用户名: 密码: 验证码:
并联式仿生机械腿结构设计及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并联机构具有模块化程度高、刚度重量比大、响应速度快以及适应性强等优点,本文选用一类两转动一平动并联机构作为矿井救灾机器人机械腿的核心部分。对满足此运动要求的并联机构构型进行了综合,研究了并联式仿生机械腿相应的运动学、奇异位形、几何误差及其标定、空间运动性能优化、动力学建模以及刚度优化等关键技术,研制了一台单并联式仿生机械腿实验系统。本文的具体研究内容及主要工作可概括如下:
     运用互易螺旋理论综合得到各种满足两转动一平动运动要求的并联机构构型,进而得到一类支链仅存在一线矢力的并联机构构型,并以此类构型(包括3-UCR、3-RPS等构型)做为之后研究的并联机构;以3-UCR对称并联机构为例,结合主螺旋理论与虚拟机构理论对其瞬态运动特性进行了验证,得到了此类并联机构一阶影响系数矩阵的建立与机构运动速度无关,只与机构输入参数、机构构型以及尺寸参数有关的结论。
     采用Rodrigues参数对以3-RPS对称并联机构为核心的并联式仿生机械腿进行运动学建模,使得其在运动计算过程中计算参数最少、无三角函数计算、便于在线实时控制。通过机构特有的几何特性建立约束方程组,经消元处理后得到只含有一个未知数的高次输入输出方程,建立了正运动学解析模型。运用牛顿-拉夫森定理分析了机构正运动学数值解,通过数值仿真验证了所建迭代模型的正确性。根据机构空间矢量关系推导出机构速度正、逆运动学模型。分析得到机构中动平台、各支链以及末端执行杆件相应的速度、加速度解析解,为之后的机构整体动力学分析提供了运动学基础。
     建立了3-RPS对称并联机构的静力学平衡方程,基于Grassmann几何从空间几何本质上对机构可能出现的正运动学奇异位形进行了研究,归纳得到各线簇秩对应的奇异位形,并通过数值仿真得到在运动空间内的各奇异轨迹,分析了Rodrigues参数随之发生的变化,从而为规划尽量避开奇异位形的运动轨迹提供了依据。
     运用矩阵全微分理论,建立了并联式仿生机械腿末端位姿的几何误差模型。通过对此模型的数值仿真,可知一些结构误差使末端位姿发生了明显变化,在其制造与装配工艺性方面应相应加强;各项误差导致的动平台位置误差呈非线性变化,但变化不大,可通过软件方法进行补偿。经过归一化可达工作空间内各误差来源,得到在统计意义下的灵敏度系数数学模型,通过数值仿真可知在机构设计、加工以及装配过程中需严格控制的各类误差。通过逐次逼近迭代算法,建立了各运动副运动学参数的标定数学模型,通过数值仿真可知此逼近算法对于运动学参数标定分析比较有效,其优化迭代过程收敛速度较快。由于采用了灵敏度系数转换,所以其标定过程对灵敏度系数较高的误差来源具有突出的方向性和目标性,通过标定前后运动学参数误差值的对比,表明此标定方法可明显改善标定精度。
     通过对3-RPS对称并联机构运动空间影响因素的仿真分析可知,加入末端杆件可有效增大机构末端运动空间。随着条件数取值范围的变小,其空间限制将增大;对运动空间条件数进行优化时,可取最大允许条件数为4;整个运动空间在垂直于定平台的轴上表现为一个“上大下小”的类椭圆体。矩阵奇异值在0.3≤δ≤3范围内时,可得到较大的运动空间。通过对机构全域条件数分析可知,在保证整体机构灵巧性的前提下,为了得到更大的运动空间,须使定、动平台运动副连接点结构比例系数在1.0≤η≤1.4范围内。
     基于虚功原理,建立了以3-RPS对称并联机构为核心的并联式仿生机械腿的整体动力学模型,进而推导得到机构子支链、动平台连接点、定平台连接点、动平台以及末端杆件等部件的作用力与力矩的解析表达式。动力学数值仿真结果从结构上说明了支链驱动力数学模型的正确性,动平台连接点的轴向作用力、定平台连接点的法向作用力显著增加。由于垂直于定平台的轴向运动变换使得连接点所受作用力变化较快,较之对应的转动,其对连接点有着更大的影响。
     运用机构能量守恒变换(CCT)的概念,兼顾到外力作用下并联式机械腿的几何形变,推导得到相应的守恒刚度映射矩阵,进而分析得出内部元素单位统一的机构刚度Jacobi矩阵。提出了机构运动空间刚度的特征值极值平均数的概念,并通过此概念优化整体机构刚度。根据分析得到的不同结构比例以及各空间剖面之间的刚度变化情况,归纳出垂直于定平台的各轴向空间截面的刚度变化趋势,得到结构比例系数1.2≤η≤1.4时机构整体刚度性能较优异的结论。
     设计研制了一台高精度数显测微仪,保证了单并联式仿生机械腿实验系统的设计指标在加工、装配过程中的实现。建立了以PC主机、多轴运动控制模块、运动空间综合评价模块为核心的系统控制结构,采用了先置轨迹规划为主、批量传递为辅的数据传递模式,提高了系统的稳定性,减少了数据传递量,加快了系统响应速度。测得单并联式仿生机械腿实验系统的运动极限位置,根据人类行走的基本步态,初步规划了机械腿的运动轨迹,并对实验系统的机械结构以及控制策略等方面提出了改进意见。
Parallel manipulators have been intensively studied for over a decade. The manipulators have more advantages including good system rigidity, rapid motion velocity, not-accumulative error, high nominal load to weight ratio, and flexible end position-stance. One kind of symmetrical parallel manipulators with two rotational and one translational degree of freedom was designed as the key part of rescue robots in coal mines. After the structures of the parallel manipulators with 2R1T DOF were synthesized, the dissertation was focused on the theoretical analysis in terms of singular configures, error modeling and kinematics calibration, optimization of kinematic characters, dynamic modeling and stiffness optimization. As a result, the experimental system of single parallel bionic robot leg has been developed.
