.
    Hwang92a Y. K. Hwang and N. Abuja. Gross motion planning– a survey. ACM computing surveys, vol. 24, no. 3, pp. 219-291, 1992.
    Hwang92b Y. K. Hwang and N. Ahuja. A potential field approach to path planning. IEEE Trans. on Robotics and Automation, vol. 8, no. 1, pp. 23-32, 1992.
    Ichikawa93 S. Ichikawa, F. Hara and H. Hosokai. Cooperative route-searching behavior of multi-robot system using hello-call communication. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1149-1156, 1993.
    Ijspeert01 A. J. Ijspeert, A. Martinoli, A. Billard, and L. M. Gambardella. Collaboration through the exploitation of local interactions in autonomous collective robotics: the stick pulling experiment. Autonomous Robots, vol. 11, no.2, pp. 149-171, 2001.
    Jason95 A. J. Jason. The essential visibility graph: an approach to global motion planning for autonomous mobile robots. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 256-264, 1995.
    Jenkin00 M. Jenkin and G. Dudek. The paparazzi problem. In Proc. of the 2000 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2042-2047, 2000.
    Jia02贾艳华.非完整轮式移动机器人路径规划研究.博士论文,北京理工大学,2002.
    Jung00 D. Jung and A. Zelinsky. Grounded symbolic communication between heterogeneous cooperating robots. Autonomous Robots, vol. 8, no. 3, pp. 269-292, 2000.
    Kavraki96 L. E. Kavraki, P. Svestka, Jean-Claude Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning in high dimensional configuration spaces. IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp. 566-580, 1996.
    Kim84 B. K. Kim and K. G. Shin. An efficient minimum– time robot path planning under realistic conditions. In Proc. of 1984 American Control Conference, pp. 296-303, 1984.
    Kose05 H. Kose, K. Kaplan, C. Mericli, U. Tatlidede, and L. Akin, Market-driven multi-agent collaboration in robot soccer domain, in V. Kordic, A. Lazinica and M. Merdan (Eds.), Cutting Edge Robotics, pp.407-416, pIV pro artesian Verlag, 2005.
    Kowalczyk01 W. Kowalczyk. Multi-robot coordination. In the Second Workshop on Robot Motion and Control, pp. 219-223, 2001.
    Kube92 C. R. Kube and H. Zhang. Collective robotic intelligence. In Proc. of Int. Conf. Simulation Adaptive Behavior, pp. 460-468, 1992.
    Kube93 C. Kube, H. Zhang, and X. Wang. Controlling collective tasks with an ALN. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 289–293, 1993.
    Kube00 C. R. Kube and E. Bonabeau. Cooperative transport by ants and robots. Robotics and Autonomous Systems, vol. 30, no. 1-2, pp. 85-101, 2000.
    LaValle00 S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: progress and prospects. In International Workshop on Algorithmic Foundations of Robotics, 2000.
    LaValle07 S. M. LaValle. Planning algorithms. [Online], 2007. http://msl.cs.uiuc.edu/planning.
    Lawton00 J. R. T. Lawton, B. J. Young, R. W. Beard. A decentralized approach to elementary formation maneuvers. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2728-2733, 2000.
    Lawton 03 J. R. T. Lawton, R. W. Beard and B. J. Young. A decentralized approach to formation maneuvers. IEEE Trans. on Robotics and Automation, vol. 19, No. 6, pp. 933-941, 2003.
    Lewis97 M. A. Lewis and K. H. Tan. High precision formation control of mobile robots using virtual structures. J. Autonomous Robots, vol. 4, pp. 387-403, 1997.
    Liang02 T. C. Liang and J. S. Liu. Motion control realizing cyclic ball passing strategy among multiple mobile robots in robot soccer games. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2587–2592, 2002.
    Li00李实,徐旭明,叶榛,孙增圻.国际机器人足球比赛及其相关技术.机器人,vol. 22, no. 5, pp. 420-426, 2000.
    Lin83 C. S. Lin, P. R. Chang and J. Y. S. Luh. Formulation and optimization of cubic polynomial joint trajectories for industrial robots. IEEE Trans. on Automatic Control, vol. AC-28, no. 12, pp. 1066-1073, 1983.
    Lin00林瑞麟.用旋量方法规划机器人运动轨迹.应用数学和力学,vol. 21,no. 1,pp. 99-105,2000.
    Liu96 Y. H. Liu and S. Arimono. Distributively controlling two robots handling an object in the task space without any communication. IEEE Trans. on Automatic Control, vol. 41, pp. 1193-1198, 1996.
    Llama2000 M. A. Llama, R. Kelly, and Santibanez. Stable computed-torque control of robot manipulators via fuzzy self-tuning. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 30, pp. 143–150, 2000.
