用户名: 密码: 验证码:
姿态变化对遥感推扫式三线阵立体测量精度的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
推扫式三线阵CCD相机在星载和机载遥感立体测量中得到了广泛应用。由于其特殊的成像方式,遥感平台姿态变化、地面形貌变化、遥感平台振动、地球自转等因素对三线阵推扫影像及立体测量精度的影响更为复杂。本文针对姿态变化对遥感推扫式三线阵CCD相机影像像移及立体测量精度影响的关键理论和技术展开研究,涉及的研究内容如下:
     1.深入和系统地阐述了遥感推扫式线阵CCD相机的发展历程,典型单线阵、双线阵和三线阵CCD相机的成像参数和立体测量参数;研究了遥感推扫式三线阵CCD相机立体成像原理及其影像特征,立体摄影测量中涉及的常用像空间坐标系及其转换关系;综述了遥感推扫式三线阵CCD相机常用成像数学模型,以及各种模型的适用范围及定位精度。
     2.研究了姿态变化对遥感推扫式三线阵CCD相机成像像移的影响。利用坐标系转换方法建立了三线阵CCD相机的前向像移数学模型,构建了三轴姿态角变化对三线阵CCD相机成像影响原理图,提出了三轴姿态变化时遥感推扫式三线阵CCD相机成像像移数学模型。在此基础上,利用现有航空三线阵CCD相机参数,对三轴姿态变化时三线阵CCD相机不同线阵列的像移分布、不同姿态角对像移的影响程度及多姿态角并行变化时像移的变化规律进行了仿真分析,得到了三轴姿态变化对推扫式三线阵CCD相机成像的影响规律。
     3.提出了基于空间前方交会原理的无控制点遥感推扫式三线阵CCD相机立体摄影测量误差模型。利用Chang’E-1三线阵CCD相机成像参数、在轨运行相关参数、Chang’E-1三线阵CCD相机2C级影像数据,针对基线、姿态角、像点坐标、焦距对Chang’E-1三线阵CCD相机无控制点立体摄影测量精度的影响进行了实验和分析,对比了不同姿态角对Chang’E-1三线阵CCD相机立体定位精度的影响。
     4.提出一种半实物仿真实验方法来研究姿态变化对遥感推扫式三线阵立体测量精度的影响,完成了实验系统的搭建,实现了影像数据的采集和三线阵图像的提取;提出一种基于地形复杂度定量分析和地形分类的DEM建模方法选择策略,实现了DEM建模精度和建模速度的统一,为月面形貌实物模型的制备提供了理论基础;对三轴姿态变化时的标志点高程测量误差进行了计算和分析,验证了不同姿态角对高程定位精度的影响规律,并对连续滚转角变化时的三线阵图像进行了像移补偿,验证了提出的三线阵CCD相机像移数学计算模型。
Three-line-array (TLA) push-broom cameras have been widely used in remotesensing stereo photogrammetry, eithor sapceborne or airborne. Due to the specialimaging mechanism, the influence that brought by many factors such as attitudevariation, topographic relief, vibration, rotation of earth, is more complicated thanother cameras. Key thoeries and technologies of attitude variation effects on TLApush-broom cameras in imaging and stereophotogrammetry are studied in this paper.
     The main research contents are as follows:
     1. The development of push-broom linear array CCD cameras has been reviewed,and many typical cameras of single linear array CCD, dual linear array CCD and threelinear arrays CCD are introduced in detail. Both imaging parameters andstereophotogrammetry parameters of these linear array CCD camers are listed.Stereoimaging principle and features of images of TLA push-broom cameras arestudied. The common coordinate systems of image space and their transformationrelation are intoduced. The common used mathematical models for TLA push-broomcameras and their application scope and positioning precision are also reviewed.
     2. The image motion model for TLA push-broom cameras is presented in this paper.Both aircraft velocity and attitude instability are taken into account in modeling imagemotion. Effects of aircraft pitch, roll, and yaw on image motion are analyzed based ongeometric relations in designated coordinate systems. Quantitative analysis to imagemotion is then conducted in simulation experiments. The results have shown thatimage motion caused by aircraft velocity is space invariant whilst image motioncaused by aircraft attitude instability is more complicated. Pitch, roll, and yaw allcontribute to image motion to different extents. Pitch dominates the along-track imagemotion and both roll and yaw greatly contribute to the cross-track image motion.These results provide a valuable base for image motion compensation to ensure highaccurate imagery in aerial photogrammetry.
     3. The positioning error model for stereophotogrammetry using TLA push-broomcameras is established base on space intersection principle. Experiments are carriedout based on Chang’E-1TLA push-broom camera parameters of imaging and orbitand attitude control. Effects of three attitudes (pitch, roll and yaw), baseline, stereoimage pair coordinates and focal length are analyzed.