     Subsequent research contents and conclusions are presented as follows:
     The parallel manipulators with 2R1T DOF were synthesized by the reciprocal screw theory. Especially, the design rules and the combinations of revolute and prismatic joints with only one pure wrench force in one limb have been obtained. Based on principal screw theory and imaginary mechanism method, the kinematic characters of a three DOF symmetrical spatial parallel manipulator with three UCR limbs were validated. It is proved that the matrices of influence coefficient are only dependent on input parameters and dimension parameters, mechanical structures. When the moving platform is parallel to the base, the results of the pitches principal screws validate the kinematic characters of the parallel manipulator.
     A new method with Rodrigues parameters was proposed to describe the position-stance of the parallel manipulator. By analyzing the topologic structure of the parallel manipulator, the kinematic model with Rodrigues parameters was established. By the geometrical constraints and elimination, the forward kinematic model was obtained. The numerical solutions of forward kinematic model were analyzed by using the Newton-Raphson method and the corresponding numerical simulation proved the validity of iterative steps. According to the relation of spatial vectors, the velocity and the acceleration of every part of the manipulator were deduced.
     The static equilibrium equations of the parallel manipulators are developed. The forward singular configures were studied from their geometric essence by means of Grassmann theory. And singular configures of different line dimensions from 1 to 6 were concluded. The numerical simulation showed the singular trajectories and the change of every Rodrigues parameters. It is essential to design the kinematic layouts aiming at avoiding the singular configures.
     By the means of the complete differential-coefficient matrix theory, we established the mechanical position-stance error model including the main errors of the parallel manipulators. By normalizing all error sources in reachable workspace, the statistical model of sensitivity coefficients was obtained. Based on successive approximation algorithm, the kinematic parameters can be calibrated. Considering the analytical results of sensitivity coefficients, the operation steps have concrete directivity.
     The numerical analysis of workspace showed that the end effector can improve the workspace effectively. The whole workspace along Z axis which is perpendicular to the base can be described as a quasi-ellipsoid. The scope of singular values setting as 0.3≤δ≤3 can get more workspace. By the analysis of global condition index, in order to get more workspace and ensure dexterity of the whole manipulator, the radius ratio of the base and the moving platform can be set as 1.0≤η≤1.4.
     Based on principle of virtual work, the dynamic model of the symmetrical parallel manipulators with three RPS limbs was established. Moreover, the forces and the moments of the limbs, the joints, the base, the moving platform and the end effector have been presented analytically. The joint forces of the moving platform in axial direction and the base in normal direction changed greatly. Because the motion along Z axis caused in great change of the joint forces, it is stated that the translational motion have more influence on the joints, relatively to the rotational motions.
     Considering geometrical deformation of the parallel manipulator causing by outside forces, the conservative stiffness matrix was deduced on the basis of the conservative congruence transformation (CCT). Moreover, the element units of stiffness Jacobi matrix have been uniformed. The average of eigenvalue extremum of workspace stiffness was proposed for optimizing the whole stiffness of the parallel manipulator. When the radius ratio is set as 1.2≤η≤1.4, the whole performance of stiffness is better comparatively.