    Luh84 J. Y. S. Luh and C. S. Lin. Approximate join trajectories for control of industrial robots along artesian paths. IEEE Trans. on System, Man, and Cybernetics, vol. 14, no. 3, pp. 444-450, 1984.
    Madhani92 A. Madhani and S. Dubowsky. Motion planning of mobile multi-limb robotic systems subject to force and friction constraints. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 233-239, 1992.
    Mataric97a M. J. Mataric. Reinforment learning in the multi-robot domain. Autonomous Robots, vol. 4, no. 1, pp. 73-83, 1997.
    Mataric97b M. J. Mataric. Behavior-based control: examples from navigation, learning, and group behavior. Journal of Experimental and Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 323-336, 1997.
    Mataric98 M. J. Mataric. Using communication to reduce locality in distributed multi-agent learning. Journal of Experimental and Theoretical Artificial Intelligence, vol. 10, no. 3, pp. 357-369, 1998.
    McDonell96 B. McDonell. Modeling, identification, and control of a pneumatically actuated robotic manipulator. Ph.D thesis, Department of Mechanical and Aerospace Engineering, University of California, 1996.
    Miksch92 W. Miksch and D. Schroeder. Performance-functional based controller design for a mobile manipulator. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 227-238, 1992.
    Miller90 D. P. Miller. Multiple behavior-controlled microrobots for planetary surface missions. In Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 289-292, 1990. Mohri95 A. Mohri, M. Yamamoto and G. Hirano. A trajectory planning algorithm with path search for cooperative multiple manipulators. In Proc. of 1995 IEEE Conf. on System, Man and Cybernetics, pp. 898-903, 1995.
    Monteiro02 S. Monteiro and E. Bicho. A dynamical systems approach to behavior-based formation control. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2606-2611, 2002.
    Moon90 S. B. Moon and S. Ahmad. Time scaling of trajectories for cooperative multi-robot systems. In Proc. of the 29th IEEE Conf. on Decision and Control, pp. 1120-1125, 1990.
    Murphy02 R. R. Murphy, C. Lisetti, R. Tardif, L. Irish, and A. Gage. Emotion-based control of cooperating heterogeneous mobile robots. IEEE Trans. on Robotics and Automation, vol. 18, no. 5, pp. 744-757, 2002.
    Nagatani02 K. Nagatani, T. Hirayama, A. Gofuku, and Y. Tanaka. Motion planning for mobile manipulator with keeping manipulability. In Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1663-1668, 2002.
    Nassal94 U. M. Nassal. An approach to motion planning for mobile manipulation. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 831-838, 1994.
    Nebel99 B. Nebel, J. S. Gutmann, and W. Hatzack. CS Freiburg’99. In Proc. RoboCup-99: Robot Soccer World Cup III, pp. 113-117, 1999.
    Nilsson98 N. J. Nilsson. Artificial intelligence: a new synthesis. Morgan Kauffmann, 1998.
    Noda98 I. Noda, S. Suzuki, H. Matsubara, M. Asada, and H. Kitano. RoboCup-97: The First Robot World Cup Soccer Games and Conferences. AI Magazine, vol. 19, no. 3, pp. 49-59, 1998.
    Noreils93 F. R. Noreils. Toward a robot architecture integrating cooperation between mobile robots: application to indoor environment. Int. J. Robotics Research, vol. 12, no. 1, pp. 79-98, 1993.
    Oriolo05 G. Oriolo and C. Mongillo. Motion planning for mobile manipulators along given end-effector paths. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2154-2160, 2005.
    Parker98 L. E. Parker. ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Trans. on Robotics and Automation, vol. 14, no. 2, pp. 220-240, 1998.
    Parker00 L. E. Parker. Lifelong adaptation in heterogenous multi-robot teams: response to continual variation in individual robot performance. Autonomous Robotics, vol. 8, no. 3, pp. 239-267, 2000.
    Parker02 L. E. Parker, K. Fregene, Y. Guo, and R. Madhavan. Distributed heterogeneous sensing for outdoor multi-robot localization, mapping and path planning. In Proc. NRL Workshop Multi-Robot Systems, pp. 21-30, 2002.
    Passino02 K. Passino. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Contr. Syst. Mag., vol. 22, pp. 52-67, 2002.
    Paul79 R. P. Paul. Manipulator artesian path control. IEEE Trans. on System, Man, and Cybernetics, vol. 9, no. 11, pp. 702-711, 1979.
    Perez87 T. Lozano-Perez. A simple motion-planning algorithm for general robot manipulators. IEEE J. Robotics and Automation, vol. RA-3, no. 3, pp. 224-238, 1987.
    Reif03 J. H. Reif and Z. Sun. Adaptive and compact discretization for weighted region optimal path finding. In Proc. of the 14 Symposium on Fundamentals of Computation Theory, pp. 111-118, 2003.