     4. An approach of semi-physical simulation for attitude instability using remotesensing TLA push-broom cameras is presented. The design scheme for three-axisattitude control module is described, and two physical models of high precision aremade using real lunar terrain elevation data downloaded from NASA. An effectiveapproach for selection of appropriate terrain modeling methods in forming a digitalelevation model (DEM) is proposed. This approach achieves a balance betweenmodeling accuracy and modeling speed. A support vector machine classifies terrainsurfaces into either complex or moderate based on a terrain complexity indexassociated with the terrain elevation range. The attitude variation is conducted insemi-physical simulation experiments, the original videos are captured, and imagestrips of TLA camera are extracted from these videos. Elevation errors of the fivemark points, located on the physical terrain models, which are produced by attitudesvariation, are calculated and analyzed, based on these image strips, and the effectrules on the elevation positioning accuracy caused by attitudes are proved. The imagemotion caused by rolling is compensated based on the mathematical models that areproposed in this paper, and the compensation result proves this model is correct.
引文
[1] A.P. Cracknell, and C.A. Varotsos. Fifty years after the first artificial satellite:from Sputnik1to ENVISAT, International Journal of Remote Sensing,2007,28(10):2071~2072
    [2] V.P. Legostaev. Sputnik-1The first artificial earth satellite, InternationalAstronautical Federation-58th International Astronautical Congress2007,2007,vol.13,8430~8432
    [3] P. Gong. Some essential questions in remote sensing science and technology,Jounal of Remote Sensing,2009,13(1):1~12
    [4] R.N. Colwell. History and place of photographic interpretation, In W.R. Philipsoneds. Mamual of Photographic Interpretation2nded., Bethesda, Maryland: AmericanSociety for Photogrammetry and Remote Sensing,3~47
    [5] M. Ehlers. Remote Sensing for GIS applications: New sensors and analysismethods, In Remote Sensing, International Society for Optics and Photonics,2004,pp.1~13
    [6]徐冠华,田国良,王超等,遥感信息科学的进展和展望,地理学报,1996,51(5):385~397.
    [7] V. Klemas. Airborne remote sensing of coastal features and processes: Anoverview, Journal of Coastal Research,29(2):239~255
    [8] A. Moccia, N. Chiacchio, and A. Capone. Spaceborne bistatic synthetic apertureradar for remote sensing applications, International Journal of Remote Sensing,2000,21(18):3395~3414
    [9]田辉,文军,史小康等,主动微波遥感黄河上游玛曲地区夏季土壤水分,水科学进展,2011,22(1):59~66
    [10] P. Xiao, Z. Yu, and C.S Li. Compressive sensing SAR range compression withchirp scaling principle, Science China (Information Sciences),2012,55(10):2292~2300
    [11]赵杰鹏,张显蜂,包慧漪等,基于可见光红外与被动微波遥感的土壤水分协同反演,红外与毫米波学报,2012,31(2):137~143
    [12] R.O. Green, M.L. Eastwood, C.M. Sarture, et al. Imaging spectroscopy and theairborne visible/infrared imaging spectrometer (AVIRIS), Remote Sensing ofEnvironment,1998,65(3):227~248
    [13] M. Mutlu, S.C Popescu, C. Stripling, et al. Mapping surface fuel models usinglidar and multispectral data fusion for fire behavior, Remote Sensing of Environment,2008,112(1):274~285
    [14]柯刚扬,安宁,田扬超等.旋转扫描式成像光谱仪高光谱的几何变形矫正,光谱学与光谱分析,2012,32(8):2223~2227
    [15]李德仁,摄影测量与遥感的现状及发展趋势,武汉测绘科技大学学报,2000,25(1):1~6
