用户名: 密码: 验证码:
球面2-DOF并联机构的理论分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球面2-DOF并联机构具有沿球面移动的两个自由度,可以应用于球面上点的定位设备,具有重要的应用前景。球面5R并联机构是其中结构最简单的一种,但研究表明,其工作空间内存在较多的奇异,承载能力和刚度也有限。为此本课题组提出在球面5R并联机构的基础上增加一个相同的运动支链,得到球面2-DOF冗余驱动并联机构,以改善上述性能。本课题以此球面非冗余与冗余并联机构为研究对象,对机构的静力学、静刚度、轨迹规划、误差、标定、样机研制、控制系统开发与实验研究等几个方面进行了系统深入的研究,主要研究内容如下:
     本文基于D-H参数,建立了包含球面2-DOF并联机构所有结构参数的约束方程,求解了机构的实际位置解,建立了机构的运动学模型。
     采用传统的拆杆法建立了球面2-DOF并联机构静力学平衡方程,运用小变形叠加原理建立了机构的变形协调补充方程,对于冗余驱动机构,再补充驱动力矩优化方程,求解了球面2-DOF并联机构的静力学全解。在此基础上,建立了机构输出轴角位移和球心点线位移与外载荷之间的关系,得到了球面2-DOF并联机构的静刚度矩阵。并通过数值算例,对比分析了非冗余与冗余机构的静刚度。
     利用加速度为连续分段函数和组合正弦函数两种轨迹规划方法,在笛卡尔空间对球面2-DOF并联机构进行了运动学轨迹规划。并借助拉格朗日逆向动力学模型,采用力优化方法建立了冗余驱动机构驱动关节力矩数学模型。
     基于环路增量法,建立了球面2-DOF并联机构位置和姿态误差模型,分析了机构位置和姿态误差与各原始误差源之间的关系,并进行了灵敏度分析,同时研究了机构平稳运行的条件,提出了抑制末端位姿误差的加工装配工艺设计方法,为样机的研制、标定奠定了基础。在误差分析的基础上,建立了球面2-DOF并联机构位置和姿态运动学标定简化模型,解决了标定模型参数辨识问题;综合运用三坐标测量机和三维绘图软件,测量了末端执行器的实际位姿;通过标定实验,验证标定方法的有效性。
     设计加工了球面2-DOF并联机构样机,开发了其控制系统,采用“PC机+PMAC运动控制卡”的主从分布式结构体系。针对冗余驱动机构,提出了冗余支链采用位置判断与动力学差分预测控制相结合的力矩控制和其余支链采用位置控制的力/位置混合初步控制策略,实现了样机的协调运动。最后进行了非冗余与冗余机构样机的轨迹跟踪实验研究。
Spherical2-DOF parallel manipulator has two degrees of freedom moving alongspherical surface, which can be applied to the locating equipment of point on thespherical surface, and it has an important application prospect. Spherical5R parallelmanipulator possesses the simplest structure, but researches show that there are lots ofsingular curve in its workspace, and its bearing capacity and stiffness are also limited. Soour thesis group proposes spherical2-DOF parallel manipulator with redundant actuationwhich is obtained by increasing an identical kinematic chain on the basis of spherical5Rparallel manipulator to overcome the above problems. This paper studies the statics, staticstiffness, trajectory planning, error, calibration, prototype manufacture, development ofcontrol system and experimental researches of non-redundant and redundant spherical2-DOF parallel manipulator in depth, and the main work is as follows:
     Constraint equations including all structural parameters of spherical2-DOF parallelmanipulators are established on the basis of D-H parameter of the manipulators, theactual position solution of the manipulators are obtained, and the kinematics models ofthe manipulators are also established.
     The static equilibrium equations of spherical2-DOF parallel manipulators areestablished via the traditional dismantle-bar method, the deformation equations ofcompatibility are established by utilizing the micro-deformation and superpositionprinciple, the static full-solutions of spherical2-DOF parallel manipulators are obtainedby adding input torque optimization equation to redundant actuation manipulators. Basedon the result of static analysis, the relationship between the outer loads and the angulardisplacement of output axis and linear displacement of spherical center point isestablished, that is to say, the static stiffness matrices of spherical2-DOF parallelmanipulators are obtained. Through numerical example, the comparative analysis ofstatic stiffness of non-redundant and redundant parallel manipulator is carried on.