     For the purpose of guaranteeing the design targets of the single parallel bionic robot leg, the high precision digital display instrument has been developed. The key parts of control system include PC, multi-axis control modularity and comprehensive evaluation modularity of workspace. The tracks are designed ahead for the kinematic control. The method of data transmission improves stability and expedited the response velocity of system. The position limits of the parallel bionic robot leg are measured by Optotrak Position Sensor. According to gaits of human being, the elementary track is programmed. The suggestions are proposed to improve the mechanical structure and control policy.
引文
[1] 林柏泉,常建华,翟成.我国煤矿安全现状及应当采取的对策分析 [J].中国安全科学学报,2006,16(5):42-46.
    [2] 许名标,彭德红.我国煤矿事故德致因分析和对策 [J].矿业快报,2006,11:33-35.
    [3] 董德彪,刘见中.我国煤矿救护技术与装备德现状与发展 [J].煤矿安全,2006,10:62-65.
    [4] 柯显信.仿人机器人双足动态步行研究 [D].上海:上海大学博士论文,2005.
    [5] Sokolov A, Xirouchakis P. Singularity analysis of a 3-DOF parallel manipulator with R-P-S joint structure [J]. Robotica, 2006, 24: 131-142.
    [6] Cheng G, Ge S R, Wang Y. Error analysis of three degree-of-freedom changeable parallel measuring mechanism [J]. Journal of China University of Mining and Technology, 2007, 17(1): 101-104.
    [7] 马宏绪.两足步行机器人动态步行研究 [D].长沙:国防科技大学博士论文,1995.
    [8] 马宏绪,张彭,张良起.两足步行机器人动态步行的步态控制与实时时位控制方法 [J].机器人,1998,20(1):l-8.
    [9] 绳涛,马宏绪,王越.仿人机器人未知地面行走控制方法研究 [J].华中科技大学学报,2004,S1:161-163.
    [10] Huang Q, Li K J, Nakamura Y, et al. Analysis of physical capability of a biped humanoid: Walking speed and actuator specifications [J]. IEEE International Conference on Intelligent Robots and Systems, 2001, 1:253-258.
    [11] Li Z H, Huang Q, Li K J, et al. Stability criterion and pattern planning for humanoid running [J]. IEEE International Conference on Robotics and Automation, 2004, n2: 1059-1064.
    [12] Huang Q, Zhang W M, Li K J. Sensory reflex for biped humanoid walking [J]. 2004 International Conference on Intelligent Mechatronics and Automation, pp: 83-88.
    [13] 姜山,程君实,陈佳品等.基于遗传算法的两足步行机器人步态优化 [J].上海交通大学学报,1999,33(10):1280-1283.
    [14] 包志军.仿人型机器人运动特性研究 [D].上海:上海交通大学博士论文,2000.
    [15] 纪军红.HIT-II 双足步行机器人步态规划研究 [D].哈尔滨:哈尔滨工业大学博士论文,2000.
    [16] 张永学.双足机器人步态规划及步行控制研究 [D].哈尔滨工业大学博士论文,2001.
    [17] 张永学,麻亮,强文义等.基于地面反力的双足机器人期望步态轨迹规划 [J].哈尔滨工业大学学报,2001,33(1):4-6.
    [18] Liu L, Wang J S, Chen K, et al. The biped humanoid robot THBIP-I [J]. Proceedings 2001 International Workshop on Bio-Robotics and Teleoperation, 2001, pp: 164-167.
    [19] Shi Z Y, Xu W L, Wen X, et al. Distributed hierarchical control system of humanoid robot THBIP-I [J].Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 2002, 2: 1265-1269.
    [20] Hirai K, Hirose M, Haikawa Y, et al. Development of Honda humanoid robot [J]. IEEE International Conference on Robotics and Automation, 1998, 2: 1321-1326.
    [21] Hirai K.Honda humanoid robot: Development and future perspective [J]. Industrial Robot, 1999, 26(4): 260-266.
    [22] Hirose M, Kyokai J, Imeji Z. Bipedal Humanoid Robot ASIMO [J]. Journal of the Institute of Image Information and Television Engineers, 2003, 57(1): 43-49.
    [23] Yamaguchi J, Takanishi A. Development of a biped walking robot having antagonistic driven joints using nonlinear spring mechanism [J]. IEEE International Conference on Robotics and Automation, 1997, 1: 185-192.
    [24] Lim H O, Ishii A, Takanishi A. Basic emotional walking using a biped humanoid robot [J]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1999, 4: 954-959.
    [25] Lim H O, Kaneshima Y, Takanishi A. Online walking pattern generation for biped humanoid robot with trunk [J]. IEEE International Conference on Robotics and Automation, 2002, 3: 3111-3116.
    [26] Sugahara Y, Hosobata T, Mikuriya Y. Realization of dynamic human-carrying walking by a biped locomotor [J]. IEEE International Conference on Robotics and Automation, 2004, 3: 3055-3060.
