用户名: 密码: 验证码:
方位多通道高分辨率宽测绘带SAR成像及GMTI技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(SAR)是一种以合成孔径原理和脉冲压缩技术为理论基础,具有二维高分辨率的成像雷达。SAR属于主动式微波遥感设备,具有全天候、全天时和远距离成像的特点,大大提高了雷达信息获取能力,为目标检测创造了前所未有的机会,是现代雷达的一项突破性成就,在军事、国防以及民用领域都得到了非常广泛的应用。作为一种先进的成像系统,SAR能够从空中实时提供类似光学照片的二维地物地貌图像,并且具有良好的空间分辨能力和辐射测量保真度。SAR对地面运动目标的检测和成像研究是在合成孔径雷达成像技术的基础上发展起来的,SAR最初是针对地面静止场景成像的,在SAR图像中,地面运动目标图像会出现距离走动、方位位置偏移、散焦等现象,动目标往往只能模糊的叠加在静止场景的SAR图像上。在实际的应用中,特别是在军事的应用上,地面运动目标检测(GMTI)是SAR系统必须具备的一项基本功能,人们总是希望通过SAR图像来进行地面运动目标检测,并将其标注在场景的SAR图像上,因此诞生了SAR-GMTI技术。沿航迹向多通道SAR比单通道SAR能够提供更多的系统自由度,对于实现GMTI功能而言,雷达阵列沿航向直线分布为最优构型,可以获得最优的杂波抑制性能,能够在地杂波或者海杂波中清楚地区分出运动目标并且能够正确地估计出其运动参数,因而广泛地应用于战场感知和侦察中。
     目前世界上许多国家都在大力发展多通道地面运动目标检测和定位技术,积极研究先进的运动目标检测理论,并努力寻求各种高效、实用的运动目标检测方法。本文在深入分析国内外SAR-GMTI研究成果的基础上,对合成孔径雷达动目标检测和误差估计进行了较为详细的研究和分析。重点针对方位多通道正侧视雷达实现GMTI的功能,开展了通道相位误差估计,对于SAR成像中拼接成大图的子带误差估计,运动目标检测和定位,以及参数估计等关键技术研究。
     论文以方位多通道高分辨率宽测绘带SAR系统为对象,研究的主要内容可概括为以下四个部分:
     1.结合多通道地面运动目标检测GMTI的合成孔径雷达SAR系统在对大面积地物成像的同时可以完成运动目标检测与参数估计,此时要求各通道间的特性完全一致。然而在实际情况中,由于各种各样的原因,各通道间的特性不可能完全一致,这些非理想因素将严重影响运动目标检测效果。论文针对这一问题,提出两种通道相位误差估计方法。方法一利用杂波的信号特征向量与其导向矢量的线性关系直接进行通道误差估计。方法二通过对回波数据进行方位重采样,然后利用杂波信号特征向量张成的空间(即信号子空间)与真实导向矢量张成的空间相同的原理进行误差估计。实验证明,两种方法均能有效地进行通道相位误差估计,并且方法二具有更高的估计精度。
     2.合成孔径雷达系统通过发射线性调频信号获得距离高分辨率图像,随着分辨率要求的提高,发射信号的带宽也随之提高,发射大带宽信号常用的解决方案为发射若干个不同载频的子带信号,然后通过数字信号处理的方法将各个子带信号进行合成,从而得到宽带信号。在实际情况中,由于系统硬件等不可避免地存在各种误差,导致各子带信号的不一致,从而影响合成信号质量,因此必须对各子带信号误差进行估计并补偿。论文针对子带间的重叠频谱问题,提出一种子带误差估计方法,在利用步进线性调频信号合成大带宽信号时,对各子带间的不一致性进行补偿。该方法通过对相邻子带间的重叠谱相位差进行拟合得到子带幅相误差和延时误差,并对各子带回波进行加窗处理以消除因子带重叠引起的成对回波。
     3.同时获取高分辨率宽测绘带(HRWS)合成孔径雷达(SAR)图像并进行地面运动目标检测(GMTI)是合成孔径雷达成像的发展趋势。然而传统单通道星载SAR系统受最小天线面积的限制,为得到宽距离测绘带而不产生距离模糊,要求脉冲重复频率不能太高,而高方位分辨率又要求系统以高脉冲重复频率工作,因此难以同时获取方位高分辨和距离宽测绘带。论文针对这个问题,在存在多普勒模糊的情况下,详细讨论了如何利用多通道SAR系统进行运动目标检测,并提出一种基于空时谱的运动目标检测方法,该方法根据杂波和动目标的空时谱关系构造方位匹配函数,方位匹配滤波后,再利用波束形成技术进行杂波抑制,然后对运动目标的斜距历程进行拟合得到运动目标的运动方向。接着对杂波抑制后的数据进行聚焦处理,得到模糊的运动目标图像,并利用恒虚警检测技术检测得到所有的模糊运动目标。最后根据模糊图像的空间关系和估计出的运动方向检测出真实目标。
     4.同时获取方位高分辨和距离宽测绘带是合成孔径雷达的发展趋势,论文在实现SAR地面运动目标检测的基础上,提出一种地面运动目标检测的运动参数估计方法。该方法首先利用空时自适应处理方法进行杂波抑制,然后再对杂波抑制后的结果进行距离压缩得到运动目标的运动轨迹,从而得到目标的真实方位位置。接着进行聚焦处理,利用多普勒模糊关系从模糊的运动目标中判断出真实目标,获得运动目标因沿视线方向速度引起的方位位置偏移,从而得到运动目标沿视线方向的速度。
Synthetic Aperture Radar (SAR) is a kind of2D high resolution imaging radar,which is based on the principle of synthetic aperture and pulse compression technologyas the theoretical basis. SAR is a great achievement of modern radar with thecharacteristics of all-weather, all day and night, and long range. Radar imagingtechnique can enhance information acquisition ability of SAR, and provides a hithertounknown opportunity for target indication. SAR therefore exhibits great value in allmilitary, defense and civilian applications. As an advanced imaging system, SAR canprovide the two-dimensional image of a scene with good spatial resolution and highradiation measurement precision. The study of GMTI is developed based on SARimaging technology. Since traditional SAR radars only simply take the―picture‖of astationary scene, however, moving targets will be displayed on the SAR image of astationary scene as blurred images. A moving target with a radial velocity will exhibitdisplaced from its true position on the SAR image, and the motion in the azimuthdirection will cause its image to be dispersed along azimuth. In practical applications,especially in military applications, it is always expected to achieve Ground MovingTarget Indication (GMTI) by using SAR sensors and to relocate ground moving targetson the SAR image of the scene. So GMTI is the basic function must have for SARsystem. The technique is called SAR-GMTI. Since along-track multichannel SAR canprovide more degrees of freedom than single channel one. For the realization of GMTIfunction, the radar array along-track liner distribution is the optimal configuration.Along-track multichannel SAR has the powerful ability to suppress the clutter, todistinguish moving targets from the clutter coming from land or sea and to accuratelyestimate the motion parameters. Thus it has been used extensively for air-to-groundsurveillance and reconnaissance.
