用户名: 密码: 验证码:
机载雷达非自适应杂波抑制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,伴随着阵列天线在机载预警平台的使用,杂波在运动平台呈现为强烈的空时耦合特性。为了有效抑制运动平台杂波,空时自适应处理方法(Space-TimeAdaptive Processing,STAP)得到空前发展。但是,随着阵列规模越来越大、信号维数越来越高,由此便产生了计算复杂度过高和训练样本需求较多等问题。由于以上原因,促进了各种降维自适应方法(Suboptimal Dimension-Reduced STAPAlgorithms)的发展。但是,机载雷达非自适应杂波抑制方法(Non-Adaptive ClutterSuppression Algorithms)的相关研究相对而言还比较少。非自适应方法因其计算复杂度偏低、受样本影响小等特点,更利于实时处理数据。因此,本文主要研究机载相控阵平台和机载MIMO(Multiple-Input-Multiple-Output)平台的非自适应杂波抑制方法,主要工作包括以下几个方面:
     1.建立了机载MIMO雷达杂波空时二维数据模型,在充分利用雷达工作参数和载机速度等先验信息的基础上,提出一种机载MIMO雷达非自适应空时二维脉冲相消器(Multiple-Input-Multiple-Output Two-Dimensional Pulse-to-pulse Canceller,MIMO TDPC),并给出了关于MIMO TDPC权系数的最小二乘代价函数,从而优化得到MIMO TDPC的权系数。由于MIMO TDPC权系数仅利用了雷达工作参数和载机速度等先验信息计算得到,属于非自适应处理器,因而具有运算量小、无收敛过程等优点,并且可以作为机载MIMO雷达的杂波预滤波器,进一步改善常规MTI(Moving Target Indication)处理和降维STAP算法的性能。此外,在杂波模型中考虑了偏航角,因此MIMO TDPC不仅适用于正侧视雷达,也适用于非正侧视雷达。
     2.针对机载非正侧视雷达的近程非均匀杂波抑制问题,提出一种快速实现、便于使用的近程杂波抑制方法(Short-range Clutter SuppressionApproach,SCSA)。对于正侧视雷达(SideLookingAirborne Radar, SLAR),由于不同距离单元的杂波在角度-多普勒平面分布轨迹基本重合,杂波表现为相对均匀,因此空时自适应处理方法有很好的性能。但是,对于非正侧视雷达(non-SLAR),由于杂波的分布轨迹不重合,特别是近场杂波,杂波的非均匀性更强烈,自适应方法的性能会严重下降。在机载非正侧视雷达的杂波模型基础上,利用杂波空间几何结构、雷达参数和载机速度等先验信息,构造了SCSA权系数。SCSA方法由空-时滤波和空-时匹配两部分级联构成。作为不依赖于样本的非自适应方法,与传统自适应方法不同(自适应方法性能受非均匀样本的影响很大,且求逆运算计算复杂度高),本方法不受非均匀样本的影响,计算复杂度很低,方便实时处理使用,且较自适应方法有更好的目标检测性能。
     3.考虑由于载机速度变化引起杂波起伏,并由此导致空-时二维平面杂波沿分布轨迹在多普勒域扩散的问题,在机载雷达地杂波模型的基础上,利用雷达参数、载机速度等先验信息,提出了一种机载雷达二维多脉冲相消器(Two-DimensionalMulti-pulse Canceller, TDMC),并给出了关于TDMC权系数的代价函数。由于使用了比两脉冲相消器TDPC更多地自由度来设计滤波器,因而TDMC比TDPC有更好的滤波器通频带性能,通过仿真数据和实测数据验证,TDMC比TDPC能更有效地抑制杂波,并且对慢速目标的检测性能有明显提升。
In recent years, the phased-array is widely applied in the airborne radar. In order tosuppress the spatially-temporally coupled clutter which is induced by the movement ofthe airplane, the well-known space-time adaptive processing (STAP) algorithms arevigorously researched. As the number of the array antennas and the dimension of thesignals become larger and larger, the problems of the computational complexity and thetraining samples required become more and more serious. Thus, the suboptimaldimension-reduced STAP algorithms have been rapidly developed, too. However,compared with the above adaptive algorithms, the research of non-adaptive algorithmsis relatively insufficient. Since the non-adaptive algorithms have low computationalcomplexity and less demand for the training samples, they are more suitable for thereal-time processing. Hence, this paper will mainly focus on the non-adaptive cluttersuppression approaches in both the airborne phased-array radar and the airbornemultiple-input-multiple-output (MIMO) radar. The main contributions of the thesis aresummarized as follows:
     1. The spatial-temporal model of the clutter data for the airborne MIMO radar isestablished. Taking full advantage of the prior information such as the radar parametersand the platform velocity, we proposed a multiple-input-multiple-outputtwo-dimensional pulse-to-pulse canceller (MIMO TDPC). A least-square cost functionassociated with the coefficient matrix of the MIMO TDPC is organized, and thecoefficient matrix is obtained by solving the optimization problem. Since the MIMOTDPC coefficient matrix can be calculated by using the prior information, our method isa non-adaptive method which owns low computational complexity andnon-convergence process. As an efficient and convenient ground clutter pre-filteringtool before the conventional moving target indication (MTI) method and thewell-known suboptimal dimension-reduced STAP algorithms, MIMO TDPC caneffectively enhance the target detection performance. Furthermore, the drift angle isadopted in the design of our method. Thus, MIMO TDPC can be utilized in bothsidelooking radar and non-sidelooking radar.