    [27] Lim H O, Ishii A, Takanishi A. Emotion-based biped walking [J]. Robotica, 2004, 22(5): 577-586.
    [28] Sugahara Y , Takuya H, Yutaka M, et al. Realization of stable dynamic walking by a parallel bipedal locomotor on uneven terrain using a virtual compliance control [J]. IEEE International Conference on Intelligent Robots and Systems, 2003, pp: 595-600.
    [29] Lim H O, Sugahara Y, Takanishi A, et al. Development of a biped locomotor applicable to medical and welfare fields [J]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003, pp: 950-955.
    [30] Sugahara Y, Endo T, Lim H O, et al. Control and experiments of a multi-purpose bipedal locomotor with parallel mechanism [J]. IEEE International Conference on Robotics and Automation, 2003, pp: 4342-4347.
    [31] Sugahara Y, Lim H O. Realization of dynamic human-carrying walking by a biped locomotor [J]. IEEE International Conference on Robotica and Automation, 2004, pp: 3055-3060.
    [32] Hashimoto K, Hosobata T, Sugahara Y, et al. Realization by biped leg-wheeled robot of biped walking and wheel-driven locomotion [J]. IEEE International Conference on Robotics and Automation, 2005, pp: 2970-2975.
    [33] Sugahara Y, Hashimoto K, Kawase M, et al. Walking pattern generation of a biped walking vehicle using a dynamic human model [J]. IEEE International Conference on Intelligent Robots and Systems, 2006, pp: 2497-2502.
    [34] Hashimoto K, Sugahara Y, Kawase M, et al. Landing pattern modification method with predictive attitude and compliance control to deal with uneven terrain [J]. IEEE International Conference on Intelligent Robots and Systems, 2006, pp: 1755-1760.
    [35] Hashimoto K, Sugahara Y, Tanaka C, et al. A fall Avoidance foot mechanism for a biped locomotor [J]. IEEE International Conference on Robotics and Automation, 2006, pp: 1219-1224.
    [36] Hashimoto K, Sugahara Y, Sunazuka H, et al. Biped landing pattern modification method with nonlinear compliance control [J]. IEEE International Conference on Robotics and Automation, 2006, pp: 1213-1218.
    [37] http://www.jsk.t.u-tokyo.ac.jp/research/
    [38] Kaneko K, Kanehiro F, Kajita S, et al. Ota, Design of prototype humanoid robotics platform for HRP [J]. IEEE International Conference on Intelligent Robots and Systems, 2002, 3: 2431-2436.
    [39] Yokoi K, Kanehiro F, Kaneko K, et al. Experimental study of humanoid robot HRP-1S [J]. International Journal of Robotics Research, 2004, 23(5): 351-362.
    [40] Kanehiro F, Kajita S, Hirukaka H, et al. Humanoid robot HRP-2 [J].IEEE International Conference on Robotics and Automation[J], 2004, 2: 1083-1090.
    [41] Hirukawa H, Kanehiro F, Kaneko K, et al. Humanoid roboticsplatforms developed in HRP [J]. Robotics and Autonomous Systems, 2004, 48(4):165-175.
    [42] Ishida T, Kuroki Y, Yamaguchi J, et al. Motion entertainment by a small humanoid robot based on OPEN-R [J]. IEEE International Conference on Intelligent Robots and Systems, 2001, 2: 1079-1086.
    [43] Ishida T, Kuroki Y, Yamaguchi J. Mechanical System of a Small Biped Entertainment Robot [J]. IEEE International Conference on Intelligent Robots and Systems, 2003, 2: 1129-1134.
    [44] Nagasaka K, Kuroki Y, Suzuki S, et al. Integrated motion control for walking, jumping and running on a small bipedal entertainment robot [J]. IEEE International Conference on Robotics and Automation, 2004, 4: 3189-3194.
    [45] Bernard E. BIP: A joint project for the development of an anthropomorphic biped robot [J]. International Conference on Advanced Robotics, Proceedings, ICAR, 1997: 267-272.
    [46] Bourgeot J M, Cislo N, Espiau B. Path-planning and tracking in a 3D complex environment for an anthropomorphic biped robot [J]. IEEE International Conference on Intelligent Robots and Systems, 2002, 3: 2509-2514.
    [47] Jerry P, Gill P. Intuitive control of a planar bipedal walking robot [J]. IEEE International Conference on Robotics and Automation, 1998, 3: 2014-2021.
    [48] Hu J J, Jerry P, Gill P. Stable adaptive control of a bipedal walking robot with CMAC neural networks [J]. IEEE International Conference on Robotics and Automation, 1999, 2: 1050-1056.