     In recent years, many countries in the world have been making great efforts todevelop spaceborne/airborne Ground Moving Target Indication (GMTI) systems basedon multi-channel SAR, research on new SAR-GMTI theories and explore highlyefficient detecting and locating technology. Based on the extensive investigation of theSAR-GMTI developments over the world, this dissertation presents a detailed researchand analysis on SAR-GMTI algorithms and error estimation, with the emphasis onimplementing SAR-GMTI function for a side-looking multi-channel SAR, includingchannel phase errors estimation, subband error estimation for splicing into a largerimage of SAR imaging, GMTI and location, and parameters estimation.
     Based on the spaceborne multi-channel HRWS SAR systems as the object of study,the main content of this dissertation is summarized as follows.
     1. Combined with GMTI, multichannel SAR system can complete moving targetindication and parameters estimation at the same time for large area imaging. In themoving target indication, the required characteristics of each channel must becompletely consistent. However, in practical situations, characteristics of each channelcannot be completely consistent because of various reasons. These non ideal factors willseriously affect the moving target indication effect. In order to solve this problem, twomethods are proposed to estimate channel phase errors for multi-channel SAR andGMTI system. The first method is based on the linear relationship between the cluttereigenvectors and its steering vectors. For the second method, the received echoes areresampled in azimuth, and the channel errors are obtained based on the fact that thespace spanned by the signal eigenvectors referred to as the signal subspace is equal tothat by the practical steering vectors. The simulated and ground-based real datademonstrate the validity of the two methods, and show that the second method hasbetter performance.
     2. SAR system can obtain high range resolution image by transmitting linear FMsignal. As the resolution requirements increasing, the bandwidth of signal also increases.The common solution for transmitting a large bandwidth signal is to transmit severaldifferent carrier frequency subband signals, then compose each subband signals bymeans of digital signal processing to obtain the large bandwidth signal. In practicalsituations, each subband signal is not consistent due to the unavoidable existence ofvarious errors in system hardware, and then the result will influence the quality of thesynthesized signal. So it is necessary to estimate and compensate for each subbandsignals. In this paper, a novel method is proposed to estimate the sub-band errorsdepending on the overlap spectra between sub-band signals, and compensates themismatch between sub-band signals when we reconstructing the spectrum of a wideband signal by stepped-frequency chirp signals. This method estimates theamplitude-phase error and the time delay error between sub-band signals by fitting theinterferometric phase of the overlap spectra components. Besides, the window foreliminating the ghost images caused by the overlap spectra is proposed.
     3. The development trend of SAR imaging is to simultaneously obtain the HighResolution Wide Swath (HRWS) SAR image and moving target indication. However,spaceborne single-channel SAR system is restricted by the minimum antenna area. In order to meet the qualification of wide swath with none range ambiguity, the pulserepetition frequency can not be too high. But in order to meet the qualification of highrange resolution, the system must operate at high pulse repetition frequency. So it isdifficult to simultaneously obtain wide swath and high range resolution. In view of theabove problems, this dissertation discusses in detail how to use the multi-channel SARsystem for moving target detection in the presence of Doppler ambiguity case. A newmethod based on the space-time spectrum of GMTI for spaceborne multi-channelHRWS SAR system is presented, which is according to the space-time spectrumrelationship between moving target and clutter to contruct azimuth matching function.Firstly, the method utilizes beamforming for clutter suppression after azimuthmatching filtering, and then estimates moving target direction by fitting for the slantrange of the moving target. Secondly, focusing for the clutter suppressed data isperformed to obtain ambiguous images of the moving target, then all ambiguousmoving targets are obtained by Constant False Alarm Rate (CFAR) detectiontechnology. Finally, this method detects real targets according to the spatialrelationships of fuzzy images and motion direction estimated.