    Rybski97 P. Rybski, S. Stoeter, C. Wyman, and L. M. Gini. A cooperative multi-robot approach to the mapping and exploration of mars. In Proc. of AAAI/IAAI, 1997.
    Saffiotti00 A. Saffiotti, N. B. Zumel, and E. H. Ruspini. Multi-robot team coordination using desirabilities. In Proc of the 6th Int. Conf. on Intelligent Autonomous Systems, pp. 107-114, 2000.
    Saramago98 S. F. P. Saramago and V. S. Junior. Optimization of the trajectory planning of robot manipulators taking into account the dynamic of the system. Mechanism and Machine Theory, vol. 33, no. 7, pp. 883-894, 1998.
    Saramago00 S. F. P. Saramago and V. S. Junior. Optimal trajectory planning of robot manipulators in the presence of moving obstacles. Mechanism and Machine Theory, vol. 35, no. 8, pp. 1079-1094, 2000.
    Schwartz98 J. T. Schwartz and M. Shair. A survey of motion planning and related geometric algorithms. Artificial Intelligence, vol. 7, no. 1, pp. 55-67, 1998.
    Sciavicco2000 L. Sciavicco and B. Siciliano. Modeling and control of robot manipulators. 2nd Edition, Springer-Verlag, London, 2000.
    Simmons00 R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and H. Younes. Coordination for multi-robot exploration and mapping. In Proceeding of the National Conference on Artificial Intelligence (AAAI), pp. 852-858, 2000.
    Sisto06 M. Sisto and D. B. Gu. A Fuzzy leader-follower approach to formation control of multiple mobile robots. In Proc. of the 2006 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2515-2520, 2006.
    Spletzer01 J. Spletzer, A. K. Das, R. Fierro, C. J. Taylor, V. Kumar, and J. P. Ostrowski. Cooperative localization and control for multi-robot manipulation. GRASP Laboratory, University of Pennsylvania, 2001.
    Su03苏治宝,陆际联.多移动机器人队形控制的研究方法.机器人,vol. 25,no. 1,pp. 88-91,2003.
    Sugar98 T. Sugar and V. Kumar. Decentralized control of cooperating mobile manipulators. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2916-2921, 1998.
    Sugar01 T. Sugar, J. P. Desai, V. Kumar, and J. P. Ostrowski. Coordination of multiple mobile manipulators. In Proc. of Int. Conf. on Robotics and Automation, pp. 3022-3027, 2001.
    Sugawara02 K. Sugawara and M. Sano. Cooperative behavior of interacting simple robots in a clockface arranged foraging field. Distributed Autonomous Robotic Systems, vol. 5, pp. 331-339, 2002.
    Sun91 K. Sun and V. J. Lumelsky. Motion planning for three-link robot arm manipulators operating in an unknown three-dimensional environment. In Proc. of the 30th Conf. on Decision and Control, pp. 1019-1026, 1991.
    Sun97孙增沂.智能控制理论与技术.北京:清华大学出版社,1997.
    Takeda02 H. Takeda, Y. Hirata, Z. D. Wang, and K. Kosuge. Collision avoidance algorithm for two tracked mobile robots transporting a single object in coordination based on function allocation concept. Distributed Autonomous Robotic Systems, vol. 5, pp.155-164, 2002.
    Tan01 J. Tan, N. Xi. Unified model approach for planning and control of mobile manipulators. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3145-3152, 2001.
    Tarn87 T. J. Tarn, A. K. Bejzcy, and X. Yun. Design of dynamic control of two cooperating robot arms: closed chain formulation. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1242-1247, 1987.
    Taylor79 R. H. Taylor. Planning and execution of straight line trajectories. IBM Journal of Research and Development, vol. 23, pp. 424-436, 1979.
    Uchibe01 E. Uchibe, T. Kato, M. Asada, and K. Hosoda. Dynamic task assignment in a multiagent/multitask environment based on module conflict resolution. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3987-3992, 2001.
    Uchiyama87 M. Uchiyama, N. Iwasawa, and K. Hakomori. Hybrid position/force control for coordination of a two-arm robot. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1242-1247, 1987.
    Ueyama93 T. Ueyama and T. Fukuda. Cooperative search using genetic algorithm based on local information. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.1110-1115, 1993.
    Ueyama94 T. Ueyama, T. Fukuda, A. Sakai, and F. Arai. Hierarchical control architecture with learning and adaptation ability for cellular robotic system. Distributed Autonomous Robotic Systems, pp. 17-28, 1994.
    Veloso98 M. Veloso and P. Stone. Individual and collaborative behaviors in a team of homogeneous robotic soccer agents. In Proc. of the 3rd Int. Conf. on Multi-Agent Systems, pp. 309-316, 1998.