     2. In order to suppress the short-range heterogeneous clutter for the non-sidelookingairborne radar (non-SLAR), we propose a short-range clutter suppression approach(SCSA). Space-time adaptive processing (STAP) methods which have been developed for suppressing the spatially-temporally coupled ground clutter in the airborne radarhave achieved good performance when applied to the sidelooking airborne radar (SLAR)where the clutter is relatively stationary. However, due to the range dependence (or thegeometry-induced heterogeneous clutter) the performance is degraded in the non-SLARespecially for the short-range clutter suppression where the range dependence is moresevere. Thus, the SCSA is established based on the geometry knowledge of the clutter,the radar parameters and the platform velocity for suppressing the short-range clutter inthe non-SLAR. The SCSA is composed of two parts the spatial-temporal pre-filteringand the spatial-temporal matching. Since the target detection performance of theclassical adaptive algorithms will be degraded by the range-dependent secondarysamples, the SCSA which is a non-adaptive algorithm can gain a relatively goodperformance. Moreover, compared with the adaptive algorithms the computationalburden of which is high due to the covariance matrix inverse operation, the SCSA whichcan be pre-calculated and made into a look-up table is more suitable for the real-timeprocessing.
     3. The variation of the airborne radar platform velocity will cause the clutterfluctuation, and thus lead to the clutter power spectrum widening along the cluttertrajectories in the angle-Doppler domain. On the basis of the clutter model, a noveltwo-dimensional multi-pulse canceller (TDMC) which employs more pulses of theclutter echo is established. Compared with the existing two-dimensional pulse-to-pulsecanceller (TDPC) which adopts only two pulses of the clutter echo, the TDMC utilizesmore degrees of freedom (DOFs) to organize a spatial-temporal two-dimensionalband-rejection filter to suppress the ground clutter more efficiently. Experiments of bothsimulated data and measured data show that the proposed TDMC can gain a bettertarget detection performance than the TDPC, especially for the slow-moving targetdetection.
引文
[1]丁鹭飞,耿富录.雷达原理[M].西安:西安电子科技大学出版社.2006.
    [2] Skolnik M I. Introduction to Radar Systems.3rd ed., New York: McGraw-Hill,2001.
    [3] Brown L. A Radar History of World War II: Technical and Military Imperatives.Institute of Physics Publishing. Bristol-Philadelphia:1999.
    [4] Varian R H, Hansen W W, Woodyard J R. Object Detecting and Locating System.U. S. Patent2,435-615, Feb.10,1948.
    [5] Clarke J, Davies D N, Radford M F. Review of United Kingdom radar. IEEETrans. on Aerospace and Electronic Systems,1984,20(9):506-520.
    [6]郭燕昌,钱继曾,黄富雄等.相控阵和频率扫描天线原理.北京:国防工业出版社,1978.
    [7]张光义,赵玉洁.相控阵雷达技术.北京:电子工业出版社,2006.
    [8]张贤达,保铮.通信信号处理.国防工业出版社,2002.
    [9]王永良,陈辉等.空间谱估计理论与算法.北京:清华大学出版社,2004.
    [10]张贤达.现代信号处理(第二版).清华大学出版社,2002.
    [11] Monzingo R A, Miller T W. Introduction to adaptive arrays. Wiley, New York,1980.
    [12]王永良,彭应宁.空时自适应信号处理.清华大学出版社,北京,2000.