     4. The development trend of SAR is to simultaneously obtain high resolution inazimuth and High Resolution Wide Swath (HRWS). Based on the GMTI technology, amotion parameter estimation method for spaceborne multi-channel HRWS SAR systemsis presented. Firstly, the space time adaptive processing is adopted for cluttersuppression, then the motion trail and true azimuth position of moving target can beobtained after range compression for clutter suppression data. Secondly, focusing isprocessed. The real target is decided from ambiguous images by fuzzy Dopplerrelationship, and the azimuth shift of moving target caused by speed along the line ofthe sight direction is obtained. Finally, the motion velocity along the line of the sightdirection of moving target is obtained. The advantages of the method are its lowcomputational burden and high accuracy.
引文
[1] Carrara W G, Goodman R S, and Majewski R M. Spotlight Synthetic Aperture Radar:Signal Processing Algorithms[M]. Boston: Artech House,1995.
    [2] Franceschetti G, and Lanari R. Synthetic Aperture Radar Processing[M]. Boca RatonLondon New York Washington, D.C.: CRC Press.
    [3] Soumekh M. Synthetic Aperture Radar Signal Processing with MATLABAlgorithms[M]. John Wiley&Sons Inc,1999.
    [4] Rodriguez E, and Martin J M. Theory and design of interferometric syntheticaperture radars[J]. Proc. Inst. Elect. Eng.-f,1992,139(2):147-159.
    [5] Graham L C. Synthetic interferometer radar for topographic mapping[J]. Proc. ofIEEE,1974,62(6):763-768.
    [6]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004.
    [7]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001.
    [8]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社,1989.
    [9] Wiley C A. Synthetic aperture radar[J]. IEEE Trans.on AES,1985,21(3):440-443.
    [10]保铮,邢孟道,王彤.雷达成像技术[M],北京:电子工业出版社,2005.
    [11] Gcumming I, and Wong F H,洪文等译.合成孔径雷达成像—算法与实现[M].北京:电子工业出版社,2007.
    [12] Curlander J C, and McDonoughm R N. Synthetic aperture radar: system and signalprocessing. John Wiley&Sons Inc,1991.
    [13]杨士中.合成孔径雷达.国防工业出版社,1981
    [14] Hovanessian S A. Introduction to Synthetic Array and Imaging Radar[M].ArtechHouse Inc,1980.
    [15] Manninen A T, and Ulander L M H. Forestry parameters retrieval from texture inCARABAS VHF-band SAR images[J]. IEEE Trans. on Geosc. and Remote Sens.,2001,39(12):2622-2633.
    [16] Treuhaft R N, Madsen S N, Moghaddam M, et al. Vegetation characteristics andsurface topography from InSAR[J]. Radio Sci.,1996,31:1449-1485.
    [17] Treuhaft R N, and Siqueira P R. Vertical Structure of Vegetated Land Surfaces fromInterferometric and Polarimetric Radar[J]. Radio Science,2000,35:141-177.
    [18] Cloude S R, and Pottier E. A review of target decomposition theorems in radarpolarimetry[J]. IEEE Trans. on Geosc. and Remote Sens.,1996,34:498-518.
    [19] Ulaby F T, et al. Microwave Remote Sensing, Active and Passive[M]. AddisonWesley Publishing Company,1982.
    [20] Askne J, Dammert P, Ulander L M H, and Smith G. C-band repeat-passinterferometric SAR observations of the forest[J]. IEEE Trans. on Geosc. AndRemote Sens.,1997,35(1):25-35.
    [21] Askne J, Santoro M, Smith G, and Fransson J. Multitemporal repeat-pass SARinterferometry of boreal forests[J]. IEEE Trans. on Geosc. and Remote Sens.,2003,41(7):1540-1550.
    [22] Wiley C A. Synthetic Aperture radar[J]. IEEE Trans on Aerosp. Electron. Syst.,1985,21(3):440-443.
    [23] Wiley C. Pioneer award acceptance remarks[J]. IEEE Trans.On AES,1986,21(3):433-433.
    [24] Sherwin C.W.RuinaJ.P, Rawehff R.D. Some early development in SyntheticApeture Radar system[J]. IRE Trans.on Military Electronics,1962,6:111-121.
    [25] Kovaly J J. High Resolution Radar Fundamentals[M]. In Eli Broakner(Ed.), RadarTechnology, Dedham. Mass, Artech House Inc,1977.
    [26] Skolnik M I. Fifty years of radar. Proc. IEEE,1985,73:182-197.
    [27] Ausherman D A, Kozma A, and Walker J L. Developments in Radar Imaging[J].IEEE Trans. on Aerosp. Electron. Syst.,1984,20(4):363-400.
    [28] Kirk J C. Digital synthetic aperture radar technology[C]. IEEE International RadarConference,1975.
    [29] Hensley W H, Doerry A W, and Walker B C. Lynx: A High-resolution SyntheticAperture Radar[C]. SPIE Aerosense,1999:3704.
    [30] Horn R. E-SAR--The experiment airborne L/C band SAR system of DLR[C]. Proc.of IGARSS,1988:1025-1026.
    [31] Ender J H G, and Brenner A R. PAMIR-a wideband phased array SAR-MTI system[J]. Proceeding of IEEE Radar Sonar Navig.,2003,150(3):165-172.
