用户名: 密码: 验证码:
自主移动机器人运动规划的若干算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地面自主移动机器人是机器人研究领域中的一个重要分支,集人工智能、智能控制、信息处理等专业技术为一体,其发展对国防、社会、经济和科学技术具有重大的影响力,已成为各国高科技领域的战略性研究目标。机器人运动规划是自主移动机器人导航的核心关键技术之一。
     移动机器人运动规划是指设计一个适当的控制输入使系统沿某一轨迹从一开始位置运动到另一终点位置,包含两方面内容:路径规划和跟踪控制。
     本文围绕这两个内容,对移动机器人的路径规划和轨迹跟踪分别进行了研究,在传统方法的基础上,提出了一些改进算法及新的解决方案,以提高算法的计算效率,扩展其使用范围。具体的研究内容包括以下几个方面:
     1.将第二类偏微分方程引入到移动机器人路径规划问题求解中,探讨了偏微分方程在路径规划中的应用,扩展了路径规划的求解算法种类。该算法克服了其它路径规划算法的缺点,比如经典势场算法中的极小问题、RRT算法的无谓耗费等。算法的数学结构和求解时的自适应网格细化保证了该算法的适应性。
     2.针对快速扩展随机树RRT算法只能在已知环境中进行移动机器人路径规划的限制,将RRT算法与基于滚动窗口的路径规划相结合,提出了一种改进的移动机器人路径规划算法。该算法只考虑窗口环境地图,避免了全局搜索,使得RRT算法可以在未知环境下的移动机器人路径规划中应用。算法引入启发式估价函数,使得随机树易于朝目标点方向生长,同时运用回归分析生成新节点,避免了可能产生的局部极小,增强了算法搜索未知空间的能力。
     3.为了提高移动机器人在未知环境下的运行效率,将应激式爬行虫Bug算法和滚动路径规划相结合,只考虑当前状态下所必须的传感数据,不计算障碍物的边线解析式,节省了存储空间,保证了规划算法的实时性。运用虚拟障碍的概念,解决了该算法在陷阱区域容易左右徘徊的问题。为了保证路径规划的完备性和Bug算法的全局最优,同时给出了全局收敛标准。
     4.详细分析了三次螺线作为移动机器人跟踪路径所具有的各种优异的几何特性,定义路径光滑成本函数,利用三次螺线对规划路径光滑化,使得移动机器人易于跟踪所规划的路径,扩展了移动机器人的应用领域。
     5.详细分析了履带式移动机器人的受力特点,提出了一种适于进行控制器设计的履带移动机器人模型。根据履带式移动机器人动力学模型和运动学模型,设计了机器人的轨迹跟踪控制器。在控制器的设计中考虑了履带—地面作用,引入参数对其描述。考虑到机器人动力学约束,同时引入机器人速度、加速度控制策略以保证机器入运动平滑。
     6.研究了未知环境下非完整轮式移动机器人的运动规划问题。将Bug算法与基于滚动窗口的路径规划相结合来规划移动机器人路径,根据建立的移动机器人通用动力学模型和无打滑非完整运动约束条件,采用非线性反馈线性化方法设计轮式机器人的轨迹跟踪控制器。建模时直接以两驱动后轮的角速度为控制输入,降低了跟踪误差。通过仿真实验和对比实验,验证了方法的有效性。
     本文在最后对全文进行了总结,并且对今后进一步的研究方向进行了展望。
Autonomous mobile robot is an important branch of robot. It involves artificial intelligence, intelligent control, information procession, image procession and detection and conversion. The development of autonomous mobile robot has imposing on the defense, society, economy and academy, and becomes the tactic research object of high technology of all countries. Motion planning for autonomous mobile robot is one of the most critical technologies in the autonomous navigation researches.
     The motion planning is to generate control input for the mobile robot to drive from an initial configuration to a goal configuration. Path planning and tracking control are two fundamental issues in the motion planning robotics.
     This dissertation is focused on the path planning and the trajectory tracking. Several improved methods and novel solutions are presented in order to improve computational efficiency, and additionally extend application domains. The main content of this dissertation include the following aspects:
     1. This dissertation introduced the second kind of partial differential equation in mobile robot path planning, has exploited the application of PDE method in mobile robot path planning problem, then new technology and method are provide for mobile robot path planning research. The algorithm overcame disadvantages of the other path planning algorithms, such as local minimization of classical potential field algorithm, unnecessary cost of RRT algorithm and so on. The mathematics principle of this algorithm and adaptive mesh has guaranteed this algorithm compatibility.
     2. To solve the limitations of Rapidly-Exploring Random Tree (RRT) algorithm, which only can be used in path planning when the environment is known, with combination of RRT algorithm and rolling path planning, this dissertation proposes an improved path planning. Only the local environmental map is calculated in the planning, thus the searching all environmental map is avoided, so that the RRT algorithm can be used in path planning not only when the environment is known but also unknown. By introducing the heuristic evaluation function, the exploring random tree can grow in the direction of target point. The regression analysis, which avoids local minima, enhances the capability of searching unknown space.