    [16]李德仁,论21世纪遥感与GIS的发展,武汉大学学报(信息科学版),2003,28(2):127~131
    [17] B. Koch.Status and future of laser scanning, synthetic aperture radar andhyperspectral remote sensing data for forest biomass assessment, ISPRS Journal ofPhotogrammetry and Remote Sensing,2010,65(6):581~590
    [18]李德仁,摄影测量与遥感学的发展展望,武汉大学学报(信息科学版),2008,33(12):1211~1215
    [19] A. Gruen, Development and status of image matching in photogrammetry, ThePhotogrammetric Record,2012,27(137):36-57
    [20]张祖勋,数字摄影测量的发展与展望,地理信息世界,2004,2(3):1~5
    [21] X. Yuan, On stereo model reconstitution in aerial photogrammetry, Geo-spatialInformation Science,2008,11(4):235~242
    [22] T. Toutin. Three-dimensional topographic mapping with ASTER stereo data inrugged topography, IEEE Transactions on Geoscience and Remote Sensing,2002,40(10):2241~2247
    [23] T. Toutin. Review article: Geometric Processing of remote sensing images:models, algorithms and methods, Internatinal Journal of Remote Sensing,2004,25(10):1893~1924
    [24] M. M. Susan, R. D. Jackson, G. F. Hart, et al. Obtaining surface reflectancefactors from atmospheric and view angle corrected SPOT-1HRV data, RemoteSensing of Environment,1990,32(2):203~214
    [25] R.Sandau. Digital airborne camera: Introduction and technology, SpringerScience+Business Media,2010, pp.20~27
    [26] J. M. Froidefond, P. Castaing, M. Mirmand, et al. Analysis of the turbid plume ofthe Gironde (France) based on SPOT radiometric data, Remote Sensing ofEnvironment,1991,36(3):149~163
    [27] A. R. Jones, J. J. Settle, and B. K. Wyatt. Use of digital terrain data in theinterpretation of SPOT-1HRV multispectral imagery, Remote Sensing,1988,9(4):669~682
    [28] C. Yang, A. Vidal. Combination of digital elevation models with SPOT-1HRVmultispectral imagery for reflectance factor mapping, Remote Sensing ofEnvironment,1990,32(1):35~45
    [29]张影,三线阵CCD立体测绘相机总体技术研究:[博士学位论文],长春,长春理工大学,2006
    [30] C.S. Fraser, H. B. Hanley. Bias compensation in rational functions for Ikonossatellite imagery, Photogrammetric Engineering&Remote Sensing,2003,69(1):53~57
    [31] J. Grodecki. IKONOS stereo feature extraction-RPC approach, Proc. ASPRSAnnual Conference, St. Louis.2001:23~27
    [32]陈闻畅, IKONOS成像机理及立体测图精度研究:[硕士学位论文],武汉,武汉大学,2005
    [33] G. Dial, H. Bowen, F. Gerlach, et al. IKONOS satellite, imagery, and products,Remote sensing of Environment,2003,88(1):23~36
    [34] T. Toutin. Comparison of stereo-extracted DTM from different high-resolutionsensors: SPOT-5, EROS-A, IKONOS-II, and QuickBird, IEEE Transactions onGeoscience and Remote Sensing,2004,42(10):2121~2129
    [35] IKONOS high-resolution satellite imagery, LAND INFO Worldwide Mapping:http://www.landinfo.com/satprices.htm,2013年4月3日
    [36] T. Toutin and P. Cheng. QuickBird-A milestone for high-resolution mapping,Earth Observation Magazine,2002,11(4):14~18
    [37] L. Wang, W. P. Sousa, P. Gong, et al. Comparison of IKONOS and QuickBirdimages for mapping mangrove species on the Caribbean coast of Panama, RemoteSensing of Environment,2004,91(3):432~440
    [38] QuickBird high-resolution satellite Imagery, LAND INFO Worldwide Mapping:http://www.landinfo.com/qb.htm,2013年4月5日
    [39] QuickBir,上帝之眼:http://www.godeyes.cn/Satellite/quickbird/parameter.html,2013年4月5日
    [40] K. Kohm. Modulation transfer function measurement method and results for theOrbview-3high resolution imaging satellite, Proceedings of ISPRS,2004:12~23.