     Kinematics track of spherical2-DOF parallel manipulators is planned by two kindsof trajectory planning methods that acceleration are continuous segmental function and combined sine function in Cartesian space. With the help of Lagrange inverse dynamicsmodel, the joint torque model of redundant actuation manipulator is established throughforce optimization method.
     The position and posture error models of spherical2–DOF parallel manipulators areestablished based on the loop increment method, the relationships between the positionand posture error and each original error sources are analyzed, and the sensitivity is alsoanalyzed. At the same time, the conditions that the manipulator can move smoothly arestudied, the processing and assembly process design method of restraining pose error isproposed, which lay the foundation for processing and calibration of the prototype. Onthe basis of error analysis, the simplified model of position and posture kinematicscalibration is established, which simplifies the calculation of parameter identification anderror compensation; and the end-effectors’ actual position of the manipulator is measuredby using three coordinate measuring machine and3d drawing software; at last thevalidity of the method of calibration is verified through the calibration experiment.
     The prototype of spherical2-DOF parallel manipulators are designed and processed,and its control system adopting master-slave distributed structure system based on “PC+PMAC motion control card” is developed. For spherical2-DOF parallel manipulator withredundant actuation, the hybrid control of force/position that redundant chain usingtorque control in combination with position judgment and kinetic differential predictivecontrol and other chains using position control is proposed, and the coordinated motionof prototype is realized. Finally, the trajectory tracking experiments of non-redundant andredundant spherical parallel manipulators are carried on.
引文
[1]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997:20-30,194-195.
    [2]张曙, Heisel U.并联运动机床[M].北京:机械工业出版社,2003:5-14,209-238.
    [3] Lee S. Arjunnan A. Three Degree of Freedom Micro-Motion-in-parallel Actuated Manipulator[J].Proc. of the IEEE Int. Conf. On Robotics and Automation,1989:1698-1703.
    [4] Ferraresi C. et al. Static and Dynamic Behavior of a High Stiffness Stewart Platform-BasedForce/Torque Sensor[J]. Journal of Robotic Systems,1995,12(12):883-893.
    [5]熊有伦.机器人力传感器的各向同性[J].自动化学报,1996,22(1):10-17.
    [6] Gwinnett J E. Amusement Device[P]. US1789680.1931
    [7] Cox D J, Tesar D. The Dynamic Model of a3-DOF Parallel Robotic Shoulder Module[C]. Proc.of4th International Conf. on Adavanced Robotics,1989:475-487.
    [8] Asada H, Granito C. Kinematic and Static Characterization of Wrist Joint and Their OptimalDesign[C]. Proc. of IEEE International Conf. on Robots and Automation,1985:244-250.
    [9] Gosselin C, Angeles J. The Optimum Kinematic Design of a Spherical3-DOF ParallelManipulator[J]. ASME Journal of Mechanism, Transmissions, and Automation in design,1989,111(7):202-207.
    [10] Kim, Tesar D. Study On Structural Design of Force Reflecting Manual Controllers[C]. Proc. ofASME21st Biennial Mech.Conf,1990:481-488.
    [11] Freeman B, Tesar D. Force and Stiffness Transmission In a Redundantly Actuated Mechanism:The Case for a Spherical Shoulder Mechanism[J]. ASME,1992,45:163-172.
    [12] Gosselin C, Angeles J. The Optimum Kinematic Design of a Spherical3-DOF ParallelManipulator[J]. ASME Journal of Mechanism, Transmissions, and Automation in design,1989,111(7):202-207.
    [13] Gosselin C, Lavoie E. On the Kinematic Design of Spherical3-DOF Parallel Manipulators[J].Int.J.Robotic Research,1993,12(4):394-402.