    [32] Richardson P G. Analysis of the adaptive space time processing technique forairborne radar[J]. Proceeding of IEEE Radar Sonar Navig,1994,141(4):187-195.
    [33] Elahci C, Bicknell T, Jordan R L, and Wu C. Spaceborne synthetic apertureimaging radars: application, techniques, and technology[J]. Proceeding of IEEE,1982,70(10):1174-1209.
    [34] Raney R K, Luscombe A P, et al. Radarsat[J]. Proc of IEEE,1991,79(6):839-849.
    [35] Zhu Xixing, and Zhu Minhui. The development of on-board imaging processor forairborne SAR in China[C]. EUSAR'96, Germany.
    [36]张直中.九十年代合成孔径雷达的发展简况[A].第七届全国雷达学术年会[C],1999.11.
    [37] Zhu Xixing, and Zhu Minhui. The development of on-board imaging processor forairbone SAR in China[C], EUSAR’96, German.
    [38]《CSAR-2003会议》论文集[A].第一届中国合成孔径雷达会议[C],合肥,2003年12月1日至4日.
    [39]《CSAR-2005会议》论文集[A].第二届中国合成孔径雷达会议[C],南京,2005年11月2日至5日.
    [40]周峰.机载SAR运动补偿和窄带干扰抑制及其单通道GMTI的研究[D].博士学位论文,西安电子科技大学,2007.
    [41]赵迎辉.合成孔径雷达地面运动目标检测技术研究[D].中国科学院电子学研究所.2007.
    [42] Maurice W. Long. Airborne early warning system concepts[M]. Boston: ArtechHouse,1992.
    [43] Raney R K. Synthetic aperture imaging radar and moving targets[J]. IEEE Trans.On Aerospace and Electronic Systems,1971,7(3):499-505.
    [44] Freeman A. Simple MTI using synthetic aperture radar[C]. Proeeeding of IGARSS,1984:65-69.
    [45] Freeman A, and Currie A. Synthetic Aperture Radar Images of Moving Targets[J].GEC Journal of Research,1987,5(2):106-115.
    [46] Ouehi K. On the multilook images of moving targets by synthetic aperture radar[J].IEEE Trans. On Antenna and Propagation,1985,33(8):823-827.
    [47] Barbarossa S, and Farina A. A novel procedure for deteeting andfocusing movingObjeets with SAR based on the Wigner-Ville distribution[C]. IEEE IntemationalRadar Conferenee,1990:44-50.
    [48] Barbarossa S, and Farina A. Detection and Imaging of Moving Objects withSynthetic Aperture Radar, Partl: Optional detection and Parameter estimationtheory[J]. IEEE Proceeding-F,1992,139(l):79-88.
    [49] Barbarossa S, and Farina A. Detection and Imaging of Moving Objects withSynthetic Aperture Radar, Part2: Joint Time-Frequency Analysis by igner-VilleDistribution[J], IEEE Proceeding-F,1992,139(l):89-97.
    [50]李刚,朱敏慧.基于扩展小波变换的机载SAR运动目标参数估计[J].电子与信息学报,2001,23(11):1154-1161.
    [51]毛引芳,陈国安.基于WVD-HT的SAR/lSAR多运动目标检测[J].电子科学学刊,1997,19(4):464-470.
    [52] Chen H, and McGillem C D. Target Motion Compensation by Spectrum Shifting inSynthetic Aperture Radar[J]. IEEE Trans. on Aerospace and Electronic Systems,1992,28(3):895-901.
    [53] Moreira J R, and Keydel W. A new MTI-SAR approach using the reflectivitydisplacement method[J]. IEEE Trans. On Geoscience and Remote Sensing,1995,33(5):1238-1244.
    [54] Perry R P, Dipietro R C, and Fante R L. SAR imaging of Moving Targets[J]. IEEETrans. on Aerospace and Electronic system,1999,35(1):188-200.
    [55] Wang Genyuan, and Xia Xianggen. Dual-Speed SAR Imaging of MovingTargets[C]. Part of the SPIE Conference on algorithms for Synthetic ApertureRadar Imagery VI, Orlando, Florida, April1999, SPIE Vol.3721:118-129.
    [56] Fienup J R. Detecting Moving Targets in SAR Imagery by Focusing[J]. IEEE Trans.on Aerospace and Electronic system,2001,37(3):794-809.
    [57] Dias J M B, and Marques P A C. Multiple moving targets detection and trajectoryparameters estimation using a single SAR sensor[J]. IEEE Trans. On Aerospaceand Electronic system,2003,39(2):604-624.
    [58] Dias J, and Marques P. Moving targets detection and trajectory parametersestimation using a single SAR sensor[J]. IEEE Trans. on Aerospace and ElectronicSystems,2003,39(2):604-624.
    [59] Wang Genyuan, Xia Xianggen, and Chen V C. Dual-Speed SAR Imaging ofMoving Targets[J]. IEEE Trans. on Aerospace and Electronic Systems,2006,42(1):368-379.
    [60]朱圣棋.高速运动平台雷达GMTI关键技术研究[D].博士学位论文,西安电子科技大学,2010.
    [61]孟祥东.空时二维自适应信号处理与动目标检测[D].博士学位论文,西安电子科技大学,2009.