    [41] M. Yanalak, E. Sertel, N. Musaoglu, et al. Comparison of planimetric andthematic accuracy of OrbView-3and IKONOS images, Journal of the Indian Societyof Remote Sensing,2011,39(2):135~146
    [42]赵秋艳,Orbview系列卫星介绍,航天返回与遥感,2000,21(2):23~28
    [43] D. Poli and T. Toutin. Review of developments in geometric modelling for highresolution satellite pushbroom sensors, Photogrammeric Record,2012,27(137):58~73
    [44] EROS-B,上帝之眼:http://www.godeyes.cn/Satellite/eros-b/parameter.html,2013年4月6日
    [45] EROS-B, eoPortal: https://directory.eoportal.org/web/eoportal/satellite-missions/e/eros-b,2013年4月6日
    [46] Kompsat-2Mission and Overview, ESA Earthnet Online: https://earth.esa.int/web/guest/missions/3rd-party-missions/overview/content? p_r_p_564233524_assetIdentifier=kompsat-2-mission-and-overview-5795,2013年4月10日
    [47] D.C. Seo, J. Y. Yang, D. H, Lee, et al. Kompsat-2direct sensor modeling andgeometeric calibration/validation, The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Science, Vol. XXXVII, Part B, Beijing,2008,pp.47~51
    [48] SPOT-5, eoPortal:https://directory.eoportal.org/web/eoportal/satellite-missions/s/spot-5,2013年4月10日
    [49] A. Bouillon, M. Bernard, P. Gigord, et al. SPOT5HRS geometric performances:Using block adjustment as a key issue to improve quality of DEM generation, ISPRSJournal of Photogrammetry and Remote Sensing,2006,60(3):134~146
    [50] T. Toutin. Generation of DSMs from SPOT-5in-track HRS and across-trackHRG stereo data using spatiotriangulation and autocalibration, ISPRS Journal ofPhotogrammetry and Remote Sensing,2006,60(3):170~181
    [51] About the SPOT-5satellite sensor, Satellite Imaging Corporation:http://www.satimagingcorp.com/satellite-sensors/spot-5.html,2013年4月10日
    [52] LISM [Terrain Camera, Multiband Imager, Spectral Profiler], Japan AerospaceExploration Agency: http://www.kaguya.jaxa.jp/en/equipment/tc_e.htm,2013年4月10日
    [53] M. Kato, S. Sasaki, K. Tanaka, et al. The Japanese lunar mission SELENE:Science goals and present status, Advances in Space Research,2008,42(2):294~300
    [54] J. Haruyama, M. Ohtake, T. Matsunaga, et al. Selene (Kaguya) terrain cameraobservation results of nominal mission period, Lunar and Planetary Institute ScienceConference Abstracts,2009, vol.40:1553.
    [55] What is LROC? Lunar Reconnaissance Orbiter Camera: http://lroc.sese.asu.edu/EPO/LROC/lroc.php,2013年4月10日
    [56] What is LROC: Tech Specs, Lunar Reconnaissance Orbiter Camera:http://lroc.sese.asu.edu/EPO/LROC/lroc.php?pg=specifications,2013年4月10日
    [57] M. S. Robinson, S. M. Brylow, M. Tschimmel, et al. Lunar reconnaissanceorbiter camera (LROC) instrument overview, Space science reviews,2010,150(1-4):81~124
    [58]赵葆常,杨建峰,汶德胜等,嫦娥二号卫星CCD立体相机设计与验证,航天器工程,2011,20(1):14~21
    [59] B.C. Zhao, J.F. Yang, D.S. Wen, et al. Overall scheme and on-orbit images ofChang’E-2lunar satellite CCD stereo camera, Science China Technological Sciences,2011,54(9):2237~2242
    [60] R. Welch and W. Marko. Cartographic potential of a spacecraft line-array camerasystem-Stereosat, Photogrammetric Engineering and Remote Sensing,1981,47:1173~1185
    [61]王任享,王新义,李晶等,提高卫星三线阵CCD影像空中三角测量精度及摄影测量覆盖效能,测绘科学,2003,28(3):4
    [62] M. Wang, F. Hu, and L. Jonathan. A fast approach to best scanline search ofairborne linear pushbroom images, Photogrammetric engineering and remote sensing,2009:75(9):1059~1067
    [63] G. Petrie. Airborne pushbroom line scanners: an alternative to digital framecameras,2005, GeoInformatics,8(1):50~57
    [64] O. Holfmann. A digital three line stereo scanner system, ISPRS InternationalArchives of Photogrammetry and Remote Sensing, Commission Ⅱ,,1988, vol27, PartB2, Kyoto, Japan, pp.206~213
    [65] O. Hofmann, P. Nave, and H. Ebner. DPS-A digital photogrammetric system forproducing digital elevation models and orthophotos by means of linear array scannerimagery, Photogrammetric Engineering and Remote Sensing,1984,50(8):1135~1142
    [66] T. Chen, R. Shibasaki, and Z. Lin. A rigorous laboratory calibration method forinterior orientation of an airborne linear push-broom camera, PhotogrammetricEngineering and Remote Sensing,2007,73(4):369~374
    [67] G. Petrie, and A.S. Walker. Airborne digital imaging technology: A new overview,Photogrammetric Record,2007,22(119):203~225