    [13] Klemm R. Space-time adaptive processing: principles and applications. IEERadar, Sonar, Navigation and Avionics9, IEE Press,1998.
    [14] Brennan L E, and Reed I S, Theory of adaptive radar, IEEE Transactions onaerospace and Electronic Systems, vol.9, no.2, pp.237-252, March.1973.
    [15] Foschini G J, Gans M J. On limits of wireless communications in fadingenvironment when using multiple antennas. Wireless Personal Communications,1998,6(3):311-335.
    [16] Foschini G J, Golden G D, Valenzuela R A, et al. Simplified processing for highspectral efficiency wireless communication employing multi-element arrays.IEEE Journals of Selected Areas in Communications,1999,17(11):1841-1842.
    [17] Gesbert D, Bolcskei H, Gore D A. et al. Outdoor MIMO wireless channels:Models and performance prediction. IEEE Trans. on Communications,2002,50(12):1926-1934.
    [18] Alamouti S M. A simple transmit diversity technique for wirelesscommunications. IEEE Journals of Selected Areas in Communications,1998,16(8):1451-1458.
    [19] Foschini G J. Layered space-time architecture for wireless communication in afading environment when using multiple antennas. Bell Labs Tech. J.1996,1(2):41-59.
    [20] Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar andimaging: Degrees of freedom and resolution. Proceedings of the37th AsilomarConference on Signals, Systems and Computers, Pacific Grove, CA,2003.54-59.
    [21] Rabideau D J, Parker P. Ubiquitous MIMO multifunction digital array radar.Proceedings of the37th Asilomar Conference on Signals, Systems andComputers, Pacific Grove, CA,2003.1057-1064.
    [22] Robey F C, Coutts S, Weikle D, et al. MIMO radar theory and experimentalresults. Proceedings of the38th Asilomar Conference Signals, Systems andComputers, Pacific Grove, CA,2004.300-304.
    [23] Forsythe K W, Bliss D W. Fawcett G S. Multiple-input multiple-output (MIMO)radar: Performance issues. Proceedings of the38th Asilomar Conference onSignals, Systems and Computers, Pacific Grove, CA,2004.310-315.
    [24] Li J, Stoica P. MIMO radar with collocated antennas. IEEE Signal ProcessingMagazine,2007,24(5):106-114.
    [25] Fishler E, Haimovich A M, Blum R S, et al. MIMO radar: an idea whose time hascome. Proceedings of IEEE Radar Conference, Philadelphia, Pennsylvania,USA2004.71-78.
    [26] Fishler E, Haimovich A M, Blum R S, et al. Performance of MIMO radar systems:Advantages of angular diversity. Proceedings of the38th Asilomar Conference onSignals, Systems and Computers, Pacific Grove, CA,2004.305-309.
    [27] Fishler E, Haimovich A M, Blum R S, et al. Spatial diversity in radars-Modelsand detection performance. IEEE Trans. on Signal Processing,2006,54(3):823-838.
    [28] Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separatedantennas. IEEE Signal Processing Magazine,2008,25(1):116-129.
    [29] Howells P W. Intermediate frequency sidelobe canceller. U.S. Pattern3202990,Aug.24,1965.
    [30] Applebaum S P. Adaptive arrays. Syracuse University Research Corporation,Rept. SPL TR66-1, Aug.1966.
    [31] Widrow B, Mantey P E, Griffiths L J and Goode B B. Adaptive antenna systems.IEEE Proceedings,55,2143-2159, Dec.1967.
    [32] Monzingo R A and Miller T W. Introduction to Adaptive Arrays. New York:Wiley,1980.
    [33] Compton R T. Adaptive Antennas: Concepts and Performance. Englewood Cliffs,NJ: Prentice-Hall,1988.
    [34] Haykin S. Adaptive Filter Theory (3rd edition).Upper Saddle River, NJ:Prentice-Hall,1996.
    [35] Reed I S, Mallett J D, Brennan L E. Rapid convergence rate in adaptive array,IEEE Trans. Aerospace Electron. Syst. AES-10(6):853-863, Nov.1947.
    [36] Bao Z, Liao G and Wu R. Adaptive spatial-temporal processing for airborneradars. Chinese Journal of Electronics,1993,2(1):1-7.
    [37]保铮,廖桂生,吴仁彪等.相控阵机载雷达杂波抑制的时空维自适应滤波.电子学报,1993,21(9):1-7.
    [38]保铮,张玉洪,廖桂生等.机载雷达空时二维信号处理.现代雷达,1994,16(1):38-48,16(2):17-27.