     3. In order to enhance the planning efficiency for mobile robot in unknown environment, this dissertation combined Bug algorithm and rolling path planning. Only the necessary sensing data instead of the analytical expression of the obstacle are calculated in planning so as to save memory, thus the planning in real-time is guaranteed. As one of the innate limitations of algorithm, the mobile robot tends to enter the trap situation due to local minima, so this dissertation solves this problem utilizing the concept of virtual obstacle. In order to maintain the planner's completeness, a global criterion is added in order to guarantee convergence to the goal.
     4. The cubic spiral for mobile robot path tracking is well studied here and some excellent characteristics are found. Then the cubic spiral curve is used to smooth the collision-free path by defining the cost functions of path for smoothness. Therefore the mobile robot is easy to track and application field of mobile robot is extended.
     5. A kind of tracked mobile robot model that is suitable for the design of controller is proposed through analyzing the force characteristics of the tracked mobile robot. Based on the dynamic model and kinematics constraints of tracked mobile robot, a trajectory tracking controller is designed. Parameters are introduced to describe the track-soil interactions. Considering the dynamics of mobile robot, the limited control strategy is introduced to guarantee the robot's smooth motion.
     6. The motion planning of nonholonomic wheeled mobile robot working in the unknown environment is researched. This dissertation combined the Bug algorithm and rolling path planning in the path planning for mobile robot. Based on the general dynamic model and non-slipping nonholonomic kinematics constraint of mobile robot, a trajectory tracking control system is designed by nonlinear feedback linearization. The angular velocities of the two back driving wheels are the input data so that the tracking errors are decreased. The simulation and experimental results verified the algorithm's effectiveness.
     A summary of the research conclusions and a discussion on the most promising paths of future research work are presented in the last chapter of this dissertation.
引文
[1]Jaczkowski, J, J. Robotic Technology Integration for Army Ground Vehicles. In the 20th Conf. on Digital Avionics Systems.2001:1-8
    [2]Schwartz, I. PRIMUS:Autonomous Driving Robot for Military Applications. In Proc. SPIE on Unmanned Ground Vehicle Technology.2000:313-323
    [3]王耀南.机器人智能控制工程.北京:科学出版社,2004:1-16
    [4]况菲.移动机器人二维空间路径规划方法研究.湖南大学硕士论文,2006
    [5]张松灿.移动机器人的智能导航和跟踪控制研究.合肥工业大学硕士论文,2005
    [6]Crowley J L. Intelligent Robotics System-IRS'93. Robotics and Autonomous Systems. 1994(12):109-111
    [7]乔永兴.自主式移动机器人的路径规划.广西大学硕士论文,2003
    [8]李磊,叶涛,谭民等.移动机器人技术研究现状与未来.机器人.2002,24(5):475-480
    [9]焦立男.地面移动机器人运动规划与运动协调的若干算法研究.南京理工大学博士论文,2007
    [10]向静波.移动机器人的路径规划与控制研究.西北工业大学硕士论文,2004
    [11]冉文学.AGV及AGVS的安全装置设计.http://logisticswin.myrice.com
    [12]J.Gowdy, A.Stents, et al. Hierarchical Terrain Representation for Off-road Navigation. Proc. of SPIE Mobile Robots,1991,1388:131-140
    [13]S.Sanjiv, et al. Obstacle Detection for High Speed Autonomous Navigation. Proc. of IEEE Int'l Conf. on Robotics and Automation,1991:2798-2805
    [14]R. Wallance, K. Matsuzaki, et al. Progress in Robot Road following. In 1986 IEEE Int'l Conf. on Robotics and Automation,1986(3):1615-1621
    [15]R.Hoffman, E.Krotkov. Terrain Roughness Measurement from Elevation Maps. SPIE Vol.1195,Mobile RobotsVI,1989:104-114
    [16]I.Kweon. Extracting Topographic Terrain Feature from Elevation Maps. CVGIP: Image Understanding,1994,59(2):171-182
    [17]E.Krotkov, R.Hoffman. Terrain Mapping for a Walking Planetary Rover. IEEE Trans. On Robotics and Automation,1994,10(6):728-739
    [18]A.Kelly, Z.Stentz, M.Hebert. Terrain Map Building for Fast Navigation on Rugged Outdoor Terrain.SPIE,Vol.1831,Mobile RobotsVll,1992:576-589
    [19]R.C.Luo. et al. Multisensor Integration and Fusion in Intelligent Systems. IEEE Trans. On System, Man and Cybernetics,1989,19(5):901-931
    [20]M.Herbet, T.Kanade. Outdoor Scene Analysis Using range Data. Proc. of IEEE Conf. on Robotics and Automation,1986(3):1426-1432
    [21]T.R.Dunlay, B.S.Steven. Parallel off-road Perception Processing on the Autonomous Land Vehicle. Proc. SPIE Mobile Robots Ⅲ,1988,1007:40-48
    [22]T.R.Dunlay, et al. Obstacle Avoidance on Roadways Using Range Data. Proc. SPIE Conf. on Mobile Robots,1986,727:110-116
    [23]T.R.Dunlay. Obstacle Avoidance Perception Processing for the Autonomous Land Vehicle. Proc. of IEEE Int'l Conf. on Robotics and Automation,1988:912-917
    [24]M.A.Turk, D.G.Morganthaler. VITS-A Vision System for Autonomous Land Vehicle Navigation. IEEE Trans, on PAMI,1988,6,10(3)
    [25]A.Phillip, S.D.Larry. Efficient Algorithms for Obstacle Detection Using Range Data. Computer Vision, Graphics and Image Processing,1990,50:50-74
    [26]A.Asada. Building a 3-D World Model for a Mobile Robot from Sensory Data. Proc. IEEE Conf. on Robotics and Automation.1988,3:918-923
    [27]K.Kluge, T.Weymouth, R. Smith. Information Assimilation Research at the University of Michigan for the ARPA Unmanned Ground Vehicle Project. SPIE Vol.2355, Sensor Fusion VII,1994:2-13
    [28]E.Triend, D.J.Kringman. Stereo Vision and Navigation Within buildings. IEEE Int'l Conf. Robotics and Automation,1987:1725-1730
    [29]Volpe.R. Rocky 7:A Next Generation Mars Rover Prototype. Journal of Advanced Robotics,1997, 11(4):341-358
    [30]URL:http://mars.jpl.nasa.gov/mer/mission/spacecraft_rover_eyes.html.