    [62] Sharp G C, Lee S W, and Wee D K. ICP registration using invariantfeatures[J].IEEE Trans. On pattern Analysis and Machine Intelligence,2002,24(l):90-102.
    [63] Fante R L. Analysis of the displaced-phase-center Radar for clutter reduction[C].Mitre Corporation Report,1989, MT10666.
    [64] Lightstone L, Faubert D, and Rempel G. Multiple phase center DPCA for airboneradar[C]. Proceedings of IEEE National Radar Conference,1991:36-40.
    [65] Nohara T J. Derivation of a3-Channel DPCA/monopulse radar using phasedarrays[C]. IEEE International Radar Conference,1994:243-246.
    [66] Wang H S C. Mainlobe clutter cancellation by DPCA for space-based Radars[C].Aerospace Applications Conference,1991:124-128.
    [67] Richard E C. Dual baseline and frequency along-track interferometry[C].Proceeding of IEEE IGARSS,1992:1585-1588.
    [68] Barnler R, and Hartl P. Synthetic aperture radar interferometry[J]. Inverse Problems.1998,14:1-54.
    [69] Frasier S J, and Camps A J. Dual-beam interferometry for ocean surface currentvector mapping[J]. IEEE Trans. On Geoscience and Remote Sensing,2001,39(2):401-414.
    [70] Kim D, Moon W M, Imel D A, and Moller D. Remote sensing of ocean waves andcurrents using NASA(JPL) AIRSAR along-track interferometry(ATI)[C].Proceeding of IGARSS,2002:931-933.
    [71] Barbarossa S, and Farina A. Space-time-frequency processing of synthetic apertureradar signals[J]. IEEE Trans. On Aerospace and Electronic Systems,1994,30(2):341-358.
    [72] Klemm R. Introduction to space-time adaptive processing[J]. Electronics&Communication Engineering Journal,1999,11(1):5-12.
    [73] Klemm R. Applications of Space-Time Adaptive Processing[M]. London: TheInstitution of Electrical Engineers,2004
    [74]保铮,廖桂生,吴仁彪,张玉洪,王永良.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报,1993,21(9): l-7.
    [75]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载时空二维信号处理[J].现代雷达,1994,16(1):38-48.
    [76]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,2000.
    [77] Nohara T J. Comparison of DPCA and STAP for space-based radar[C]. IEEEInternational Radar Conference,1995:113-119.
    [78] Richardson P G. Relationships between DPCA and adaptive space-time processingtechniques for clutter suppression[C]. IEEE International Radar Conference, Paris,1994:295-300.
    [79]龚耀寰.机载雷达相位中心偏移天线系统的性能[J].电子学报,1995,23(9):24-27.
    [80]袁昊,周荫清,李景文.基于幅度和相位联合的ATI动目标检测新方法[J].北京航空航天大学学报,2007,33(2):169-175.
    [81] Chiu S. Performance of RADARSAT2SAR-GMTI processors at high SARResolutions. Defence R&D Canada Technical Report, Ottawa.
    [82] Brennan L E, and Reed L S. Theory of adaptive radar[J]. IEEE Trans. OnAerospace and Electronic Systems,1973,9(2):237-252.
    [83] Reed I S, mallet J D, and Brennan L E. Rapid convergence rate in adaptivearrays[J]. IEEE Trans. on Aerospace and Electronic Systems,1974,10(6):853-863.
    [84] Klemm R. Principles of Space-Time Adaptive Processing[M]. London, U.K.: InstElect Eng,2002.
    [85]廖桂生.相控阵天线AEW雷达时一空二维自适应处理[D].博士学位论文,西安电子科技大学,1992.
    [86]吴仁彪.机载相控阵雷达时空二维自适应滤波的理论与实现[D].博士学位论文,西安电子科技大学,1993.
    [87]王永良.新一代机载预警雷达的空时二维自适应处理[D].博士学位论文,西安电子科技大学,1994.
    [88]许志勇. AEW雷达空时二维自适应处理降维方法的研究[D].博士学位论文,西安电子科技大学,1997.
    [89]张良.机载相控阵雷达降维STAP研究[D].博士学位论文,西安电子科技大学,1999.
    [90]王彤.机载雷达简易STAP方法及其应用[D].博士学位论文,西安电子科技大学,2001.
    [91]姜晖.非均匀杂波环境下机载雷达STAP方法研究[D].博士学位论文,西安电子科技大学,2010.
    [92] Cerutti-Maori D, Klare J, Brenner A, and Ender J H G. Wide area traffic monitoringwith the SAR/GMTI system PAMIR[J]. IEEE Trans. on Geosc. RemoteSens.—Special Issue,2008,46(10):3019-3030.
    [93] Thoma J, and Dick S. Gray wolf S-3B demonstration of podded NordenAN/APG-76radar system[A]. In: Proc. of the IEEE Digital Avionics SystemsConference[C], Phoenix, AZ, USA,1994:328-333.
    [94] Tobin M E, and Greenspan M. Smuggling interdiction using an adaptation of theAN/APG-76multimode radar[J]. IEEE Aerospace and Electronic Systems,1996,11(11):19-24.
    [95] Tobin M E, and Greenspan M. Smuggling interdiction using an adaptation of theAN/APG-76multimode radar[J]. IEEE Trans. on Aerospace and ElectronicSystems,1996,11(11):19-24.