    [68] J. Bodechtel, R. Haydn, J. Zilger, et al. MOMS-01-Missions and results, In:Monitoring earth's ocean, land, and atmosphere from space-Sensors, systems, andapplications, New York, AIAA,1985, pp.524~535
    [69] MOMS, eoPortal: https://directory.eoportal.org/web/eoportal/satellite-missions/m/moms,2013年4月11日
    [70] H. Stoehn, T. Schneider, U. Ammer, et al. MOMS-02-Technical capabilities andpossible applications to Mediterranean ecosystems, Earsel Advances in RemoteSensing,1995,4:116~121
    [71] H. J. Kramer. Observation of the earth and its environment: Survey of missionsand sensors, Berlin, Heidelberg: Springer,1996
    [72] Scientific Objectives, HRSC on Mars Express: http://berlinadmin.dlr.de/Missions/express/kamera/kameraeng.shtml,2013年4月12日
    [73]耿迅,徐青,蓝朝桢等,火星快车HRSC影像三维重建,深空探测研究,2012,(4):26~30
    [74] WAOSS-The spaceborne stereo camera WAOSS for the Mars96mission,DLR-Optical Information Systems: http://www.dlr.de/os/en/desktopdefault.aspx/tabid-3484/5402_read-8056/,2013年4月12日
    [75] J. Albertz, H. Ebner, and G. Neukum. The HRSC/WAOSS Camera Experimenton the Mars96Mission-A photogrammetric and cartographic view of the project,International Archives of Photogrammetry and remote sensing, vol. XXXI, part B4,Vienna,1996,58~63
    [76] R. Sandau and A. Eckardt, The stereo camera family WAOSS/WAAC forspaceborne/airborne applications, International Archives of Photogrammetry andremote sensing, vol. XXXI, part B4, Vienna,1996,170~175
    [77] About ALOS-PRISM,JAXA Earth Observation Research Center: http://www.eorc. jaxa.jp/ALOS/en/about/prism.htm,2013年4月13日
    [78] Earth Observation Satellite-ALOS-PRISM, JAXA Earth Observation ResearchCenter: http://www.eorc.jaxa.jp/en/hatoyama/satellite/sendata/prism_e.html,2013年4月13日
    [79] The Eyes of ALOS, World Heritage Seen by the Japanese Satellite ALOS:http://world_heritage.jaxa.jp/en/contents/jaxa/alos_eye/index.php,2013年4月13日
    [80] ALOS卫星简介,国立中央大学太空及遥测研究中心:http://www.csrsr.ncu.edu.tw/08CSRWeb/ChinAccessibility/A6TechSupp/ALOS/AccStd.php?FileNm=ALOSIntro,2013年4月13日
    [81] T. Tadono, M. Shimada, M. Watanabe, et al. Calibration and validation ofPRISM onboard ALOS,International Archives of Photogrammetry, Remote Sensingand Spatial Information Sciences,2004,35:13~18
    [82] M. Schneider, M. Lehner, R. Müller, et al. Stereo evaluation of ALOS/PRISMdata on ESA-AO test sites–first DLR results, Proceedings of ALOS PI2008Symposium, Island of Rhodes, Greece,3-7November2008.
    [83] S. Huixian, D. Shuwu, Y. Jianfeng, et al. Scientific objectives and payloads ofChang’E-1lunar satellite, Journal of earth system science,2005,114(6):789~794
    [84] Z. Y. Ouyang, J. S. Jiang, C. L. Li, et al. Preliminary scientific results ofChang’E-1Lunar Orbiter: Based on payloads detection data in the first phase, ChineseJournal of Space Science,2008,28(5):361~369
    [85]李春来,刘建军,任鑫等,嫦娥一号图像数据处理与全月球影像制图,中国科学(D辑),2010(3):294~306
    [86]平劲松,黄倩,鄢建国等,基于嫦娥一号卫星激光测高观测的月球地形模型CLTM—s01,中国科学:(G辑),2008,38(11):1601~1612
    [87]李春来,任鑫,刘建军等,嫦娥一号激光测距数据及全月球DEM模型,中国科学(D辑),2010(3):281~293
    [88] G. Neukum and HRSC Team. The airborne HRSC-AX cameras: Evaluation ofthe technical concept and presentation of application results after one year ofoperations, Photogrammetric Week01’, Wichmann Verlag, Heidelberg,2001,D.Fritsch&R. Spiller Eds., pp.117~130
    [89] J. C. Otto, K. Kleinod, O, K nig, et al. HRSC-A data: A new high resolution dataset with multipurpose application in physical geography, Prograss in PhysicalGeography,2007,31(2):179~197
    [90] ADS40, DLR Optical Information Systems: http://www.dlr.de/os/en/desktopdefault.aspx/tabid-3484/5402_read-8076/,2013年4月9日
    [91] ADS40数字航摄仪在航空摄影测量中的应用,中国通用航空协会:http://www.cgaa.com.cn/templates/about/aboutus.aspx?nodeid=10&page=Article&periodicalid=8&catalogid=40&articleid=68,2013年4月9日
    [92]邹晓亮,赵桂华,吴云东等,ADS40地面数据处理的数据流分析,地理空间信息,2008,6(3):43~46
    [93]刘军,张永生,范永弘,ADS40机载数字传感器的摄影测量处理与应用,测绘学院学报,2002,19(3):186~188,194
    [94] U. Tempelmann, A. Borner, B. Chaplin, et al. Photogrammetric softeare for theLH systems ADS40airborne digital sensor, International Archives of Photogrammetryand Remote Sensing,2000, Amsterdam, The Netherlands, Vol.33, Part B2,pp.552~559
    [95] P. Fricker. ADS40-Progress in digital aerial data collection, PhotogrammericWeek01’, D. Fritsch&R. Spiller, Eds., Wichmann Verlag, Heidelberg,2001,pp.105~116