    [31]Volpe.R. Navigation Results from Desert Field Tests of the Rocky 7 Mars Rover Prototype. International Journal of Robotics Research,1999,18(7)
    [32]J.Kurtz. DEMO III Experimental Unmanned Vehicle Autonomous Mobility System Overview. Proc. of the 1998 IEEE ISIC/CERA/ISAS Joint Conference Gaithersburg,1998, 9:14-17
    [33]P.Bellutta. R.Manduchi, L.Matthies, K.Owens, A.Rankin. Terrain Perception for DEMO Ⅲ. Proceedings of the IEEE Intelligent Vehicles Symposium Dearborn (MI), 2000,10:326-331
    [34]Lowire, J.M. and Thomas, M. et. al., The autonomous land vehicle (ALV) preliminary road-following demonstration, Proc. SPIE Vol.579 Intelligent Robots and Computer Vision, 1985
    [35]Lowire, J.M. The Autonomous Land Vehicle Program Update:1987 update, Proc. of SPIE Mobile Robot Conf, Cambridge, MA, Oct.1986
    [36]Grand challenge, URL:http://www.darpa.mil/grandchallenge/.2006
    [37]Committee on Army Unmanned Ground Vehicle Technology. Technology Development for Army Unmanned Ground Vehicles:the National Academies Press,2002
    [38]Matthies L, Xiong Y, Hogg R, et al. A Portable, Autonomous, Urban Reconnaissance Robot. Robotics and Autonomous System.2002,40(2-3):163-172
    [39]Brusaglino, G. Safe and Effective Mobility in Europe-the Contribution of the PROMETHEUS programmer. In IEEE Colloquium on Prometheus and Drive,1992:101-110
    [40]Broggi, A., et al. Automatic Vehicle Guidance:World Scientific Publishing Company, 1999
    [41]Bertozzi, M., A. Broggi, A. Fascioli. Vision-based Intelligent Vehicles:State of the Art and Perspectives. Robotics and Autonomous Systems,2000(32):1-16
    [42]Bertozzi, M., A. Broggi. GOLD:a Parallel Real-time Stereo Vision System for Generic Obstacle and Lane Detection. IEEE Trans, on Image Processing,7(1)
    [43]Kamiya, H., et al. Intelligent Technologies of Honda ASV. In Proc. of the Intelligent Vehicles Sym.,1996:236-241
    [44]Tsugawa, S., T. Saito, A. Hosaka. Super Smart Vehicle System:AVCS Related Systems for the Future. In Proc. of the Intelligent Vehicles'92 Sym.,1992:132-137
    [45]张朋飞等.多功能室外移动机器人实验平台-THMR-V.机器人.2002,24(2):97-101
    [46]王荣本等.一种视觉导航的实用型AGV设计.机械工程学报.2002,38(11):135-138
    [47]Li Q, N Zheng, H Cheng. Springrobot:a Prototype Autonomous Vehicle and its Algorithms for Lane Detection. IEEE Trans, on Intelligent Transportation systems.2004, 5(4):300-308
    [48]H.F. Durrant-Whyte. Where am I? A Tutorial on Mobile Vehicle Localization Industrial Robot,1994,21(2):11-16
    [49]郭丙华.非完整移动机器人运动规划研究.华南理工大学博士论文,2003
    [50]Nilsson, N.J. A Mobile Automaton:An Application of Artificial Intelligence Techniques. Proc.1st Int'l Joint Conf. on Artificial Intelligence, Washington D.C.,1969: 509-520
    [51]冯建农,柳明,吴捷.自主移动机器人智能导航研究进展.机器人,1997,19(6):468-473
    [52]Lozano-Perez T, Wesley M A. An Algorithm for Planning Collision-free Paths Among Polyhedral Obstacles. Communications of the ACM,1979,22(10):560-570
    [53]Khatib O. Real-time Obstacle Avoidance for Manipulators and Mobile Robots. The Int'l. Journal of Robotics Research,1986,5(1):90-98
    [54]Krogh B.A Generalized Potential Field Approach to Obstacle Avoidance Control. Proc. ASME Conf. of Robotic Research:The Next Five Years and Beyond, Bethlehem, Pennsylvania,1984
    [55]Volpe R, Khosla P. Manipulator Control with Super Quadric Artificial Potential Functions:Theory and Experiments. IEEE Transactions on Systems, Man, and Cybernetics, 1990,(20)
    [56]GE S S, CUI Y J. Path Planning for Mobile Robots Using New Potential Functions. Proc. Asian Control Conf. Shanghai,2000
    [57]Ge S S,Cui Y J. New Potential Function for Mobile Robot Path Planning. IEEE Transactions on Robotics and Automation,2000,16 (10):615-619
    [58]Kim J.O, Khosla P K. Real-time Obstacle Avoidance Using Harmonic Potential Functions. Proc. IEEE Conf on Robotics and Automation, Sacramento,1991:790-796