    [39] Dippetro, R. C., Extended factored space-time processing for airborne radar, InProceedings of26th Asilomar Conference, pp.425–430, October,1992.
    [40] H. Wang, L. Cai, On adaptive spatial-temporal processing for airbornesurveillance radar systems, IEEE Transactions on Aerospace and ElectronicSystems,30(3)(1994July)660-670.
    [41] Klemm R. Adaptive clutter suppression for airborne phased array radars. IEEProc. F&H,1983(1):125-132.
    [42] Klemm R. Adaptive airborne MTI: an auxiliary channel approach. IEE Proc. F,1987,134(3):269-276.
    [43]王永良,吴志文,彭应宁.适于非均匀杂波环境的空时自适应处理方法.电子学报,1999,27(9):63-66.
    [44] Haimovich A M and Bar-Ness Y. An eigenanalysis interference canceler, IEEETrans. Signal Process.39(1):76-84,1991.
    [45] Haimovich A M. The eigencanceler: adaptive radar by eigenanalysis methods,IEEE Trans. Aerosp. Electron. Syst.,1996,32(2):532-542.
    [46] Goldstein J S and Reed I S. Reduced-rank adaptive filtering, IEEE Trans. Aerosp.Electron. Syst.,45(2):492-496.
    [47] Goldstein J S, Reed I S and Zulch P A, Multistage partially adaptive STAP CFARdetection algorithm, IEEE Trans. Aerosp. Electron. Syst.,35(2):645-661,1999.
    [48] Goldstein J S, Reed I S and Scharf L L, A multistage representation of the wienerfilter based on orthogonal projections, IEEE Trans. Inf. Theory,44(7):2943-2959,1998.
    [49] Pados D A and Batalama S N, Joint space-time auxiliary-vector filtering forDS/CDMA systems with antenna arrays, IEEE Trans. Commun.47(9):1406-1415,1999.
    [50] Pados D A and Karystinos G N, An iterative algorithm for the computation of theMVDR filter, IEEE Trans. Signal Process.,49(2):290-300, Feb.2001.
    [51] Pados D A, Karystinos G N, Batalama S N and Matyjas J D, Short-data-recordadaptive detection, in Proc.2007IEEE Radar Conf., April17-20,2007, pp.357-361.
    [52] Bergin J, Techau P, Melvin W L and Guerci J R, GMTI STAP in target-richenvironments: site-specific analysis, In Proceedings of2002IEEE RadarConference, Long Beach, CA, Apr.22-25,2002, ISBN0-7803-7358-8.
    [53] Weiner D D, Capraro G T, Capraro C T, Berdan G B and Wicks M C, Anapproach for utilizing known terrain and land feature data in estimation of theclutter covariance matrix, In Proceedings of1998IEEE National RadarConference, Dallas, TX, May12-13,1998,381-386.
    [54] Farina, A, Lombardo, P and Pirri M, Nonlinear STAP processing, IEE Electronics&Comm. Engineering Journal, Feb.1999, pp.41-48.
    [55] Guerci J R, Knowledge-aided sensor signal processing and expert reasoning. InProceedings of2002Knowledge-Aided Sensor Signal Processing and ExpertReasoning (KASSPER) Workshop, Washington, DC, Apr.3,2002.
    [56] Capararo C T, Capraro G T, Weiner D, Wicks M, Improved STAP performanceusing knowledge-aided secondary data selection, Proc.2004IEEE Radar Conf.,Philadelphia, PA, April2004, pp.361–365.
    [57] Capraro C T, Capraro G T, De Maio A., Farina A, Wicks M, Demonstration ofknowledge-aided space-time adaptive processing using measured airborne data,IEE Proc., Radar Sonar Navig.,2006,153,(6), pp.487–494.
    [58] Christopher T C, Gerard T C, Ivan B, Donald D W, Michael C W, Wiliam J B,Implementing digital terrain data in knowledge-aided space-time adaptiveprocessing, IEEE Trans. Aerosp. Electron. Syst.,2006,42,(3), pp.1080–1099.
    [59] Shannon D B, Karl G, Rangaswamy M, STAP using knowledge-aided correlationestimation and the FRACTA algorithm, IEEE Trans. Aerosp. Electron. Syst.,2006,42,(3), pp.1043–1057.
    [60] Melvin W L, Showman G A, An approach to knowledge-aided covarianceestimation, IEEE Trans. Aerosp. Electron. Syst.,2006,42,(3), pp.1021–1042.