    [14]曾宪菁,黄田,曾子平.3-RRR型数控回转台的精度分析[J].机械工程学报,2001,37(11):42-45.
    [15]黄田,曾宪菁,曾子亚,等.等顶锥角3自由度球面并联机构的全参数解析尺度综合[J].机械工程学报,2000,36(8):15-19.
    [16]黄田,曾宪菁,曾子亚,等.球面并联操作机的尺度综合方法[J].自然科学进展,2000,10(8):751-756.
    [17] Gosselin C M, St-Pierre E. Development and Experimentation of a Fast3-DOF Camera-orientingDevice[J]. The International Journal of Robotics Research,1997,16(5):619-630.
    [18] Goseelin C M, St-Pierre E, Martin Gagne.On the Development of the Agile eye[J]. IEEERobotics&Automation Magazine,1996,3(4):29-37.
    [19] Gosselin C M, Perreault L, Vaillancourt C. Simulation and Computer-Aided Kinematic Design of3-DOF Spherical Parallel Manipulators [J], Journal of Robotic Systems,1995,12(12):857-869.
    [20] Gosselin C M, St-Pierre E. Devolopment and Experimentation of a Fast3-DOFCamara-Orienting Device[J]. International Journal of Robotics Research,1997,16(5):619-630.
    [21] Berglen L, Gosselin C, Pouliot N, etc. SHaDe, a New3-DOF Haptic[J]. Device, IEEE Trans. OnRob.&Aut,2002,18(2):166-175.
    [22] Tsumaki Y, Naruse H, Nenchev D N. et al. Design of a Compact6-DOF Haptic Interface [C].Proceedings of the1998IEEE International Conference on Robotics and Automation, Leuven,Belgium,1998,5(115):2580-2585.
    [23] Gallardo J, Rico J M, Frisoli A, et al. Dynamics of Parallel Manipulators by Means of ScrewTheory[J], Mechanism and Machine Theory,2003,38:1113-1131.
    [24] Gosselin C M, Lavoie E. On the Kinematic Design of Spherical3-DOF Parallel Manipulators[J].Int.J.Robot. Res,12(4):394–402.
    [25] Karouia M, Hervé.A J M.3-DOF Tripod for Generating Spherical Rotation [J]. J.Lenar i andM.M.Stani i. Academic Publishers,2000,12(20):395-402.
    [26]李秦川,陈欢欢,李昳,等.3-P_C(RR)_N球面三自由度并联机构的运动学分析[J].中国机械工程,2009,20(11):1280-1284.
    [27] Gregorio R D. Kinematics of a New Spherical Parallel Manipulator with Three Equal Legs:the3-URC Wrist [J]. Journal of Robotic Systems,2001,18(5):213-219.
    [28] Gregorio R D. The3-RRS Wrist:a New,very Simple and Not Over Constrained Spherical ParallelManipulator[C]. Proceedings of ASME Design Engineering Technical Conferences, Montreal,2002.
    [29] Callegari M. Kinematics of a Parallel Mechanism for the Generation of Spherical Motions [J].Lenar i and C. Galletti (eds.), On Advances in Robot Kinematics,2004,6(14):449-458.
    [30]孙立宁,刘宇,祝宇虹.一种用于腕关节的球面三自由度并联解耦机构位置分析[J].中国机械工程,2003,14(10):831-833.
    [31] Carricato M, Castelli V. A Novel Fully Decoupled Two-Degrees-of-Freedom Parallel Wrist [J].International Journal of Robotics Research.2004,23(6):661-667.
    [32]曲云霞.二自由度解耦球面并联机构运动学行为研究[D].河北:河北工业大学学位论文,2008:12-16.
    [33]方鑫,许敏,高峰.二自由度球面定点并联五杆机构的运动学分析[J].上海交通大学学报,2009,43(5):830-833.
    [34]唐传旺.并联式跟踪装置的机构设计方法[D].上海:上海交通大学学位论文,2007:10-12.
    [35]罗玉峰,李剑秀,石志新,等.三自由度球面并联机构的型综合[J].南昌大学学报·工科版,2008,30(2):150-153.