    [59]Kim Jin-Oh, Khosla P K. Real-time Obstacle Avoidance Using Harmonic Potential Functions. IEEE Trans on Robotics and Automation,1992,8(3):338-349
    [60]Beard R W, McLain T W. Motion Planning Using Potential Field Tutorial. Provo, UTAH,2003
    [61]Park M G, Jeon J H, Lee M C. Obstacle Avoidance for Mobile Robots Using Artificial Potential Field Approach with Simulated Annealing.ISIE. Pusan, Korea,2001:1530-1535
    [62]Vadakkepat P,Tan K C,Wang M L. Devolutionary Artificial Potential Fields and Their Application in Real time Robot Path Planning. Congress on Evolutionary Computation. 2000:256-263
    [63]Borenstein J, Koren Y. Real Time Obstacle Avoidance for Fast Mobile Robots. IEEE Trans on Systems, Man and Cybernetics,1989,19(5):1179-1187
    [64]Tilove R B. Local Obstacle Avoidance for Mobile Robots Based on the Method of Artificial Potentials. In Proc. of IEEE Conf. on Robotics and Automation. Nice, France.l990:566-571
    [65]Nelson H C, Yung C Y. An Intelligent Mobile Vehicle Navigator Based on Fuzzy Logic and Reinforcement Learning. IEEE Trans, on Sys. Man and Cybern. Part B:Cyberneics, 1999(2):314-320
    [66]Canny J F. A Voronoi Method for the Piano Movers Problem. IEEE Int'l. Conf. on Robotics and Automation.1985:530-535
    [67]成伟明.移动机器人自主导航中的路径规划与跟踪控制技术研究.南京理工大学博士论文,2007
    [68]毛琳波,刘十荣,俞金寿.移动机器人路径规划的一种改进蚁群算法.华东理工大学学报.2006,32(8):997-1001
    [69]Keming xie, Changhua mou, Gang xie. The Multi-parameter Combination Mind Evolutionary Based Machine Learning and its Application.2000 IEEE Int'l. Conf. on SMC Nashville, Tennessee, USA,2000:183-187
    [70]赵秋玲,张奇志,戈新生.非完整运动规划的粒子群优化算法.北京机械工业学院学报,2005,20(2):1-4
    [71]S.M.LaValle. Rapidly-exploring Random Trees:a New Tool for Path Planning. Technical Report TR98-11, Computer Science Dept, Iowa State University, Oct.1998
    [72]S.M.LaValle, J.Kuffner. Rapidly-exploring Random Trees:Progress and Prospects. In Proc. Int'l. Workshop on Algorithmic Foundations of Robotics (WAFR),2000:293-308
    [73]J. J. Kuffner, S. M. LaValle. RRT-connect:An Efficient Approach to Single-query Path Planning. In Proc. IEEE Int'l Conf. on Robotics and Automation,2000:995-100
    [74]Peng Cheng. Reducing RRT Metric Sensitivity for Motion Planning with Differential Constraints. Master Thesis, Iowa State University,2001
    [75]J. de Smith. Distance and Path:the Development, Interpretation and application of Distance Measurement in Mapping and Modeling. PhD Thesis, University of London,2003
    [76]C. Urmson. Locally Randomized Kinodynamic Motion Planning for Robots in Extreme Terrain. PhD Thesis, CMU,2002
    [77]L.Jaillet, A.Yershova, S.M. LaValle, T.Simeon. Adaptive Tuning of the Sampling Domain for Dynamic-domain RRTs. In Proc. IEEE Int'l. Conf. on Intelligent Robots and Systems,2005:2851-2856
    [78]A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle. Dynamic-domain RRTs: Efficient Exploration by Controlling the Sampling Domain. In Proc. IEEE Int'l. Conf. on Robotics and Automation,2005:3856-3861
    [79]S. R. Lindemann, S. M. LaValle. Steps Toward De-randomizing RRTs. In IEEE Fourth International Workshop on Robot Motion and Control,2004:271-277
    [80]P. Cheng, E. Frazzoli, S. M. LaValle. Improving the Performance of Sampling-based Planners by Using a Symmetry-exploiting Gap Reduction Algorithm. In Proc. IEEE Int'1. Conf. on Robotics and Automation,2004:4362-4368
    [81]王华,赵臣,王红宝,瓮松峰.基于快速扫描随机树方法的路径规划器.哈尔滨工业大学学报,2004,37(7):963-965
    [82]L Kavraki, J Latombe. Randomized Preprocessing of Configuration Space for Fast Path Planning. IEEE Int'l. Conf. on Robotics and Automation.1994:2138-2139
    [83]D Hsu, J Latombe, H Kurniawati. On the Probabilistic Foundations of Probabilistic Roadmap Planning.12th Int'l. Symp. on Robotics Research,2005,627-643