    [96] W. Hu, G, Yang, and H, Yuan. Application and accuracy evaluation of LeicaADS40for large scale mapping, Inernational Archives of the Photogrammetry,Remote Sensing and Spatial Information Science, Beijing,2008,Vol. XXXVII, PartB1, pp.605~609
    [97] ADS80datasheet, ADS80Datasheet-Leica Geosystems: http://www.leica-geosystems.com/downloads123/zz/airborne/ads80/brochures-datasheet/ADS80_datasheet_en.pdf,2013年4月10日
    [98] digital camera (airborne scanner)3-DAS-1, GeoSystem Scientific ProductionEnterprise: http://www.geosystema.net/Brochure/DAS.pdf,2013年4月10日
    [99]3-DAS-1digital aerial camera, Wehrli&Associates Inc.: http://www.wehrliassoc.com/leaflet-das.pdf,2013年4月10日
    [100]王智,张立平,姚惠,三线阵立体测绘相机光学镜头的设计,光子学报,2010,39(2):227~232
    [101]苗健宇,张立平,田铁印等,三线阵CCD立体测绘相机结构实现技术,仪器仪表学报,2011,32(10):2183~2189
    [102]苗建宇,张立平,翟岩等,三线阵CCD立体测绘相机的集成装调,中国光学,2012,5(4):366~372
    [103]常凌颖,杨建峰,赵葆常等,一种新型面阵CCD航天立体摄影测量光学系统,光子学报,2005,34(8):1165~1168
    [104]常凌颖,赵葆常,杨建峰等,用于航天立体摄影测量的光学系统设计,光子学报,2007,36(3):539~542
    [105] Rainer Sandau, P. Fricker, and A. Stuart Walker. Digital photogrammetriccameras: possibilities and problems, In: Photogrammetric Week '99, D. Fritsch and R.Spiller Eds., Wichmann,1999, pp.71~82
    [106] R.Sandau. Digital airborne camera: Introduction and technology, SpringerScience+Business Media,2010, pp.22
    [107]巩丹超,高分辨率卫星遥感立体影像处理模型与算法:[博士学位论文],郑州,解放军信息工程大学,2003
    [108] D. Poli, L. Zhang, and A. Gruen. Orientation of satellite and airborne imageryfrom multi-line pushbroom sensors with a rigorous sensor model,InternationalArchives of Photogrammetry and Remote Sensing,2004,35(B1):130~135
    [109]张召才,地形起伏对推扫式遥感立体成像影响的关键理论和技术研究:[博士学位论文],天津,天津大学,2012
    [110] A.Gruen, L.Zhang. Sensor modeling for aerial triangulation withthree-line-scanner (TLS) imagery, Photogrammetrie Fernerkundung Geoinformation,2003, pp.85~98
    [111] S. Roques, L. Jahan, B. Rouge, et al. Satellite attitude instability effects onstereo images, Proceedings of IEEE Conference on Acoustics, Speech, and SignalProcessing,2004, vol.3, pp.477~480
    [112] A. Okamoto. Orientation and construction of models, Part III: Mathematicalbasis of the orientation problem of central-perspective photographs, PhotogrammetricEngineering and Remote Sensing,1981,47(12):1739~1752
    [113] A. Okamoto. Orientation theory of CCD line-scanner images, InternationalArchives of ISPRS,1988,27(B3):609~617
    [114] A. Okamoto and S. Akamatsu. Orientation theory for satellite CCD line scannerimagery of mountainous terrain, International Archives of ISPRS,1992a,29(B2):205~209
    [115] A. Okamoto and S. Akamatsu. Orientation theory for satellite CCD line scannerimagery of hilly terrain, International Archives of ISPRS,1992b,29(B2):217~221
    [116] A. Okamoto, T. Ono, S. Akamatsu, et al. Geometric characteristics ofalternative triangulation models for satellite imagery, Proceedings of ASPRS AnnualConference, Portland, Oregon,1999:17~21
    [117] S. Hattori,T. Ono,C. Fraser,et al.Orientation of high-resolution satelliteimages based on affine projection, International Archives of Photogrammetry andRemote Sensing, vol. XXXIII, Part B3, Amsterdam,2000, pp.359~366
    [118] T. Ono, S. Hattori,H. Hasegawa,et al.Digital mapping using high resolutionsatellite imagery based on2D affine projection mode1, International Archives ofPhotogrammetry and Remote Sensing, vol. XXXIII, Part B3, Amsterdam,2000, pp.672~677
    [119]张剑清,张祖勋,高分辨率遥感影像基于仿射变换的严格几何模型,武汉大学学(报信息科学版),2002,27(6):555~559
    [120] T. yamakawa and C. Fraser. The affine projection model for sensor orientation:Experiences with high-resolution satellite imagery, The International Archives ofPhotogrammetry, Remote Sensing and Spatial Information Science, vol.35, part B1,Istanbul, Turkey,2004, pp.142~147
    [121] J. Zhang and Z. Zhang. Strict geometric model based on affine transformationfor remote sensing image with high resolution, International Archives ofPhotogrammtry and Remote Sensing,2002, vol.34, Part B3:309~312
    [122] C. Fraser and T. Yamakawa. Applicability of the affine model for IKONOSimage orientation over mountainous terrain, Workshop on HRM from Space, October,Hanover,2003, pp.6~8
    [123] C. V. Tao and Y. Hu. Investigation on the rational function model, Proceedingsof ASPRS2000Annual Convention,22-26May, Washington D.C.,2000.