    Wagner00 I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Mac vs. pc– determinism and randomness as complementary approaches to robotic exploration of continuous unknown domains. Int. J. Robotics Research, vol. 19, no. 1, pp. 12-31, 2000.
    Wang00王幼民,徐蔚鸿.机械臂关节空间Bezier曲线轨迹规划.安徽机电学院学报,vol. 15,no. 3,pp. 59-64,2000.
    Wang01王硕.多机器人系统协调协作理论与应用的研究.博士论文,中国科学院自动化研究所,2001.
    Wang02 Z. D. Wang and V. Kumar. A decentralized test algorithm for object closure by multiple cooperating robots. Distributed Autonomous Robotic Systems, vol. 5, pp. 165-174, 2002.
    Wang03王仲民,岳宏.一种移动机器人全局路径规划新型算法.机器人,vol. 25,no. 2,pp. 152-155,2003.
    Ward06 J. Ward and J. Katupitiya. Mobile manipulator motion planning towards multiple goal configurations. In Proc. of the 2006 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2283-2288, 2006.
    Ward07 J. Ward and J. Katupitiya. Free space mapping and motion planning in configuration space for mobile manipulators. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 4981-4986, 2007.
    Welzl85 E. Welzl. Constructing the visibility graph of n line segments in O (n2) time. Process Lett., vol. 20, no. 6, pp. 534-554, 1985.
    Wen92 J. T. Wen and K. Kreut-Delgadoz. Motion and force for multiple robotic manipulators. Automatica, vol. 28, no. 4, pp. 729-743, 1992.
    Werger99 B. B. Werger. Cooperation without deliberation: a minimal behavior-based approach to multi-robot teams. Artificial Intelligence, vol. 110, pp. 293-320, 1999.
    Werger00 B. B.Werger and M. J. Mataric. Broadcast of local eligibility for multitarget observation. In Proc. of the Int. Workshop on Distributed Autonomous Robotics Systems, pp. 347-356, 2000.
    Xu00 X. Xu and Y. Chen. A method for trajectory planning of robot manipulators in cartesian space. In Proc. of the 3rd World Conf. on Intelligent Control and Automation, pp.1220-1225, 2000.
    Yamada01 S. Yamada and J. Saito. Adaptive action selection without explicit communication for multirobot box-pushing. IEEE Trans. on Systems, Man, and Cybernetics (part C), vol. 31, no. 3, pp. 398-404, 2001.
    Yamamoto95 Y. Yamamoto and X. P. Yun. Coordinated obstacle avoidance of a mobile manipulator. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2255-2260, 1995.
    Yang02 X. Yang, K. Watanabe, K. Kiguchi, and K. Izumi. Coordinated transportation of a single object by a group of nonholonomic mobile robots. Distributed Autonomous Robotic Systems, vol. 5, pp. 175-184, 2002.
    Yao93 B. Yao and M. Tomizuka. Adaptive coordinated control of multiple manipulators handling a constrained object. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 624-629, 1993.
    Yokota98 K. Yokota, K. Ozaki, N. Watanabe, A. Matsumoto, D. Koyama, T. Ishikawa, K. Kawabata, H. Kaetsu, and H. Asama. Cooperative team play based on communication. In Proc. RoboCup-98: Robot Soccer World Cup II, pp. 491-496, 1998.
    Yoshikawa89 T. Yoshikawa and X. Zheng. Coordinated dynamics hybrid position/force control for multiple robot manipulators handling one constrained object. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1091-1096, 1989.
    Yun97 X. Yun, G. Alptekin, and O. Albayrak. Line and circle formation of distributed physical mobile robots. J. Robotic Systems, vol. 14, no. 2, pp. 63-76, 1997.
    Yung99 N. H. C. Yung and C. Ye. An intelligent mobile vehicle navigator based on fuzzy logic and reinforcement learning. IEEE Trans. on Systems, Man, and Cybernetics (Part B), vol. 29, no. 2, pp. 314-321, 1999.
    Zhang02张芳.面向多移动机器人系统的再励学习方法研究.博士论文,上海交通大学,2002.
    Zhang04a K. Zhang and J. Su. RTOS-based software architecture for multisensor fusion system. In the 5th Asian Control Conference, pp. 906-913, 2004.
    Zhang04b张克军.动态不确定环境下异种多传感器信息融合方法的研究.博士论文,上海交通大学,2004.
    Zheng88 Y. F. Zheng and J. Y. S. Luh. Optimal load distribution for two industrial robots handing a single object. In Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 344-349, 1988.
    Zhou03周智,蒋承东,黄刘生,顾钧.Manhatta空间有障碍的最短路径和3-Steine树算法.软件学报,vol. 14, pp. 9, pp. 1503-1513, 2003.
    Zhou07周玮.网络机器人的自主性理论与智能控制.博士论文,上海交通大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700