    [49] Jiang W Y, Liu A M, Howard D. Optimization of legged robot locomotion control of foot-force distribution [J]. Transactions of the Institute of Measurement Control, 2004, 26(4): 311-323.
    [50] Amos A, Wilfried G. Analytic path planning algorithms for bipedal robots without a trunk [J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2003, 36(2): 109-127.
    [51] Wisse M, Schwab A L, Helm V D, et al. Passive dynamic walking model with upper body [J]. Robotica, 2004, 22(6): 681-688.
    [52] 范顺成,韩书葵,谷慧茹.两足步行机器人并联腿机构的稳定性分析 [J].河北工业大学学报,2004,33(1):27-31.
    [53] 齐明.两足机器人并联腿机构的研究 [D].天津:河北工业大学,2003.
    [54] 刘更谦,范顺成,张顺心等.两足步行机器人并联腿机构德步态规划与仿真 [J].机电产品开发与创新,2005,18(1):39-41.
    [55] Kong X W, Gosselin C M. Type synthesis of 3T1R 4-DOF parallel manipulators based on screw theory[J]. IEEE Transactions on Robotics and Automation, 2004(2): 181-190.
    [56] Li Q C, Huang Z. Mobility analysis of lower-mobility parallel manipulators based on screw theory [J]. IEEE International Conferences on Robotics & Automation, 2003: 1179-1184.
    [57] Wolf A, Shoham M. Screw theory tools for the synthesis of the geometry of a parallel robot for a given instantaneous task [J]. Mechanism and Machine Theory, 2006(41): 656-670.
    [58] Hervé J M, Sparacino F. Structural synthesis of parallel robots generating spatial translation [C]. IEEE International Conferences on Advanced Robotics, 1991(1): 808-813.
    [59] 杭鲁滨,王彦,吴俊等.基于单开链的纯转动三自由度并联机器人机型设计方法 [J].中国机械工程,2005(9):819-822.
    [60] 杨廷力.机器人机构拓扑结构学 [M].北京:机械工业出版社,2004.
    [61] 汪劲松,关立文,王立平等.并联机器人机构构型创新设计研究 [J].机械工程学报,2004(11):7-12.
    [62] Fang Y F, Tsai L W. Structure synthesis of a class of 3-DOF rotational parallel manipulators [J]. IEEE Transactions on Robotics and Automation, 2004(1): 117-121.
    [63] Kong X W, Gosselin C M. Type synthesis of 3-DOF translational parallel manipulators based on screw theory and a virtual joint [C]. Proc. of the 15th CISM-IFToMM Symp. on Robot Design, Dynamics and Control, Saint-Hubert, Montreal, Canada,2004.
    [64] Fang Y F, Tsai L W. Structure synthesis of a class of 3-DOF rotational parallel manipulators [J]. IEEE Transactions on Robotics and Automation, 2004(1): 117-121.
    [65] Wolf A, Shoham M. Screw theory tools for the synthesis of the geometry of a parallel robot for a given instantaneous task [J]. Mechanism and Machine Theory, 2006, 41: 656-670.
    [66] Kim J W, Park F C. Direct kinematic analysis of 3-RS parallel mechanisms [J]. Mechanism and Machine theory, 2001, 36: 1121-1134.
    [67] Kindermann T, Cruse H. MMC – a new numerical approach to the kinematics of complex manipulators[J]. Mechanism and Machine Theory, 2002, 37: 375-394.
    [68] Wang Y X, Wang Y M. Inverse kinematics of variable geometry parallel manipulator [J]. Mechanism and Machine Theory, 2005, 40: 141-155.
    [69] Takeda Y. Kinematic analysis of parallel mechanisms at singular points where a connecting chain has local mobility [J]. Mechanism and Machine theory, 2006, 41: 945-957.
    [70] Gosselin C, Angeles J. Singularity analysis of closed-loop kinematic chain [J]. IEEE Trans. Robotics and Automation, 1990, 6(3): 281-290.
    [71] Hunt K H. Kinematic Geometry of Mechanisms [M]. Oxford: Charendon Press, 1978.
    [72] Kumar V. Instantaneous kinematics of parallel-chain robotic mechanisms [J]. ASME Journal of mechanical Design, 1992, 114(2): 349-358.
    [73] Merlet J P. Singular configuration of parallel manipulators and grassmann geometry [J]. Journal of Robotics Research, 1989, 8(5): 45-56.
    [74] 赵新华,彭商贤.并联机器人奇异位形研究 [J].机械工程学报,2000,36(5):35-37.
    [75] Ma O, Angeles J. Singularity Analysis of closed-loop kinematic chains [J]. IEEE Transactions on Robotics and Automation, 1990, 6(3): 281-290.