    [124] C. V. Tao and Y. Hu. Image rectification using a generic sensor model-rationalfunction model, International Archives of Photogrammetry and Remote Sensing,Amsterdam,2000,XXXlll(B4), pp.874~881
    [125] C. V. Tao and Y. Hu. A comprehensive study of the rational funetion model forphotogranunetric proeessing, Photogrammetric Engineering and Remote Sensing,2001,67(1):1347~1357
    [126] X. H. Yang. Accuracy of rational funetion approximation in photogrammetry,Proceedings of ASPRS2000Annual Convention,22-26May, Washington D.C.,2000,pp.22~26
    [127] I. Dowman and J. T. Dolloff. An evaluation of rational funetions forphotogrammetric restitution, International Archives of Photogrammetry and RemoteSensing,2000, vol. XXXlll, Part B3, pp.254~266
    [128]王德咏,葛修润,罗先启等,基于改进DLT算法的数字近景摄影测量,上海交通大学学报,2011,45:16~22
    [129]骆文博,王广志,丁海曙等,基于线阵CCD的高精度位置检测,清华大学学报(自然科学版),2002,42(9):1139~1143
    [130]冯文灏,李建松,闫利,基于二维直接线性变换的数字相机畸变模型的建立,武汉大学学报(信息科学版),2004,29(3):254~258
    [131] Y. El-Manadili and K. Novak. Precision rectification of SPOT imagery usingthe direct linear transformation model, Photogrammetric Engineering and RemoteSensing,1996,62(1):67~72
    [132] Y. Wang. Automated triangulation of linear scanner imagery, Joint Workshop ofISPRS WG I/1, I/3and IV/4on Sensors and Mapping from Space,1999, pp.27~30
    [133] Prinz, R.. Method and means for compensating for image motion in an aerialcamera, U.S. Patent4,505,559, March19,1985.
    [134] K.Tsuno, A. Gruen, L. Zhang, et al. StarImager-a new airborne three-linescanner for large-scale applications, International Archives of Photogrammetry andRemote Sensing,2004,35(B1):226~231
    [135] K. Green, M. Tukman, and M. Finkbeiner. Comparison of DMC, UltraCam, andADS40imagery for benthic habitat and propeller scar mapping, PhotogrammetricEngineering and Remote Sensing,2011,77(6):589~599
    [136] G. Neukum. The airborne HRSC-A: performance results and applicationpotential, Photogrammetric Week′99(D. Fritsch and R. Spiller, editors), Wichmann,Heidelberg,1999, pp.83~88
    [137] Y. Osawa, K. Toda, H. Wakabayashi, et al. High resolution remote sensingtechnology and the advanced land observing satellite (ALOS), Proceedings of47thInternational Astronautical Congress, Beijing, China,1996.