    [96] James D. O'Brien; Hugh D. Holt, Jr.; Harold D. Maney, Jr. and Lawrence P. Orwig.Interferometric radar imaging using the AN/APG-76radar[J]. Proc. SPIE2747,Radar Sensor Technology,37(June17,1996); doi:10.1117/12.243086.
    [97]张直中.军和民两用的AN/APG-76(V)机载雷达[J].现代雷达,1999,21(6):1-4.
    [98]吕孝雷.机载多通道SAR-GMTI处理方法的研究[D].博士学位论文,西安电子科技大学,2002.
    [99]夏猛.多通道SAR系统地面运动目标信息获取方法研究[D].博士学位论文,西安电子科技大学,2012.
    [100] Shnitkin H. JointSTARS phased array radar antenna[J]. IEEE Aerospace andElectronic Systems Magazine,1994,9(10):856-859.
    [101] Entzminger J N. JointSTARS and GMTI: past, present and future[J]. IEEE Trans.on Aerospace and Electronic Systems,1999,35(2):748-761.
    [102] Stockburger E F, and Held D N. Interferometric moving ground target imaging[A].In: Proc. of the IEEE Radar Conference[C], Alexandria, VA, USA,1995:438-443.
    [103]时公涛.基于干涉图的多通道SAR地面慢动目标自动检测技术研究[D].博士学位论文,国防科学技术大学,2009.
    [104]阳曙光,张林,王东祁.国外机载地面监视系统的现状及发展趋势[J].飞航导弹,2006,(12):13-16.
    [105] Hepburn J S A, and Doyle C P. Motion compensation for ASTOR long rangeSAR[A]. In: Proc. of the IEEE Position Location and Navigation Symposium(PLANS’90), Las Vegas, NV, USA,1990:205-211.
    [106]毋梅莲,赵玉洁.英国ASTOR机载运程侦察雷达系统[J].航空电子技术,1994,(1):23-25
    [107]陈文英.雷声公司组装英国第一架ASTOR雷达系统[J].现代雷达,2004,26(5):52.
    [108]闫娟.先进机载战场监视系统ASTOR发展分析[J].国际航空,2011,(2):32-34.
    [109] Vant M, Livingstone C, and Rey M. Canadian experience on Radarsat-1andRadarsat-2GMTI for surveillance[A]. In: Proc. AIAA/ICAS International Airand Space Symposium and Exposition: The Next100Year[C], Dayton, OH,USA,2003:1-10.
    [110] Chiu S. Computer simulation of Canada’s RADARSAT-2GMTI[A]. In: Proc. Ofthe Sensor Electronic Technology (SET) of Research Technology Organization(TRO) Symposium[C], Samos, Greece,2000:451-458.
    [111] Nohara T J, Weber P, Premji A, et al. SAR-GMTI processing with Canada’sRadarsat2satellite[A]. In: Proc. of the IEEE Adaptive Systems for SignalProcessing, Communications, and Control Symposium[C], Lake Louise, Alta.,Canada,2000:379-384.
    [112] Beaulne P D, Gierull C H, Livingstone C E, et al. Preliminary design of aSAR-GMTI processing system for RADARSAT-2MODEX data[A]. In: Proc.Of the IEEE International Geoscience and Remote Sensing Symposium(IGARSS’03)[C], Toulouse, France,2003,2:1019-1021.
    [113] Thompson A A, Luscombe A P, James K, et al. New modes and techniques of theRADARSAT-2SAR[A]. In: Proc. of the IEEE International Geoscience andRemote Sensing Symposium (IGARSS’01)[C], Sydney, NSW, Australia,2001,1:485-487.
    [114] Thompson A A. and Livingstone C E. Moving target performance forRADARSAT-2[A]. In: Proc. of the IEEE International Geoscience and RemoteSensing Symposium (IGARSS’00)[C], Honolulu, HI, USA,2000,6:2599-2601.
    [115] Vant M, Livingstone C, Rey M, et al. Canadian experience on RADARSAT-1andRADARSAT-2GMTI for surveillance[A]. In: Proc. of the International Air andSpace Symposium and Exposition[C], Dayton, Ohio, USA,2003:14-17.
    [116] Vant M, Livingstone C, Rey M, et al. Canadian experience on RADARSAT-1andRADARSAT-2GMTI for surveillance[A]. In: Proc. of the International Air andSpace Symposium and Exposition[C], Dayton, Ohio, USA,2003:14-17.
    [117]皮亦鸣,杨建宇,付毓生,杨晓波.合成孔径雷达成像原理[M],成都:电子科技大学出版社,2007.
    [118] Gebert N. Multi-channel azimuth processing for high-resolution wide-swath, Ph.D.dissertation Universit t (TH), DLR-Forschungsbericht, Wessling, Germany,2009.
    [119]李真芳,保铮.分布式小卫星SAR系统地面运动目标检测方法[J],电子学报,2005,33(9):1664-1666,.
    [120] Li Zhenfang, Bao Zheng, Wang Hongyang and Liao Guisheng, PerformanceImprovement for Constellation SAR using Signal Processing Techniques[J], IEEETrans. on AES,2006,42(2):436-452.
    [121] Li Zhenfang, and Bao Zheng, A Novel Approach for Wide-swath andHigh-resolution SAR Image Generation from Distributed Small Spaceborne SARSystems[J], International Journal of Remote Sensing,2006,27(3):1015-1033,.