    [76] Collins C L. The quartic singularity surfaces of planar platforms in the Clifford algebra of the projective plane [J]. Mechanism and Machine Theory, 1998, 33(7): 931-944.
    [77] Park F C, Kim J M. Singularity analysis of closed kinematic chains [J]. ASME Journal of Mechanical Design, 1999, 121(1): 32-38.
    [78] Liu X J, Wang J S, Pritschow G. Kinematics, Singularity and workspace of planar 5R symmetrical parallel mechanisms [J]. Mechanism and Machine Theory, 2006(41):145-169.
    [79] Yamawaki T, Omata T, Mori O. 4R and 5R parallel mechanism mobile robots [J]. IEEE International Conference on Robotics & Automation, 2004: 3684-3689.
    [80] Zhou H, Ting K L. Path generation with singularity avoidance for five-bar slider-crank parallel manipulators [J]. Mechanism and Machine Theory, 2005(40): 371-384.
    [81] Bonev I A, Gosselin C M. Singularity Loci of spherical parallel mechanisms [J]. IEEE International Conference on Robotics and Automation, 2005: 2957-2962.
    [82] Gregorio R D. Kinematics of the translational 3-URC mechanism [J]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings, 2001: 147-152.
    [83] Merlet J P. The importance of optimal design for parallel structures [J]. In Boer C. R., Parallel kinematic machine: theoretical aspects and industrial requirements, New York: Springer, 1999, 401-417.
    [84] Merlet J P. An initiative for the kinematics study of parallel manipulators [J]. Proceedings of the WORKSHOP on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, 2002, 2-9.
    [85] Gosselin C M, Angeles J. The optimum kinematic design of a spherical 3DOF parallel manipulator [J]. Journal of Mechanisms, Transmissions and Automation in Design, 1989, 111(2): 202-207.
    [86] Pittens K H, Podhorodeski R P. A family of Stewart platforms with optimal dexterity [J]. Journal of Robotic Systems, 1993, 10(4): 463-479.
    [87] Huang T, Whitehouse D J, Wang J S. Local dexterity, optimum architecture and design criteria for parallel machine tools [J]. Annals of CIRP, 1997, 47(1): 347-351.
    [88] Gosselin C M, Angeles J. The optimum kinematic design of a planar 3-DOF parallel manipulator [J]. Journal of Mechanisms, Transmissions and Automation in Design, 1988, 110(1): 35-40.
    [89] Stoughton R, Arai T. A modified Stewart platform manipulator with improved dexterity [J]. IEEE Transaction on Robotics and Automation, 1993, 9(2): 166-173.
    [90] Huang T, Wang J S, Gosselin C M, et al. Kinematic synthesis of hexapods with prescribed orientation capability and well-conditioned dexterity [J]. SME Journal of Manufacturing Processes, 2000, 2(l): 36-47.
    [91] Pond G, Carretero J. Singularity analysis and workspace optimization of the inclined PRS manipulator [J]. CCToMM, 2004, 742-749.
    [92] Pond G, Carretero J A. Formulating Jacobian matrices for the dexterity analysis of parallel manipulators[J]. Mechanism and Machine Theory, 2006, 41: 1505-1519.
    [93] Gosselin C M. The optimum design of robotic manipulators using dexterity indices [J]. Journal of Robotics and Autonomous Systems, 1992, 9(4): 213-226.
    [94] Dasgupta B, Mruthyunjaya T S. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator [J]. Mechanism and Machine Theory, 1998, 33(8): 1135-1152.
    [95] Cheng Y, Ren G X, Dai S L. The multi-body system modeling of the Gough-Stewart platform for vibration control [J]. Journal of Sound and Vibration, 2004(271): 599-614.
    [96] Wang X Y, Mills J K. FEM dynamic model for active vibration control of flexible linkages and its application to a planar parallel manipulator [J]. Applied Acoustics, 2005(66): 1151-1161.
    [97] 吴宇列.并联机构奇异位形的微分几何理论以及冗余并联机构的研究 [D].长沙:国防科技大学博士论文,2001.
    [98] 杨志永,赵学满,黄田.并联机构动力学建模及伺服系统参数辨识[J].天津大学学报,2004,37(6):475-479.
    [99] Yang Z Y, Zhao X , Huang T, et al. Dynamic modeling of parallel manipulator and parameter identification of its servo system [J]. Journal of Tianjin University, 2004, 37(6): 475-479.
    [100] Callegari M, Palpacelli M, Principi M. Dynamics modeling and control of the 3-RCC translational platform [J]. Mechatronics, 2006, 16(10): 589-605.
    [101] Gallardo J, Rico J M, Frisoli A, et al. Dynamics of parallel manipulators by means of screw theory[J]. Mechanism and Machine Theory, 2003(38): 1113-1131.