    [138]王任享,胡莘,王建荣,天绘一号无地面控制点摄影测量,测绘学报,2013,42(1):1~5
    [139]王任享,王建荣,胡莘,在轨卫星无地面控制点摄影测量探讨,武汉大学学报(信息科学版),2011,36(11):1261~1264
    [140] D. L. Light, Characteristics of remote sensors for mapping and earth scienceapplication, Photogrammetric Engineering and Remote Sensing,1990,56(12):1613~1623
    [141]王任享,李晶,王新义等,无地面控制点卫星摄影测量高程误差估算,测绘科学,2005,30(3):9~11
    [142]王任享,胡莘,无地面控制点卫星摄影测量的技术难点,测绘科学,2004,29(3):4~8
    [143]张剑清,潘励,王树根,摄影测量学,武汉:武汉大学出版社,2003,31~33
    [144]张剑清,潘励,王树根,摄影测量学,武汉:武汉大学出版社,2003,13~14
    [145]费业泰,误差理论与数据处理,北京:机械工业出版社,2000,55~70
    [146]李晓明,郑链,胡占义,基于SIFT特征的遥感影像自动配准,遥感学报,2006,10(6):885~892
    [147]赵葆常,杨建峰,汶德胜等,嫦娥一号卫星CCD立体相机的设计与在轨运行,航天器工程,2009,18(1):30~36
    [148]王宏,我国嫦娥一号卫星初步定轨结果分析,深空探测研究,2008(2):37~40
    [149]陈明,唐歌实,曹建峰等,嫦娥一号绕月探测卫星精密定轨实现,武汉大学学报(信息科学版),2011,36(2):212~217
    [150]赵双明,李德仁,牟伶俐,CE-1立体相机影像与激光高度计数据不一致性分析,测绘学报,2011,40(6):751~755
    [151]黄勇,胡小工,张秀忠等,VLBI应用于GEO导航卫星的测定轨,科学通报,2011,56(24):1974~1981
    [152]宋宗玺,赵葆常,高伟等,嫦娥一号卫星CCD立体相机焦平面设计与辐射定标,光学学报,2010,30(12):3504~3508
    [153] Lunar Orbital Data Explorer, Lunar Orbital Data Explorer: http://ode.rsl.wustl.edu/moon/index.aspx,2012年12月20日
    [154] J. P. Wilson. Digital terrain modeling, Geomorphology,2012,137(1):107~121
    [155] S. Li, R. A. MacMillan, D. A. Lobb, et al. Lidar DEM error analyses andtopographic depression identification in a hummocky landscape in the prairie regionof Canada, Geomorphology,2011,129(3-4):263~275
    [156] A. Wehr and U. Lohr. Airborne laser scanning-an introduction and overview,ISPRS Journal of Photogrammetry,1999,54(2-3):68~82
    [157] S. D. Wall, T. G. Farr, J-P Muller, et al. Measurement of surfacemicrotopography using helicopter-mounted stereo film cameras and two stereomatching techniques, Proceedings of12thInternational Geoscience and RemoteSensing Symposium,1989, IGARSS’89, Vancouver, BC, Canada,1989, pp.1173~1176
    [158] W. Shi, Q. Li, and C. Zhu. Estimating the propagation error of DEM fromhigher-order interpolation algorithms, International Journal of Remote Sensing,200526(14),3069~3084
    [159] J. H hle and M. H hle. Accuracy assessment of digital elevation models bymeans of robust statistical methods, ISPRS Journal of Photogrammetry and RemoteSensing,2009,64(4):398~406
    [160] P. Hu, X. Liu, and H. Hu. Accuracy assessment of digital elevation modelsbased on approximation theory, Photogrammetric Engineering and Remote Sensing,2009,75(1):49~56
    [161] S. Erdo an. Modelling the spatial distribute of DEM error with geographicallyweighted regression: An experimental study, Computers and Geosciences,2010,36(1):34~43
    [162] F. J. Aguilar, F. Agüera, and M. A. Aguilar. A theoretical approach to modelingthe accuracy assessment of digital elevation models, Photogrammetric Engineeringand Remote Sensing,2007,73(12):1367~1379
    [163] D. M. Mark. Phenomenon-based data structuring and digital terrain modeling,Geo-Processing,1979,1(1):27~36
    [164]刘春,孙伟伟,吴杭彬. DEM地形复杂因子的确定及与地形描述精度的关系,武汉大学学报(信息科学版):2009,34(9):1014~1019
    [165] H. Lu, X. Liu, and L. Bian. Terrain complexity: Definition, index, and DEMresolution, Proceedings of SPIE, the International Sciety for Optical Engineering,2007, pp.1~11
    [166] C. Chen and T. Yue. A method of DEM construction and related error analysis,Computers&Geosciences,2010,36(6):717~725
    [167] G. Mountrakis, J. Im, and C. Ogole. Support vector machines in remote sensing:A review, ISPRS Jounal of Photogrammetry and Remote Sensing,2011,66(3):247~259
    [168] Chih-Chung Chang and Chih-Jen Lin, LIBSVM-A Library for Support VectorMachines, http://www.csie.ntu.edu.tw/~cjlin/libsvm/,2012年4月12日

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700