    [61] Titi G W, Marshall D, The ARPA/NAVY mountaintop program-Adaptive signalprocessing for airborne early warning radar, Proc. ICASSP'96, Atlanta, GA, May1996:1165-1168.
    [62] Liule M O, Berry W P, Real-time multichannel airborne radar measurements,IEEE Proc. Int. Conf. Radar Syracuse. New York.1997.
    [63] Sloper D, Fenner D, Amtz J, Fogle E, Multi—Channel airborne radarmeasurement (MCARM), MCARM flight test. Contract F30602-92-C-0161,Westinghouse Electronic Systems April,1996.
    [64] Xu L Z, Li J, Stoica P, Adaptive techniques for MIMO radar.4th IEEE Workshopon Sensor Array and Multichannel Processing,2006,258-262.
    [65] Xu L, Li J, Stoica P, Target detection and parameter estimation for MIMO radarsystems. IEEE Transactions on Aerospace and Electronic Systems.2008,44(3):927-939.
    [66] Xu L, Li J, Stoica P, Radar imaging via adaptive MIMO techniques, Proceeding14th European Signal Processing Conference, Florence, Italy,2006.
    [67] Lv H, Feng D Z, Liu H W, et al, Tri-iterative least-square method for bearingestimation in MIMO radar. Signal Processing (EURASIP).2009,89(12):2686-2691.
    [68] Liu N, Zhang L R, Zhang J, et al, Direction finding of MIMO radar throughESPRIT and Kalman filter, Electronics Letters,2009,45(17):908-910.
    [69] Zhang J, Zhang L R, Yang Z W, et a1, Signal subspace reconstruction method ofMIMO radar, Electronics Letters,2010,46(7):531-533.
    [70] Xie R, Liu Z, Zhang Z J, DOA estimation for monostatic radar using polynomialrooting. Signal Processing (EURASIP),2010,90(12):3284-3288.
    [71] Fuhrmann D R, Antonio G S, Transmit beamforming for MIMO radar systemsusing partial signal correlation, Proceedings of Signals, Systems and Computers,Conference Record of the38th Asilomar Conference on, Pacific Grove, CA,2004,295-299.
    [72] Li J, Stoica P, Xie Y, On Probing Signal Design for MIMO Radar, Proceedings ofSignals, Systems and Computers, ACSSC'06.40th Asilomar Conference on,Pacific Grove, CA,2006,13-35.
    [73] Stoica P, Li J, Xie Y, On probing signal design for MIMO radar, IEEE Trans,Signal Processing,2007,55(8):4153—4161.
    [74] Xu L, Li J, Stoica P, et a1, Waveform optimization for MIMO radar aCram6r-Rao Bound Study, Proceedings of Proc, IEEE International Conferenceon Acoustics, Speech, and Signal Processing (ICASSP'07), Honolulu, Hawaii,2007,917-920.
    [75] Li J, Xu L, Stoica P, et a1, Range compression and waveform optimization forMIMO radar: A Cram6r-Rao Bound Study, IEEE Trans. Signal Processing,2008,56(1):218-232.
    [76] Yang Y, Blum R S, MIMO radar waveform design based on mutual informationand minimum mean-square error estimation, IEEE Trans. Aerosp. Electron. Syst.,2007,43(1):330-343.
    [77] Yang Y, Blum R S, Minimax Robust MIMO radar waveform design, IEEE J.Select. Topics Signal Processing,2007,1(1):147-155.
    [78] Friedlander B, Waveform design for MIMO radars, IEEE Trans. Aerosp. Electron.Syst.,2007,43(1):1227-1238.
    [79] Xu L, Li J, Stoica P, Radar imaging via adaptive MIMO techniques, Proceedingsof Proc.14th Eur. Signal Processing Conf., Florence, Italy,2006.
    [80] Xu L, Li J, Stoica P, Adaptive Techniques for MIMO Radar, Proceedings ofSensor Array and Multichannel Signal Processing, IEEE Workshop, Waltham,MA,2006,258—262.
    [81] Sturm J F, Using SeDuMi1.02, a MATLAB toolbox for optimization oversymmetric cones, Optimization Methods and Software,1999,11-12:625—653.
    [82] Cover T M, Thomas J A, Elements of Information Theory, New York: John Wiley&Sons,1991.
    [83] Bell M R, Information theory and radar waveform design, IEEE Trans. Inform.Theory,1993,39(5):1578-1597.