    [102] Ball R S. A treatise on the theory of screws [M]. Cambridge University Press, Cambridge, 1900.
    [103] Ohwovoriole M S, Roth B. An extension of screw theory [J]. Mechanical Design, 1981, 103: 725-735.
    [104] Brand L S. Vector and tensor analysis [M]. John Wiley and Sons, New York, 1947.
    [105] Woo L, Frendenstein F. Application of line geometry to theoretical kinematics and the kinematic analysis of mechanical systems [J]. Journal of Mechanisms, 1970(5): 417-460.
    [106] Fang Y F, Huang Z. Analytical identification of the principal screws of the third order screw system[J]. Mechanism and Machine Theory, 1998, 33(7): 987-992.
    [107] Huang Z, Wang H B. Dynamic force analysis of n-DOF multiloop complex spatial mechanisms [J]. Mechanism and Machine Theory, 1992, 27(1): 97-105.
    [108] 周江华,苗育红,王明海. 姿态运动的 Rodrigues 参数描述 [J].宇航学报,2004,25(5):514-519.
    [109] Veblen O, Young J W. Projective geometry [M]. The Athenaeum Press, Boston, 1910.
    [110] Dandurand A. The rigidity of compound spatial grid [J]. Structural Topology, 1984, 10: 41-55.
    [111] Wurst K H. Linapod-Machine tools as parallel link systems based on a modular design [C]. In: Proc of the 1st European-American Forum on Parallel Kinematic Machines. Milan: Spinger-Verlag, 1998, 377-394.
    [112] 孟婥,车仁生.并联六坐标测量机的误差模型和误差补偿 [J].哈尔滨工业大学学报,2004,36(3):317-320.
    [113] Mahir H, Leila N. Design Modification of Parallel Manipulators for Optimum Fault Tolerance to Joint Jam [J]. Mechanism and Machine Theory, 2005(40): 559-577.
    [114] 黄田,李亚,李思维等. 一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计 [J]. 中国科学(E 辑),2002,32(5):628-635.
    [115] Meng Z, Che R S, Huang Q C. The Direct-error-compensation Method of Measuring the Error of a Six-freedom-degree Parallel Mechanism CMM [J]. Materials Processing Technology, 2002(129): 574-578.
    [116] Wang H, Fan H C. Identification of Strut and Assembly Errors of a 3-PRS Serial-parallel Machine Tool [J]. Mechanism and Machine Theory, 2004(44): 1171-1178.
    [117] Hassan C H, Kim J W, Kim J W, et al. Kinematic sensitivity analysis of the 3-UPU parallel mechanism[J]. Mechanism and Machine Theory, 2002, 37: 787-798.
    [118] 洪振宇,梅江平,赵学满等. 可重构混联机械手-TriVariant 的误差建模与灵敏度分析 [J].机械工程学报,2006,42(12):65-69.
    [119] Pott A, Kecskeméthy A, Hiller M. A simplified force-based method for the linearization and sensitivity analysis of complex manipulation systems [J]. Mechanism and Machine Theory, 2007, 42: 1445-1461.
    [120] Gursel A, Bijan S. Optimum dynamic balancing of planar parallel manipulators based on sensitivity analysis [J]. Mechanism and Machine Theory, 2006, 41: 1520-1532.
    [121] 荣辉,范培卿,丁洪生.六自由度并联平台的灵敏度分析与参数优化 [J].机械设计与研究,2007,23(1):34-36.
    [122] Besnard S. Calibration of parallel robots using two inclinometers [C]. IEEE International Conference of Robotics and Automation, May, 1999: 1758-1763.
    [123] 魏世民,廖启征,黄靖远.6-P55 型并联机床的仿真研究 [J].机械设计与研究,2001,17(4):51-53.
    [124] Nahvi A. Calibration of a parallel robot using multiple kinematics closed loops [C]. IEEE ICRA. San Diego, May 1994: 407-412.
    [125] Zhuang H Q. Self-calibration of parallel mechanisms with a case study on Stewart platform [J]. IEEE Transactions on Robotics and Automation. 1997, 13(3): 387-397.
    [126] Daney D. Robust parallel robot calibration with partial information [C]. IEEE ICRA. Seoul Korea, May, 2001: 3262-3267.
    [127] Ihara Y, Li Z Y. Kinematic calibration of a hexapod machine tool by using circular test [C]. Proceedings of the 2000 Japan-USA Flexible Automation Conference Ann Arbor, Michigan, July, 2000: 23-26.
    [128] Bernhard J, John C. Sequential determination of kinematic parameters in assembled Stewart platform manipulators [C]. Proceedings of 1999 ASPE Annual Meeting, April, 1999, 57-61.