    [36]李超,谢少荣,李恒宇,等.基于参数优化的球面并联机构仿生眼设计[J].机器人,2010,32(6):781-786.
    [37]李超,谢少荣,李恒宇,等.基于姿态闭环控制的球面并联仿生眼系统设计与研究[J].机器人,2011,33(3):354-359.
    [38]朱延河,赵杰,蔡鹤皋.一种新型双并联主操作手构型设计[J].机械设计,2003,20(8):34-36.
    [39]方中甲.面向颈关节的三自由度球面并联机构的研究[D].哈尔滨:哈尔滨工业大学学位论文,2004:10-19.
    [40]刘辛军,汪劲松,高峰,等.一种串并联机构拟人七自由度冗余手臂的设计[J].中国机械工程,2002,13(2):101-104.
    [41]石晓明.一种新型2-DOF并联解耦球面机构的研究[D].河北:河北工业大学学位论文,2006:13-14.
    [42] Kim S. Operational Quality Analysis of Parallel Manipulators with Actuation Redundancy[C].IEEE International Conference on Robotics and Automation,1997:2651-2656.
    [43] Dasgupta B, Mruthyunjaya T S. Force Redundancy in Parallel Manipulators: Theoretical andPractical Issues[J]. Mechanism and Machine Theory,1998,33(6):727-742.
    [44] Scott B, Nokleby R, Podhorodeski P. Reciprocity-Based Resolution of Velocity Degeneracies(Singularities) for Redundant Manipulators[J]. Mechanism and Machine Theory,2001,36(3):397-409.
    [45]吴宇列.并联机构奇异位形的微分几何理论以及冗余并联机构的研究[D].湖南:国防科学技术大学学位论文,2001:75-110.
    [46]杨建新,余跃庆.平面三自由度冗余并联机构的驱动奇异性分析[J].中国机械工程,2006,17(6):629-632.
    [47] Garg V, Scott B N, Carretero J A.. Wrench Capability Analysis of Redundantly Actuated SpatialParallel Manipulators[J]. Mechanism and Machine Theory,2009,44(5):1070-1081.
    [48]赵永生.多机器人系统的动力协调及性能研究[D].河北:燕山大学学位论文,1999:9-93.
    [49]蔡胜利,白师贤.冗余驱动的平面并联操作手的输入力优化[J].北京工业大学学报,1997,23(2):37-41.
    [50]邵华,关立文,王立平,等.冗余并联机床驱动力优化解析[J].清华大学学报(自然科学版),2007,48(7):1325-1329.
    [51]闫彩霞,闫楚良,陆震.基于加权矩阵的过驱动并联机构驱动力矩调节法[J].吉林大学学报(工学版),2008,38(5):1215-1219.
    [52] Yi B J. Geometric Analysis of Antagonistic Stiffness in Redundantly Actuated ParallelMechanisms[J]. J.of Robotic Systems,1993,10(5):581-603.
    [53] Chakarov D. Study of the Antagonistic Stiffness of Parallel Manipulators with ActuationRedundancy[J]. Mechanism and Machine Theory,2004,39(6):583-601.
    [54] Lee S H, Lee J H, Yi B J, et al. Optimization and Experimental Verification for the AntagonisticStiffness in Redundantly Actuated Mechanisms: a five-bar example[J]. Mechatronics,2005,15(2):213-238.
    [55]张彦斐,宫金良,高峰.一种冗余输入地震模拟器的静刚度分析[J].机械设计,2006,23(3):18-21
    [56]李剑锋,费仁元,范金红,等.驱动器布位及冗余驱动对Tricept并联机构性能的影响[J].机械工程学报,2008,44(1):31-39.
    [57]张彦斐,宫金良,李为民,等.一种六自由度冗余驱动并联机器人运动学分析和仿真[J].机械工程学报,2005,41(8):144-148.
    [58]张彦斐,宫金良,高峰.冗余驱动消除并联机构位形奇异原理[J].中国机械工程,2006,17(5):445-448.