    [84]D Hsu, J Latombe, R Motwani. Path Planning in Expansive Configuration Spaces Int'l. Journal of Computational Geometry and Applications,1999,9(4):495-512
    [85]H L Chen, D Hsu, J C Latombe, G Sanchez. Multi-level Free-space Dilation for Sampling Narrow Passages in PRM planning. IEEE Int'l Conf. on Robotics and Automation (ICRA),2006:1255-1260
    [86]M Saha, J Latombe. Finding Narrow Passages with Probabilistic Roadmaps:the Small Step Retraction Method. IEEE/RSJ Conf. on Intelligent Robots and Systems,2005:301-319
    [87]Wilmarth S, Amato N, Stiller P. MAPRM:A Probabilistic Roadmap Planner with Sampling on the Medial Axis of the Free Space. IEEE Int'l Conf. on Robotics and Automation,1999:1024-1031
    [88]S.Wilmarth, N.Amato, P.Stiller. MAPRM:A Probabilistic Roadmap Planner with Sampling on the Medial Axis of the Free Space. Technical Report 98-0022, Department of Computer Science, Texas A&M University,1998,11(23)
    [89]N Amato, O Bayazit, L Dale, C Jones, D Vallejo. OBPRM:An Obstacle-based PRM for 3D Workspaces. Robotics:The Algorithmic Perspective,1998:155-168
    [90]阙嘉岚,丁贵涛,黄亚楼.基于启发式节点增强策略的PRM路径规划方法.机器人,2003,25(6):544-547
    [91]R Geraerts, M Overmars. A Comparative Study of Probabilistic Roadmap Planners. In Workshop on the Algorithmic Foundations of Robotics,2002:43-57
    [92]Lumelsky V J. Algorithm and Complexity Issues of Robot Motion in an Uncertain Environment. Journal of Complexity,1987,3(2):146-182
    [93]Sankaranarayanan A, Vidyasagar M. A New Path Planning Algorithm for Moving a Point Object Admit Unknown Obstacles in a Plane. In Proc. of IEEE Conf. on Robotics and Automation. Nice, France.1990:1930-1936
    [94]Iyengar S S, Jorgensen C C, Rao S V N, et al. Learned Navigation Paths for a Robot in Unexplored Terrain. In:Proc. of 2nd Conf. on Artificial Intelligence Applications and Engineering of Knowledge Based Systems. Miami Beach, Florida, USA.1985:11-13
    [95]Lumelsky V J, Stepanov A A. Path-planning Strategies for a Point Mobile Automation Moving Amidst Obstacles of Arbitrary Shape. Algorithmic,1987,2(1):403-430
    [96]Sankaranarayanan A, Vidyasagar M. Path Planning for Moving a Point Object Amidst Unknown Obstacles in a Plane:the Universal Lower Bound on Worst Case Path Lengths and a Classification of Algorithms. Proc. of IEEE Int'l Conf. on Robotics and Automation. Sacramento. CA:IEEE Computer Society Press,1991,1734-1741
    [97]Kamon 1, Rivlin E. Sensory Based Motion Planning with Global Proofs. IROS'95. 1995:435-440
    [98]Lumelsky V J, Skewis T. Incorporating Range Sensing in the Robot Navigation Function. IEEE Transaction on Systems. Man and Cybemer.1990,20(5):1058-1068
    [99]Kamon I.,Rivlin E., Rimon E. A New Range-sensor Based Globally Convergent Navigation Algorithm for Mobile Robots. Proc. of the 1996 IEEE Int'l Conf. on Robotics and Automation. Minnesota,1996, (4):429-435
    [100]唐述博.非完整移动机器人点镇定和轨迹跟踪控制研究.大连理工大学硕士论文,2005
    [101]Kanayama Y. J, Fahroo F. A New Line Tracking Method for Nonholonomic Vehicles. Proc. of the 1997 IEEE Int'l. Conf. on Robotics and Automation, Albuquerque, NM, April 1997:209-215
    [102]Z. Man, M. Palaniswami. Robust Tracking Control for Rigid Robot Manipulators IEEE Trans, on Automatic Control,1994,39(1):154-159
    [103]M. W. Spong, M. Vidyasagar. Robust Linear Compensator Design for Nonlinear Robotic Control. IEEE Trans, on Robotic and Automation,1987,3(8):345-351
    [104]J. C. Doyle, K. Glover, P. P. Khargonekar, et al. State-space Solutions to Standard H2 and H∞ Control Problem. IEEE Trans, on Automatic Control,1989,34(8):831-847
    [105]Kanayama YJ, fahroo F. A Circle Tracking Method for Nonholonomic Vehicles Robot Control.1997, (2):531-538