    [129] Bonev I A, Ryu J. A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators [J]. Mechanism and Machine Theory, 2001, 36: 1-13.
    [130] Wang J S, Tang X Q. Analysis and dimensional design of a novel hybrid machine tool [J]. International Journal of Machine Tools & Manufacture, 2003, 43: 647-655.
    [131] Tang X Q, Wang J S, Zhang H, et al. On the analysis of active reflector supporting manipulator for the large spherical radio telescope [J]. Mechatronics, 2004, 14: 1037-1053.
    [132] Pashkevich A, Wenger P, Chablat D. Deisng Strategies for the geometric synthesis of orthoglide-type mechanisms [J]. Mechanism and Machine Theory, 2005, 40: 907-930.
    [133] Dash A K, Chen I M, Yeo S H, et al. Workspace generation and planning singularity-free path for parallel manipulators [J]. Mechanism and Machine Theory, 2005, 40: 776-805.
    [134] Zhao J S, Zhang S L, Dong J X, et al. Optimizing the kinematic chains for a spatial parallel manipulator via searching the desired dexterous workspace [J]. Robotics and Computer-Integrated Manufacturing, 2007, 23: 38-46.
    [135] Lipkin H, Dufy J. Hybrid twist and wrench control for a robotic manipulator [J]. ASME Journal of Mechanism Transaction and Automation Design, 1988, 110: 138-144.
    [136] Doty K L, Melchiorri C, Bonevento C. A theory of generalized inverse applied to robotics [J]. International Journal of Robotic Research, 1993, 12(1): 1-19.
    [137] Tandirci M, Angeles J, Ranjbaran F. The characteristic point and characteristic length of robotic manipulators [C]. ASME 22nd Biennial conference of Robotics, Spatial Mechanics, Mechanical Systems, 1992, 45: 203-208.
    [138] Stocco L J, Saculdean S E, Sassani F. On the use of scaling matrices for task-specific robot design[J]. IEEE Transaction on Robotics and Automation, 1999, 15: 958-965.
    [139] Gosselin C M. Dexterity indices for planar and spatial robotic manipulators [C]. IEEE International conference on Robotics and Automation, 1990, Cincinnati, pp: 650-655.
    [140] Angeles J. A scale-independent and frame-invariant index of kinematic conditioning for serial manipulators [C]. In Advances in Robot Kinematics, Vienna, Austria: Springer-Verlag, 1991, pp: 2-9.
    [141] Kim S G, Ryu J. New dimensionally homogeneous Jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators [J]. IEEE Transactions on Robotics and Automation, 2003, 19(4): 731-736.
    [142] Angeles J. Fundamentals of robotic mechanical systems [M]. Springer-Verlag, 2003.
    [143] Doty K L, Melchiorri C, Schwartz E M, et al. Robot manipulability [J]. IEEE Transactions on Robotics and Automation, 1995, 11(3): 42-468.
    [144] Gosselin C, Angeles J. A global performance index for the kinematic optimization of robotic manipulators [J]. ASME Journal of Mechanism Design, 1991, 113(3): 220-226.
    [145] Lee K M, Johnson R. Static characteristics of a inparallel actuated manipulator for clamping and bracing application [J]. IEEE Internal Conference on Robotics Automation, 1989, 3(14): 408-413.
    [146] Gosselin C. Stiffness mapping for parallel manipulators [J]. IEEE Transactions on Robotics and Automation, 1990, 6(3): 377-382.
    [147] Huang T, Zhao X Y, Whitehouse D J. Stiffness estimation of a Tripod-based parallel kinematic machine [J]. IEEE Transactions on Robotics and Automation, 2002, 18(1): 50-58.
    [148] 韩书葵,方跃法,槐创峰.四自由度并联机器人刚度分析 [J].机械工程学报,2006,42 (Supp.): 31-34.
    [149] Li Y M, Xu Q S. Stiffness analysis for a 3-PUU parallel kinematic machine [J]. Mechanism and Machine Theory, 2007, 42(2): 1-15.
    [150] Ceccarelli M, Carbone G. A stiffness analysis for CaPaMan (CassinoParallel Manipulator) [J]. Mechanism and Machine Theory, 2002, 37: 427-439.
    [151] Huang C T, Hung W H, Kao I. New conservative stiffness mapping for the Stewart-Gough platform[J]. IEEE International Conference on Robotics and Automation, 2002, pp: 823-828.
    [152] 李树军,Gosselin C.3-RRR 平面并联机构的刚度特性分析 [J].东北大学学报,2007,28(1):91-94.
    [153] Huang S, Schimmels J M. Minimal realizations of spatial stiffnesses with parallel or serial mechanisms having concurrent axes [J]. Journal of Robotics System, 2001, 18(3): 135-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700