    [59] Zhao Y J, Gao F. Dynamic Performance Comparison of the8PSS Redundant ParallelManipulator and its Non-redundant Counterpart-the6PSS Parallel Manipulator[J]. Mechanismand Machine Theory,2009,44(5):991-1008.
    [60] Ryu S J, Kim J W, Hwamg J C, et al. Eclipse: An Over Actuated Parallel Mechanism for RapidMachining[J]. In Proc. ASME Int. Mechanical Engineering Congress and Exposition, USA,1998,8:681-689.
    [61] Kim J, Frank C P, Sun J R, et al. Design and Analysis of a Redundantly Actuated ParallelMechanism for Rapid Machining[J]. IEEE Transactions on Robotics and Automation,2001,17(4):423-434.
    [62] Kim J, Hwang J C, Kim J S, et al. Eclipse II: a new Parallel Mechanism Enabling Continuous360-degree Spinning plus Three-axis Translational Motions[J]. IEEE Transactions on Roboticsand Automation,2002,18(3):367-373.
    [63] In W, Lee S, Jeong J I., et al. Design of a Planar-type High Speed Parallel Mechanism PositioningPlatform with the Capability of180degrees Orientation[J]. CIRP Annals-ManufacturingTechnology,2008,57(1):421-424.
    [64] Marquet F, Krut S, Company O, et al. ARCHI: a New Redundant Parallel Mechanism: Modeling,Control and First Results[C]. Proc. of IROS’2001, Hawaii, USA,2001:183-188.
    [65] Krut S, Company O, Rangsri S, et al. Eureka: A New5-Degree-of-Freedom Redundant ParallelMechanism with High Tilting Capabilities[C]. Proceeding of the2003IEEE/RSJ Intl.Conference on Intelligent Robots and Systems, Las Vegas,2003, evada:3575-3580.
    [66]韩先国,陈五一,郭卫东.采用冗余驱动提高并联机床精度的研究[J].航空学报,2002,23(5):487-490.
    [67] Han X G, Chen W Y. Study on the Kinematics of a New Redundant Actuated PKMs[C].7thInternational Conference on Progress of Machining Technology, China, Beijing,2004:424-429.
    [68]梁辉,白志富,陈五一.冗余约束减小间隙误差对并联机床精度的影响[J].组合机床与自动化加工技术,2006,2:16-21.
    [69]韩先国,陈五一.基于运动约束解过约束并联机构变形协调方程[J].力学与实践,2005,27(3):65-68.
    [70] Wu J, Wang J S, Li T M, et al. Performance Analysis and Application of a Redundantly ActuatedParallel Manipulator for Milling[J]. Intell. Rob. Syst,2007,50(2):163-180.
    [71] Wang L P, Wu J, Wang J S. Dynamic Formulation of a Planar3-DOF Parallel Manipulator withActuation Redundancy[J]. Robotics and Computer-Integrated Manufacturing,2010,26(1):67-73.
    [72] Wu J, Wang J S, Wang L P, et al. Dynamics and Control of a Planar3-DOF Manipulator withActuation Redundancy[J]. Mechanism and Machine Theory,2009,44(4):835-849.
    [73] Cheng L, Wang H B, Zhao Y S. Analysis and Experimental Investigation of Parallel MachineTool with Redundant Actuation[C]. First International Conference,2008:79-188.
    [74]高建设,程丽,赵永生.新型五自由度并联机床运动学自标定研究[J].计算机集成制造系统,2007,13(4):738-743.
    [75]赵永生,郑魁敬,李秦川,等.5-UPS/PRPU五自由度并联机床运动学分析[J],机械工程学报,2004,40(2):12-16.
    [76]赵永生,郑魁敬,李秦川,等.5-UPS/PRPU5自由度并联机床运动学分析[J].机械工程学报,2004,40(2):12-16.
    [77]赵永生,郑魁敬,施毅.5-UPS/PRPU五自由度并联机床动力学建模[J].机械设计与研究,2004,20(3):45-47.
    [78]郑魁敬,赵永生.5-UPS/PRPU五自由度并联机床静力学分析[J].机械设计,2004,21(5):30-32.