    [106]W. Son, J. Choi, O. Kwon. Robust Control of Feedback Linearizable System with the Parameter Uncertainty and Input Constraint. Proc. of the 40th SICE Int'l Conf., 2001:407-411
    [107]祝晓才.轮式移动机器人的运动控制.国防科学技术大学博士论文,2006
    [108]Lefeber E, Nijmeijer H. Adaptive Tracking Control of Nonholonomic Systems:an Example. The 38th IEEE Conf on Decision and Control (CDC), Phoenix, AZ.USA, 1999:2094-2099
    [109]闫茂德,贺昱曜,武奇生.非完整移动机器人的自适应全局轨迹跟踪控制.机械科学与技术.2007,26(1):57-60
    [110]M'Closkey R T, Murray R M. Exponential Stabilization of Driftless Nonlinear Control Systems Using Homogeneous Feedback. IEEE Transactions on Automatic Control, 1997,42(5):614-628
    [111]Colbaugh R. Adaptive Motor Control to Aid Mobile Robot Trajectory Execution in the Presence of Changing System Parameters. IEEE Transactions on Robotics and Automation, 1998,14(6):894-901
    [112]叶涛,候增广,谭民等.移动机器人的滑模轨迹跟踪控制.高技术通讯.2004,(11):71-74
    [113]Tayebi A, Rachid A. Adaptive Controller for Nonholonomic Mobile Robots with Matched Uncertainties. Advanced Robotics,2000,14(2):105-118
    [114]H. Yu. Robust Combined Adaptive and Variable Structure Adaptive Control of Robot Manipulators. Robotic,1998, 1(16):623-659
    [115]S. Yang, A. Luo, X. Fan. Adaptive Robust Iterative Learning Control for Uncertain Robotic Systems. Control Theory and Applications,2003,20(5):707-712
    [116]谢明江,代颖,施颂椒.机器人鲁棒控制研究进展.机器人.2000,22(1):73-79
    [117]吴忻生,任华瑛.非完整移动机器人轨迹跟踪的最优模糊控制.华南理工大学学报,,2004,32(3):44-49
    [118]K. Watanabe, K. Izumi, T. Otsubo. A Nonlinear Robust Control Using a Fuzzy Reasoning and Its Application to a Robot Manipulator. Journal of Intelligent and Robotic Systems,1997,20:275-294
    [119]E. Kim. Output Feedback Tracking Control of Robot Manipulators with Model Uncertainty Via Adaptive Fuzzy Logic. IEEE Trans, on Fuzzy Systems,2004,12(3):368-378
    [120]Heting,Xu. Motion Planning of Nonholonomic Mobile Robots Using a Neural Dynamics Approach. Master of Science Thesis, the University of Guelph,2002
    [121]A.Komoda R. Glasius and S.Gielen. Neural Network Dynamics for Path Planning and Obstacle Avoidance. Neural Network,1995,8(1):125-133
    [122]Fierro,R. and Lewis,F.L. Control of a Nonholonomic Mobile Robot Using Neural Networks. IEEE International Conf. on Intelligent Control, Monterey, CA,1995:pp415-421
    [123]Watanabe, K.Tang, J.Nakamura, M., Koga,S., Fukuda,T. A Fuzzy-gaussian Neural Network and Its Application to Mobile Robot Control. IEEE Transactions on Control Systems Technology, March 1996,4(2):193-199
    [124]李艳,林廷圻,黄玉美,高峰.基于神经网络的3自由度移动机器人跟踪方法研究.西安交通大学学报.2003,37(7):711-714
    [125]孙炜.智能神经网络的机器人控制理论方法研究.湖南大学博士论文,2002
    [126]B. Widrow, F. W. Smith. Pattern Recognition Control Systems. Proc. of Computer Science, Washington D. C,1964
    [127]D.Psaltis, S.Athanasios, A.A.Yamamura. A Multilayered Neural Network Controller. IEEE Trans, on Control Systems.1998:17-21
    [128]K.S.Narendra, A. M. Parthasarathy, Identification and Control of Dynamical Systems Using Neural Networks. IEEE Trans, on Neural Networks,1990, 1(1):4-27
    [129]K.J.Hunt, D.Sbarbaro. Neural Networks for Control Systems a Survey. Automation, 1992,26:1085-1112
    [130]A. G. Barto, R. S. Sutton, C. W. Anderson. Neuron-like Adaptive Elements that Can Solve Difficult Learning Control Problems. IEEE Trans, on System, Man and Cybernetics, 1983,13:834-846
    [131]Zhao Y, Collins J E. Robust Automatic Parallel Parking in Tight Spaces Via Fuzzy Logic. Robotics and Autonomous Systems,2005,51(23):111-127
    [132]Kuc T Y, Baek S M, Park K. Adaptive Learning Controller for Autonomous Mobile Robots. IEEE Proc.:Control Theory and Applications,2001,148():49-54
    [133]K. Yong. Controller Design for a Manipulator Using Theory of Variable Structure Systems. IEEE Trans, on System, Man and Cybernetics,1978,8(2):210-228