    [84] Verdú S. Poor H V, On Minimax robustness: a general approach and applications,IEEE Trans. Inform. Theory,1984,30(2):328-340.
    [85] Kassam S A, Poor H V, Robust techniques for signal processing: A survey. Proc.IEEE,1985,73(3):433-482.
    [86] Maio A D, Lops M, Design principles of MIMO radar detectors, IEEE Trans.Aerosp. Electron. Syst.,2007,43(3):886-898.
    [87] Proakis J G, Digital Communications,4th ed., New York, NY: McGraw Hill,2001.
    [88] Ganesan G, Stoica P, Space-time block codes: a maximum SNR approach. IEEETrans. Inform. Theory,2001,47(4):1650-1656.
    [89] Forsythe K W, Bliss D W, Waveform correlation and optimization issues forMIMO radar, Proceedings of Signals, Systems and Computers, ConferenceRecord of the39th Asilomar Conference on, Pacific Grove, CA,2005,1306-1310.
    [90] Antonio G S, Fuhrmann D R, Beampattem synthesis for wideband MIMO radarsystems, Proceedings of Computational Advances in Multi-sensor AdaptiveProcessing,1st IEEE International Workshop on (CAMSAP2005), Puerto Vallarta,Mexico,2005,105-108.
    [91] Liu B, He Z, Zeng J, et al, Polyphase orthogonal code design for MIMO radarsystems, Proceedings of International Conference on Radar (ClE'06), Shanghai,China,2006,113-116.
    [92]刘波. MIMO雷达正交波形设计及信号处理研究.成都:电予科技大学,2008.
    [93] Mecca V F, Ramakrishnan D, Krolik J L, MIMO Radar Space-Time AdaptiveProcessing for Multipath Clutter Mitigation, Proceedings of the4th IEEEWorkshop on Sensor Array and Multichannel Processing, Waltham, MA,2006,249-253.
    [94] Mecca V F and Krolik J L, Slow-time MIMO STAP with improved powerefficiency, Conference Record of the41st Asilomar Conference on Signals,Systems and Computers, Pacific Grove, CA,2007,202-206.
    [95] Chen C Y, Vaidyanathan P P, A subspace method for MIMO radar space-timeadaptive processing, IEEE International Conference on Acoustics, Speech andSignal Processing, Honolulu, HI,2007,2:925-928.
    [96] Chen C Y, Vaidyanathan P P, MIMO Radar Space-Time Adaptive ProcessingUsing Prolate Spheroidal Wave Functions, IEEE transactions on SignalProcessing,2008,56(2):623-635.
    [97] Zou B, Zhen D, Liang D N, Research on Scan-GMTI Technology of AirborneMIMO Radar Based on STAP, Proceedings of the IEEE10th InternationalConference on Signal Processing, Beijing,2010,1973-1976.
    [98] Rui F, Rodrigo C, Lamare D, Patrick C, Reduced-Rank STAP for MIMO RadarBased on Joint Iterative Optimization of Knowledge-Aided Adaptive Filters.Proceedings of the43rd Asilomar conference on Signals, systems and computers,2009,496-500.
    [99] Rui F, Rodrigo C, Lamare D, knowledge-aided reduced-rank STAP for MIMOradar based on joint iterative constrained optimization of adaptive filters withmultiple constrains, Proceedings of the IEEE International Conference onAcoustics Speech and Signal Processing, Dallas, TX,2010,2762-2765.
    [100] Sun J P, Wang G H, Liu D S, Sensitivity of MIMO STAP Radar with WaveformDiversity, Chinese Journal of Aeronautics,2010,23(5):549-555.
    [101] Wang G H, Lu Y L, Clutter Rank of STAP in MIMO Radar With WaveformDiversity, IEEE Transactions on Signal Processing,2010,58(2):938-943.
    [102] Li Y Z, He Z S, Li J, Li H Y, Liu H M, A model of non-coherent airborne MIMOspace-time adaptive processing radar, Proceedings of the Intemationa1Symposium on Intelligent Signal Processing and Communication Systems,Chengdu,2010,1973-1976.
    [103]向聪.阵列自适应波束形成及空时自适应处理方法研究.西安:西安电子科技大学2012.
    [104]吕晖.集中式MIMO雷达信号处理方法研究.西安:西安电子科技大学2011.
    [1] Brennan L E, Reed I S, Theory of adaptive radar, IEEE Transactions on Aerospaceand Electronic Systems,9(2)(1973March):237-252.