    [79]郑魁敬,高建设.运动控制技术及工程实践[M].北京:中国电力出版社,2009:58-60.
    [80] Wu Y L, Wu X Z, Kuen Y Y, Lei Z X. Analysis Control of Parallel Manipulators with RedundantActuation[J]. Robotics and Automation,2001(7):3748-3754
    [81]高峰,张彦斐,宫金良. PSS型冗余输入并联机构静力学与运动学分析[J].机械设计与研究,2006,22(1):20-23.
    [82]赵辉,高峰,张建军等.新型五自由度并联机构静力学分析[J].机械设计,2004,21(6):54-57.
    [83]尹小琴,马履中,杨启志,等.并联机构静力学分析[J].农业机械学报,2007,38(2):201-207.
    [84]李永刚,宋轶民,黄田,等.少自由度并联机器人机构的静力分析[J].机械工程学报,2007,43(9):80-83.
    [85] Sánchez J C, Martínez J M, Gutiérrez S P, et al. Static Analysis of Spatial Parallel Manipulatorsby Means of the Principle of Virtual Work[J]. Robotics and Computer-Integrated Manufacturing,2012,28:385-401.
    [86]黄玉美,韩旭炤,高峰,等.基于边界元法的平面运动并联机构静力学解析[J].机器人,2010,32(3):384-389.
    [87]杨毅,丁希仑.剪式单元可展机构静力学分析与拓扑优化设计[J].中国机械工程,2010,21(2):184-189.
    [88]荣誉,金振林.五自由度并联机械腿静力学性能评价与优化设计[J].光学精密工程.2012,20(6):1233-1244.
    [89]吴孟丽,王立文.一种新型并联机器人的静力学优化设计[J].中国机械工程,2010,21(19):2308-2012.
    [90]周玉林,刘磊,高峰,等.3自由度球面并联机构3-RRR静力全解[J].机械工程学报,2008(6):169-176.
    [91] Yoon W K, Suehiro T, Tsumaki Y. Stiffness Analysis and Design of a Compact Modified DeltaParallel Mechanism [J]. Robotics,2004,22:463-475.
    [92] Ceccarelli M, Carbone G. A Stiffness Analysis for CaPaMan (Cassino Parallel Manipulator)[J].Mechanism and Machine Theory,2002,37:427-439.
    [93] Nabil S, Moshe S. Stiffness Synthesis of a Variable Geometry Six-Degrees-of-Freedom DoublePlanar Parallel Robot[J]. The International Journal of Robotics Research,2003,22(9):757-775.
    [94]韩书葵,方跃法,槐创峰.4自由度并联机器人刚度分析[J].机械工程学报,2006,42(5):31-34.
    [95]陈俊,王立平,张华等.平面2-DOF并联构型静刚度分析和设计[J].机械工程学报,2005,41(7):158-163.
    [96]李剑锋,费仁元,范金红,等.具有大位置空间的3自由度并联机构运动性能分析[J].机械工程学报,2007,43(8):53-59.
    [97] LI Y M, XU Q S. Stiffness Analysis for a3-PUU Parallel Kinematic Machine[J]. Mechanism andMachine Theory,2008,43(2):186-200.
    [98]胡波,路懿.求解3-RPS并联机构刚度的新方法[J].机械工程学报,2010,46(1):24-29.
    [99]周玉林,高峰.3-RRR3自由度球面并联机构静刚度分析[J].机械工程学报,2009,45(4):25-32.
    [100] Li B, Yu H J, Deng Z Q, et al. Stiffness Modeling of a Family of6-DOF Parallel Mechanismswith Three Limbs Based on Screw Theory[J]. Journal of Mechanical Science and Technology,2010,24:373-382.
    [101]崔学良,韩先国,陈五一.特殊复合球铰3-RPS并联机构及其连续刚度模型[J].北京航空航天大学学报.2010,36(11):1275-1280.
    [102] Hu B, Lu Y, Tan Q, et al. Analysis of Stiffness and Elastic Deformation of a2(SP+SPR+SPU)Serial–Parallel Manipulator[J]. Robotics and Computer-Integrated Manufacturing,2011,27:418-425.