    [134]Jong-Min Yang, Jong-Hwan Kim. Sliding Mode Control for Trajectory Tracking of Nonholonomic Wheeled Mobile Robots. IEEE Transactions on Robotics and Automation 1999,15(3):578-587
    [135]孙迪生,王炎.机器人控制技术.北京:机械工业出版社,1997
    [136]LaValle S M. Planning Algorithms. University of Illinois,2004
    [137]数学手册编写组.数学手册.北京:高等教育出版社,2004:695-745
    [138]李德元,陈光南.抛物型方程差分方法引论.北京:科学出版社,1998
    [139]符尚武,付汉清,沈隆钧.二维三温热导方程组德九点差分格式.数值计算与计算机应用,1999,3:237-240
    [140]杨余旺,郑亚,丘光申.三维有限体积TVD格式在火箭喷管流场中的应用.南京理工大学学报,1995,19(5):487-492
    [141]王礼广,蔡放,熊岳山.一种新的基于方向导数的二维自适应网格生成算法.国防科技大学学报,2007,29(6):126-130
    [142]Kazuo S, John S. Genetic Algorithms for Adaptive Motion Planning of an Autonomous Mobile Robots. Problems IEEE Trans. SMC. MIT, USA,1997:138-143
    [143]Howie C, Joel B. Sensor-based Exploration:Incremental Construction of the Hierarchical Generalized Voronoi Graph. The International Journal of Robotics Research, 2000,19(2):126-145
    [144]Josu A, et al. A New APF Strategy for Path Planning in Environments with Obstacles.Mechanism and Machine Theory,2005,40:645-658
    [145]Ettlin A, Bleuler H. Randomized Rough-terrain Robot Motion Planning. Proc. of the IEEE/RSJ Int'l. Conf. on Intelligent Robots and Systems. Beijing,2006.
    [146]LaValle S M, Kuffner J. Rapidly-exploring Random Trees:Progress and Prospects. Proc. Int'l Workshop on Algorithmic Foundations of Robotics (WAFR).2000
    [147]张纯刚,席裕庚.动态未知环境中移动机器人的滚动路径规划及安全性分析.控制理论与应用.2003,20(1):37-44
    [148]彭展.基于快速扩展随机树的机器人路径规划算法仿真实验平台研究.中南大学硕士论文,2004
    [149]Laumond J P, Sekhavat S, Lamiraux F. Guidelines in Nonholonomic Motion Planning for Mobile Robots. Lectures Notesin Control and Information Sciences 229, Springer,1998
    [150]Nik A M,Reid S. Particle RRT for Path Planning with Uncertainty. Proc. of IEEE Int'l Conf. on Robotics and Automation. Roma, Italy,2007:1617-1624
    [151]Amna A, Ashraf E. A Practical-evasion Algorithm:Detection and Tracking. Proc. of IEEE Int'l Conf on Robotics and Automation. Roma, Italy,2007:343-348
    [152]席裕庚.动态不确定环境F广义控制问题的预测控制.控制理论与应用,2007,17(5):665-670
    [153]张纯刚,席裕庚.全局环境未知时基于滚动窗口的机器人路径规划.中国科学(E辑),2001,31(1):51-58
    [154]Kalisiak M, Panne M van de. RRT-Blossom RRT with a Local Flood-fill Behavior. Proc. of IEEE Int'l Conference on Robotics and Automation.Orlando, Florida,2006
    [155]Josu A, et al. A New APF Strategy for Path Planning in Environments with Obstacles. Mechanism and Machine Theory,2005,40:645-658
    [156]Ettlin A, Bleuler H. Randomized Rough-terrain Robot Motion Planning. Proc. of the IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems. Beijing,2006
    [157]范红.智能机器人路径规划及避障的研究.浙江大学博士论文,2003
    [158]张纯刚.基于滚动窗口的移动机器人路径规划.系统工程与电子技术,2002,24(6):63-69
    [159]Liu C Q, Ang Jr M H. Virtual Obstacle Concept for Local-minimum Recovery in Potential Based Navigation. Proc. of the 2000IEEE Int'l Conf. on Robotics and Automation. SanFrancisco,2000(4):984-986
    [160]Y.H. Liu, S. Arimoto. Path Planning Using a Tangent Graph for Mobile Robots among Polygonal and Curved Obstacles. Int'l Journal of Robotic Research.1992, 11(4):376-382
    [161]吴峰光,奚宏生.一种新的基于切线的路径规划方法.机器人,2004,26(3):193-197
    [162]Faisal S, Raja Q S. Path Finder in Unknown Environment. IEEE Int'l Conf. on Emerging Technologies.2006
    [163]唐振民,赵春霞,杨静宇,等.地面自主平台的局部路径规划.机器人.2001,23(7):742-745
    [164]赵春霞,唐振民,陆建峰,等.面向自主车辆的局部路径规划仿真系统.南京理工大学学报.2002,26(6):570-574
    [165]Kanayama YHartman B I. Smooth Local Path Planning for Autonomous Vehicle Proc. of Int'l Conf. on Robotics and Automation:IEEE Publish Society. Scottsdale,Arizona,1989:1265-1270
    [166]Boissonnat J D, Cerezo A, Leblond J. Shortest Paths of Bounded Curvature in the Plane. Proc. of the IEEE Int'l Conf. on Robotics and Automation. Piscataway, NJ, USA: IEEE,1992.2315-2320.