    [2] Dipietro R C, Extended factored space-time processing for airborne radar, in:Proceedings of26th Asilomar Conference on Signals, Systems and Computers,October1992, pp.425–430.
    [3] Bao Z, Liao G S, Wu R B, Zhang Y H, Wang Y L, Adaptive spatial-temporalprocessing for airborne radar, Chinese Journal of Electronics,2(1)(1993)2–7.
    [4] Bao Z, Wu S, Liao G S, Xu Z Y, Review of reduced rank space-time adaptiveprocessing for airborne radar, In: Proceedings of CIE International Conference ofRadar,1996, pp.766–769.
    [5] Wang H, Cai L, On adaptive spatial-temporal processing for airborne surveillanceradar systems, IEEE Transactions on Aerospace and Electronic Systems,30(3)(1994July)660-670.
    [6] Klemm R, Space-Time Adaptive Processing: Principles and Applications, IEERadar, Sonar, Navigation and Avionics9, London: IEE Press,1998.
    [7] Klemm R, Principles of Space-Time Adaptive Processing, IEE Radar, Sonar,Navigation and Avionics12, London: IEE Press,2002.
    [8] Klemm R, Adaptive clutter suppression for airborne phased array radar, Proc. IEE,130(1)(1983February)125-132.
    [9] Klemm R, Adaptive airborne MTI: an auxiliary channel approach, Proc. IEE,134(3)(1987)269-276.
    [10]Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar andimaging: Degrees of freedom and resolution. Proceedings of the37th AsilomarConference on Signals, Systems and Computers, Pacific Grove, CA,2003.54-59.
    [11]Mecca V F, Ramakrishnan D, Krolik J L. MIMO Radar Space-Time AdaptiveProcessing for Multipath Clutter Mitigation. Proceedings of the4th IEEE Workshopon Sensor Array and Multichannel Signal Processing, Waltham, USA,2006.249-253.
    [12]Wang G H, Lu Y L. Clutter rank of MIMO radar with a special class of waveform.Proceedings of the International Waveform Diversity&Design Conference,Kissimmee, USA,2009.108-112.
    [13]Chen C Y, Vaidyanathan P P. Beamforming issues in modern MIMO radars withDoppler. Proceeding of the40th Asilomar Conference on Signals, Systems andComputers, Pacific Grove, CA,2006.41-45.
    [14]Chen C Y, Vaidyanathan P P. A Subspace method for MIMO radar space-timeadaptive processing. Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing, Honolulu, Hawaii,2007,2:925-928.
    [15]Chen C Y, Vaidyanathan P P. MIMO radar space-time adaptive processing usingprolate spheroidal wave functions. IEEE Trans. on Signal Processing,2008,56(2):623-635.
    [16]Mecca V F, Ramakrishnan D, Krolik J L. MIMO radar space-time AdaptiveProcessing for multipath clutter mitigation. Proceedings of the4th IEEE Workshopon Sensor Array and Multichannel Signal Professing, Waltham, USA,2006.249-253.
    [17]Mecca V F, Krolik J L. Slow-time MIMO STAP with improved power efficiency.Proceedings of the41st Asilomar Conference on Signals, Systems and Computers,2007.202-206.
    [18]Marcos S. Range recursive space time adaptive processing (STAP) for MIMOairborne radar. Proceedings of the17th European Signal Processing Conference,Glasgow, Scotland,2009.592-596.
    [19]C. CPARARO, G. CAPRARO, D. WEINER, M. WICKS:‘Improved STAPperformance using knowledge-aided secondary data selection’. Proc.2004IEEERadar Conf., Philadelphia, PA, April2004, pp.361–365
    [20]C. T. CAPRARO, G. T. CAPRARO, A. DE MAIO, A. FARINA, M. WICKS:‘Demonstration of knowledge-aided space-time adaptive processing usingmeasured airborne data’, IEE Proc., Radar Sonar Navig.,2006,153,(6), pp.487–494
    [21]T. C. CHRISTOPHER, T. C. GERARD, B. IVAN, D. W. DONALD, C. W.MICHAEL, J. B. WILIAM:‘Implementing digital terrain data in knowledge-aidedspace-time adaptive processing’, IEEE Trans. Aerosp. Electron. Syst.,2006,42,(3),pp.1080–1099
    [22]D. B. SHANNON, G. KARL, M. RANGASWAMY:‘STAP using knowledge-aidedcorrelation estimation and the FRACTA algorithm’, IEEE Trans. Aerosp. Electron.Syst.,2006,42,(3), pp.1043–1057
    [23]W. L. MELVIN, G. A. SHOWMAN:‘An approach to knowledge-aided covarianceestimation’, IEEE Trans. Aerosp. Electron. Syst.,2006,42,(3), pp.1021–1042
    [24]A. FARINA, P. LOMBARDO, F. CARAMANICA:‘Non-linear non-adaptiveclutter cancellation for airborne early warning radar’. IEE Int. Radar Conf., Radar’97, Edinburgh, October1997, pp.420–424
    [25]X. M. Li, D. Z. Feng, H. W. Liu, M. D. Xing, and D. Luo: Two-dimensionalpulse-to-pulse canceller of ground clutter in airborne radar. Radar, Sonar&Navigation, IET Volume3, Issue2, April2009Page(s):133–143
    [26]I. M. SKOLNIK:‘Radar handbook’(McGraw-Hill, New York,1990)
    [27]向聪.阵列自适应波束形成及空时自适应处理方法研究.西安:西安电子科技大学2012.