    [122] TimJ. Nohara. Comparison of DPCA andSTAP for space-based radar[C]. IEEEIntemational Radar Conferenee,1995:113-119.
    [123] Lightstone L, Faubert D, and GRemPel. Multiple Phase center DPCA for airborneradar[C]. Proceeding of the1991IEEE National Radar Conferenee,1991:36-40.
    [124]郑明洁.合成孔径雷达动目标检测和成像研究[D].[博士论文].北京:中科院电子所,2003.
    [125] Sikanetal, and GierullC. Ground moving target deteetion for along-trackinterferometer SAR data[J]. IEEE Aerospace Conferenee Proeeedings,2004,4:2227-2235.
    [126] Rodriguez E, and Martin J M. Theory and design of interferometrie syntheticaperture radar[J]. Proceeding of IEEE,1992,139(2):147-159.
    [127] Gabriel A K, Goldstein R M, and Cross Orbit Interefromerty. Theory andExperimental Results Form SIR-B. Int J Remote Sensing,1988,9(8):857-872.
    [128] Brernnan L E, and Reed I S. Theory of adaptive radar[J]. IEEE Trans. Aerospaceand Electronic Systems,1973,9(2):237-252.
    [129] Reed I S, Mallett J D, and Brennan L E. Rapid convergence rate in adaptivearrays[J]. IEEE Transactions on Aerospace and Electronic Systems,1974,10(6):853-863.
    [130] Melvin L L. A STAP overview[J]. IEEEA&ESYSTEMS MAGAZINE2004,19(l):19-35.
    [131]李真芳,保铮.基于成像的分布式卫星SAR系统地面运动目标检测(GMTI)及定位技术[J].中国科学,2005,35(6),597-609.
    [132]何友,关键,彭应宁,等.雷达自动检测与恒虚警处理[M].北京:清华大学出版社,1999:32-51.
    [133] Reed I S, Mallett J D, and Brennan L E. Rapid Convergence Rate in AdaptiveArrays[J]. IEEE Trans. on AES,1974,10:853-863.
    [134] Frost O L. An Algorithm for Linearly Constrained Adaptive Array Processing[J].Proc IEEE,1972,60(8):926-935.
    [135] Sikaneta I. Detection of ground moving objects with synthetic aperture radar.Ottawa: Univ. of Ottawa.2004.
    [136]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法[D].博士学位论文,西安电子科技大学,2006.
    [137]杨志伟,廖桂生,曾操.基于联合特征空间投影的SAR图像域杂波抑制[J].电子学报,2007,35(12):2298-2301.
    [138] Li Zhenfang, Bao Zheng, and Yang Fengfeng. Ground Moving Target Detectionand Location based on SAR Images for Distributed Spaceborne SAR[J]. Science inChina Series F,2005,48(5):632-646.
    [139] Currie A, and Brown M A. Wide-swath SAR[J]. IEEE Proceedings-F,1992,139(2):122-135.
    [140] Gierull C H, and I C. Sikaneta. Raw data based two-aperture SAR ground movingtarget indication [C]. Proceedings of IGARSS, Toulouse, France,2003.
    [141] Ender J. Detection and estimation of moving target signals by multi-channelSAR[J]. AEU-International Journal of Electronics and Communications,1996,50(2):150-156.
    [142] Ender J. The airborne experimental multi-channel SAR system AER-II[A].EUSAR1996[C]. Germany: IEEE,1996:49-52.
    [143]吕孝雷,苏军海,邢孟道,张守宏.三通道SAR-GMTI误差校正方法的研究[J].系统工程与电子技术,2008,30(6):1037-1042.
    [144]刘向阳.机载多通道SAR-GMTI误差分析与补偿方法研究[D].[博士论文].西安电子科技大学,2010.
    [145] Liu Aifei, Liao Guisheng, Ma Lun, and Xu Qing. An array error estimationmethod for constellation SAR systems[J]. IEEE Geoscience and Remote SensingLetters,2010,7(4):731-735.
    [146] Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEETransactions on Antennas and Propagation,1986, AP-34(3):276-280.
    [147]夏猛,杨小牛.星机双基地SAR-GMTI中的运动误差分析[J].系统工程与电子技术,2012,34(5):925-930.
    [148]马仑.分布式小卫星SAR宽域、高分辨率成像方法研究[D].[博士论文].西安电子科技大学,2008.
    [149] Li Zhenfang, Wang Hongyang, and Bao Zheng. Generation of wide-swath andhigh-resolution SAR images from multichannel small spaceborne SAR system[J].IEEE Geoscience Remote Sensing Letters,2005,2(1):81-86.
    [150] Krieger G, Gebert N, and Moreira A. Ambiguous SAR signal reconstruction fromnon-uniform displaced phase centre sampling[J]. IEEE Geoscience RemoteSensing Letters,2004,1(4):260-264.
    [151]杨桃丽,李真芳,刘艳阳,保铮.两种星载高分辨宽测绘带SAR系统通道相位误差估计方法[J].电子学报,2013,41(5):931-935.
    [152]李真芳,邢孟道,王彤,保铮.分布式小卫星SAR实现全孔径分辨率的信号处理[J].电子学报,2003,31(12):1800-1803.
    [153] Kim J, Younis M, and Wiesbeck W. Experimental performance investigation ofdigital beamforming on synthetic aperture radar [A]. IGARSS2008[C]. USA: IEEE,2008:176-179.