    [167]Amidi O. Integrated Mobile Robot Control. Technical Report CMU-RI-TR-90-17.Carnegie Mellon Univ. Robotics Institute,1990
    [168]Kanayama Y, Nilipour A, Lelm C. A Locomotion Control Method for Autonomous Vehicles. Proc. of IEEE Int'l Conf. on Robotics and Automation. Philadelphia, Pennsylvania, USA,1988:1315-1317
    [169]Farzad P, Mattias P K. Adaptive Control of Dynamic Mobile Robots with Nonholonomic Constrains. Computers and Electrical Engineering,2002(28):241-253
    [170]Feng Y, Yu X, Man Z. Non-singular Terminal Sliding Mode Control of Rigid Manipulators. Automatica,2002,38(12):2159-2167
    [171]Wei K, Xi N, Tan J. Analysis and Design of Non-time Based Motion Controller for Mobile Robots. Proc. of the 1999 IEEE Int'l Conf. on Robotics and Automation. Detroit, Michigan:1999,2964-2969
    [172]Hu T. Torque Control Design of Nonholonomic Mobile Robots Using a Neural Network Based Approach. Guelph:University of Guelph,2002
    [173]Qiang G. Tracking Control of a Mobile Robot Using Neural Dynamics Based Approaches. Guelph:University of Guelph,2001
    [174]李岩,杨向东,陈恳.履带式移动机器人动力学模型及其反馈控制.清华大学学报,2006,46(8):1377-1380
    [175]Zvi S, William S, Minh H. Trajectory Planning of Tracked Vehicles.Proc. of IEEE Int'l Conf. on Robotics and Automation Atlanta, GA:,IEEE Press,1993:796-801
    [176]Ahmad M I, Polotski V, Hurtea R. Path Tracking Control of Tracked Vehicles. Proc. of IEEE Int'l Conf. on Robotics and Automation.San Francisco,CA.2000
    [177]Le A T, Rye. D, Hugh F,et al. Estimation of Track-soil Interactions for Autonomous Tracked Vehicles. Proc. of IEEE Int'l Conf. on Robotics and Automation. Albuquerque, New Mexico,1997:1388-1393
    [178]Wong J Y, Chiang C F. A General Theory for Skid Steering of Tracked Vehicles on Firm Ground. Proc. of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2001,215(3):343-355
    [179]Weidong W, Zhijiang D, Lining S. Dynamic Load Effect on Tracked Robot Obstacle Performance. Proc. of Int'l Conf. on Mechatronics. Kumatolo Japan,2007:1-6
    [180]吴卫国,陈辉堂,王月娟.移动机器人的全局轨迹跟踪控制.自动化学报,2001,27(3):326-331
    [181]胡跃明.非线性控制系统理论与应用.北京:国防工业出版社,2002:1-80
    [182]Popa D O, Wen J T. Nonholonomic Path Planning with Obstacle Avoidance:a Path-space Approach.Proc. of Int'l Conf. on Robotics and Automation. Minneapolis. Minnesota:IEEE, Publish Society,1996:2662-2667
    [183]Zuli R, Filer R, Conte G, et al. Motion Planning and Control for Nonholonomic Mobile Robots.Proc. of Int'l Conf. on Robotics and Automation. Aichi:IEEE Publish Society, 1995:551-557.
    [184]闫超勤,徐文龙,王效杰.非线性反馈线性化方法在轮式移动机器人的应用.电子科技,2005,1:1-4
    [185]Yoshio Yamamoto, Xiaoping Yun. Coordinating Locomotion and Manipulation of a Mobile Manipulator.IEEE Transactions on Automatic Control,1994,39(6):1326-1332
    [186]Zhang C G, Xi Y G. Robot Rolling Path Planning Based on Locally Detected Information. Acta Automatica Sinica,2003,29(1):38-44
    [187]付宜利,顾晓宇,王树国.基于模糊控制的自主机器人路径规划策略研究.机器人,2004,26(6):548-552

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700