    [103] Amir R, Alireza A, Mohammad-R, Akbarzadeh-T. An Investigation on Stiffness of a3-PSPSpatial Parallel Mechanism with Flexible Moving Platform Using Invariant Form[J]. Mechanismand Machine Theory,2012,51:195-216.
    [104] Jokin A, Isidro Z, Oscar A, et al. Improving Static Stiffness of the6-RUS Parallel ManipulatorUsing Inverse Singularities[J]. Robotics and Computer-Integrated Manufacturing,2012,28:458-471.
    [105] Portman V T, Chapsky V S, Shneor Y. Workspace of Parallel Kinematics Machines withMinimum Stiffness Limits: Collinear Stiffness Value Based Approach[J]. Mechanism andMachine Theory,2012,49:67-86.
    [106]任敬轶,孙汉旭.一种新颖的笛卡儿空间轨迹规划方法[J].机器人,2002,(3):217-218.
    [107] Tan G Z, Wang Y C. Theoretical and Experimental Research on Time Optimal TrajectoryPlanning and Control of Industrial Robots[J]. Control Theory&Applications,2003,(2):185-192.
    [108]谭冠正,徐雄.工业机器人实时高精度路径跟踪与轨迹规划[J].中南大学学报(自然科学版),2005,(1):102-107.
    [109]田西勇,刘晓平,庄未.基于组合正弦函数的机器人轨迹规划方法[J].机械工程与自动化,2008,1:136-138.
    [110] Gasparetto A, Zanotto V. Optimal Trajectory Planning for Industrial Robots[J]. Advances inEngineering Software,2010,41:548-556.
    [111]张斌.基于多约束的机器人关节空间轨迹规划[J].机械工程学报,2011,47(21):1-6.
    [112] Chun T C, Te T L. A Hybrid Strategy for the Time and Energy-Efficient Trajectory Planning ofParallel Platform Manipulators[J]. Robotics and Computer-Integrated Manufacturing,2011,27:72-81.
    [113] Fang H C, Ong S K, Nee A Y. Interactive Robot Trajectory Planning and Simulation UsingAugmented Reality[J]. Robotics and Computer-Integrated Manufacturing,2012,28:227-237.
    [114]石则昌,刘深厚.机构精确度[M].高等教育出版社,1995:2-6,48-83,181-190.
    [115]李研彪,金振林,计时鸣,等.一种并联机构拟人肩关节的误差分析[J].应用基础与工程科学学报,2009(17):446-451.
    [116]黄鹏,汪劲松,王立平.3-RPS并联机构误差运动学分析及辨识[J].清华大学学报(自然科学版),2010,50(11):1811-1814.
    [117]郭盛,王乃玥,方跃法.基于概率分布的3-UPU机构误差影响敏感度[J].机械工程学报,2011,47(21):14-20.
    [118]陈培,王兴.空间2-RSSS机构的误差分析[J].北京航空航天大学学报,2011,37(3):263-267.
    [119] Huang P, Wang J S, Wang L P, et al. Identification of Structure Errors of3-PRS-XY Mechanismwith Regularization Method[J]. Mechanism and Machine Theory,2011,46:927-944.
    [120] Wang H, Chen G L, Zhao Y, et al. Output Error Bound Prediction of Parallel Manipulators Basedon the Level Set Method[J]. Mechanism and Machine Theory,2010,45:1153-1170.
    [121]李新友,陈五一,韩先国.基于正交设计的3-RPS并联机构精度分析与综合[J].北京航空航天大学学报,2011,37(8):979-984.
    [122]黄田,唐国宝,李思维等.一类少自由度并联构型装备运动学标定方法研究[J].中国科学(E辑),2003,33(9):829-838.
    [123]高猛,李铁民,唐晓强.少自由度并联机床标定试验研究[J].机械工程学报,2003,39(9):118-122.
    [124]高猛,李铁民,尹文生,等.一种基于相关性分析的并联机床标定方法[J].机械工程学报,2005,41(1):88-92.