    [154]杨凤风,王敏,梁甸农.基于非均匀采样的小卫星多通道SAR无模糊成像[J].电子学报,2007,35(9):1754-1756.
    [155]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法[M].北京:清华大学出版社,2004:152-156.
    [156] Yang Taoli, Li Zhenfang, LiuYangyang, and Bao Zheng. Channel error estimationmethods for multichannel SAR systems in azimuth. IEEE Geosci[J]. Remote Sens.Lett.,2013,10(3):548-552.
    [157]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004:595-596.
    [158] Wehner D R. High-resolution radar [M].2nd ed. Norwood: Artech House,1995.
    [159]王岩飞,刘畅,李和平,等.基于多通道合成的优于0.1m分辨率的机载SAR系统[J].电子与信息学报,2013,35(1):29-35.
    [160]刘峥,刘宏伟,张守宏.步进频率信号分析[J].西安电子科技大学学报,1999,26(1):71-74.
    [161]刘亚波,李军,李亚超,等.解线频调步进频率ISAR成像研究[J].西安电子科技大学学报,2010,37(3):469-519.
    [162]程普,王展,方凌江,等.调频连续波SAR方位多波束成像[J].现代电子技术,2013,36(3):12-20.
    [163] Schimpf H, and Wahlen A. High range resolution by means of syntheticbandwidth generated by frequency-stepped chirps. Electron[J]. Lett.,2003,39(18):1346-1348.
    [165] Tait N W, Lord J, and Wilkinson R. The use of a frequency domain steppedfrequency technique to obtain high range resolution on the CSIR X band SARsystem[C]. African Conference in Africa,2002. IEEE AFRICON.6th,2002,1:327-332.
    [164] Lord R T, and Inggs M R. High resolution SAR processing usingstepped-frequencies [C]. IGARSS,1997:490-492.
    [166] Wilkinson A J, Lord R T, and Inggs M R. Stepped frequency processing byreconstruction of target reflectivity spectrum[C]. Proc. South African Symp.Commun. Signal Process,1998:101–104.
    [167] Deng Yunkai, Zheng Huifang, Wang R, et al. Internal calibration forstepped-frequency chirp SAR imaging[J]. IEEE Geoscience and Remote SensingLetters,2011,8(6):1105-1109.
    [168]郜参观,邓云凯,冯锦.通道失配对多通道子带合成SAR性能的影响分析与补偿[J].电子与信息学报,2012,34(1):154-159.
    [169]孙林,田卫明,曾涛.调频步进频雷达中距离起点误差分析[J].电子与信息学报,2012,34(5):1070-1075.
    [170] Brenner A R, and Ender J H G. First experimental results achieved with the newvery wideband SAR system PAMIR[C]. EUSAR,2002:81-86.
    [171] Freeman A, and Johnson W T K, Huneycutt B, et al.. The―myth‖of the minimumSAR Antenna Area Constraint[J]. IEEE Transaction on Aerospace and ElectronicSystems,2000,38(1):320-324.
    [172] Li Zhenfang, Wang Hongyang, and Bao Zhen. Generation of wide-swath andhigh-resolution SAR images from multichannel small spaceborne SAR system[J].IEEE Geoscience Remote Sensing Letters,2005,2(1):81-86.
    [173] Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: techniquesand optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEETransaction on Aerospace and Electronic Systems,2009,45(2):564-592.
    [174] Guo B, Vu D, Xu L, et al.. Ground moving target indication via multichannelairborne SAR[J]. IEEE Transaction on Geoscience and Remote Sensing,2011,49(10):3753-3764.
    [175]张佳佳,周芳,孙光才,等.基于前向阵雷达的三通道地面快速动目标检测与成像方法[J].电子与信息学报,2013,35(1):8-14.
    [176] Zhu Shengqi, Liao Guisheng, and Tao Haihong. Ground moving targets detectionand relocation in heterogeneous environment for airborne radar based ontri-channel real data[C]. IEEE CIE International Conference on Radar, Chengdu,2011:719-722.
    [177] Delphine C M. A generalization of DPCA processing for MultichannelSAR/GMTI Radars[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,51(1):560-572.
    [178] Lv Gaohuan, Wang Junfeng, and Liu Xingzhao. Ground moving target indicationin SAR images by symmetric defocusing[J]. IEEE Geoscience and RemoteSensing Letters,2013,10(2):241-245
    [179] Sun Guangcai, Xing Mengdao, Xia Xianggen, et al.. Robust ground moving-targetimaging using deramp-keystone processing[J]. IEEE Transaction on Geoscienceand Remote Sensing,2013,51(2):966-982.
    [180]梁甸农,蔡斌,王敏,等.星载SAR-GMTI研究进展[J].国防科技大学学报,2009,31(4):87-92.
    [181]周志敏,周红,雷鹏正,等.低频宽带SAR/GMTI试验系统[J].国防科技大学学报,2011,33(6):72-77.
    [182] Capon J. High resolution frequency-wavenumber spectrum analysis, Proceedingof IEEE,1969,57:1408-1418.
    [183] Li F K, and Johnson W T K. Ambiguities in spaceborne synthetic aperture radardata[J], IEEE Transaction on Aerospace and Electronic Systems,1983,19(3):389-397.
    [184]侯瑞,谭志祥,黄国满.高分辨率星载SAR卫星—TerraSAR-X[J].中国科技论文在线精品论文,2009,2(14):1479~1484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700