    [125]彭斌彬,高峰.并联机器人的标定建模[J].机械工程学报,2005,41(8):132-135.
    [126]刘得军,艾清慧,王建林,等.3自由度并联坐标测量机运动学参数标定与计算机仿真[J].机械工程学报,2004,40(3):15-19.
    [127]刘大炜,王立平,关立文.一种特殊3自由度并联机构的精度分析及标定[J].机械工程学报,2010,46(9):46-51.
    [128] Ga l E, Reimund N, Patrick M. Elasto-Geometrical Modeling and Calibration of RedundantlyActuated PKMs[J]. Mechanism and Machine Theroy,2010,45:795-810.
    [129] Mansour A, Hodjat P, Aria A, et al. Experimental Kinematic Calibration of Parallel ManipulatorsUsing a Relative Position Error Measurement System[J]. Robotics and Computer-IntegraredManufacturing,2010,26:799-804.
    [130] Cheng G, Ge S R, Yu J L. Sensitivity Analysis and Kinematic Calibration of3-UCR SymmetricalParallel Robot Leg[J]. Journal of Mechanical Science and Technology.2011,25(7):1647-1655.
    [131]高峰,李艳,黄玉美,等.3-RPS并联机构运动学标定方法的研究[J].仪器仪表报,2012,33(3):568-573.
    [132]梁顺攀,郭联合,段艳宾,等.6-PUS/UPS并联机构运动学标定理论与实验研究[J].机械设计,2012,29(5):21-26.
    [133]刘大炜,王立平,李铁民等.一类带冗余支链并联机器人的运动学自标定[J].机械工程学报,2012,48(1):1-6.
    [134] Ouerfelli M, Kumar V, Optimization of a Spherical Five-Bar Parallel Drive Linkage[J].Transactions of the ASME journal of Mechanical Design,1994,116:166-173.
    [135] Chen C, Li P Y, Erdman A G. Design and Analysis of a Four-Degree-of-Freedom HybridSpherical Scanning Apparatus[C]. ASME2000Design Engineering Technical Conferences andComputers and information in Engineering Conference,2000:1-6.
    [136] Krianev A. Handbook of Principle Machines Structure and Processings[J]. Moscow, Machinery,2000.
    [137] Gosselin C M, Cloutier C, Rancourt D. Kinematic Analysis of Spherical Two-Degree-of-FreedomParallel Manipulators[C]. Proceedings of the1994ASME Design Technical Conferences,Minneapolis, MN, USA,1994:255-262.
    [138] Cervantes J J, Hernández J C. On the5R Spherical Symmetric Manipulator: Workspace andSingularity Characterization[J]. Mechanism and Machine Theory,2004,39:409-429.
    [139]张立杰,黄真.一种球面冗余并联机器人机构设计的基础研究[J].中国机械工程,2006,17(7):681-684.
    [140] Jorge A.机器人机械系统原理理论方法和算法[M].北京:机械工业出版社,2004:430-468.
    [141]熊有伦.机器人技术基础[M].武汉:华中科技大学出版社,2003:56-58.
    [142]李思维,黄田.一种含平行四边形支链的3自由度并联机构姿态精度综合与装配工艺设计[J].机械工程学报,2003,39(7):38-42.
    [143]黄田,李亚,李思维,等.一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计[J].中国科学(E辑),2002,32(5):628-635.
    [144]李凌云. Stewart机构运动模拟器的误差建模与参数标定[D].河北:燕山大学学位论文,2006:63-65
    [145]张生芳,王永青,康仁科.基于PMAC开放式数控系统的定位精度控制[J].控制与检查,2008(3):38-41.
    [146]党大伟,武建新,杨晓军.基于PMAC-PCI运动控制器的PID整定[J].机械工程与自动化,2009(3):120-124.
    [147]李迅波.机械工程测试技术[M].四川:电子科技大学出版社,1998:309-312.
    [148]吴军.四自由度冗余混联机床的分析、辨识及控制[D].北京:清华大学学位论文,2007:67-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700