    [28]吕晖.集中式MIMO雷达信号处理方法研究.西安:西安电子科技大学2011.
    [29]Li J, Xu L Z, Stoica P, Forsythe K W, Bliss D W, Range Compression andWaveform Optimization for MIMO Radar: A Cramér–Rao Bound Based Study,Signal Processing, IEEE Transactions on, vol.56, no.1, pp.218-232, Jan.2008
    [1] Skolnik, M. I., Radar handbook, McGraw-Hill, New York,1990.
    [2] Brennan, L. E., and Reed, I. S., Theory of adaptive radar, IEEE Transactions onaerospace and Electronic Systems, vol.9, no.2, pp.237-252, March.1973.
    [3] Klemm, R., Adaptive clutter suppression for airborne phased array radars, IEE Proc.F&H, Commun., Radar&Signal Process./Microwaves, Opt.&Antennas, vol.130,no.1, pp.125-132,1983.
    [4] Klemm, R., Space-time adaptive processing: principles and applications, IEE RadarSonar Navigation and Avionics, vol.9,1998.
    [5] Klemm, R., Adaptive airborne MTI: an auxiliary channel approach, IEE Proc. F, vol.134, no.3, pp.269-276,1987.
    [6] Dippetro, R. C., Extended factored space-time processing for airborne radar, InProceedings of26th Asilomar Conference, pp.425–430, October,1992.
    [7] Z. Bao, G. S. Liao, R. B. Wu, Y. H. Zhang, Y. L. Wang, Adaptive spatial-temporalprocessing for airborne radars, Chin. J.Electron.,,vol.2, no.1, pp.2–7,1993.
    [8] Z. Bao, S. Wu, G. S. Liao, Z. Y. Xu, Review of reduced rank space-time adaptiveprocessing for airborne radar, Proc. Int. Conf. Radar, Beijing, China, pp.766–769,1996.
    [9] Rui Fa, De Lamare, R.C., Reduced-rank STAP Algorithms using Joint IterativeOptimization of Filters. Aerospace and Electronic Systems, IEEE Transactions on,vol.47, no.3, pp.1668–1684,2011.
    [10]Rui Fa, de Lamare, R.C., Lei Wang, Reduced-rank STAP Schemes for AirborneRadar Based on Switched Joint Interpolation Decimation and Filtering Algorithm,Signal Processing, IEEE Transactions on, vol.58, no.8, pp.4182–4194,2010.
    [11]Gerlach, K., Picciolo, M.L., Robust, Reduced Rank, Loaded Reiterative MedianCascaded Canceller, Aerospace and Electronic Systems, IEEE Transactions on, vol.47, no.1, pp.15–25, April,2011.
    [12]Shen M., Zhu D., Zhu Z., Reduced-rank space-time adaptive processing using amodified projection approximation subspace tracking deflation approach, Radar,Sonar&Navigation, IET, vol.3, no.1, pp.93–100,2009.
    [13]X. M. Li, D. Z. Feng, H. W. Liu, M. D. Xing, and D. Luo, Two-dimensionalpulse-to-pulse canceller of ground clutter in airborne radar, Radar, Sonar&Navigation, IET, vol.3, no.2, pp.133–143, April,2009.
    [14]Da-Zheng Feng, Xiao-Ming Li, Hui Lv, Hong-Wei Liu, and Zheng Bao, Two-sidedminimum-variance distortionless response beamformer for MIMO radar, SignalProcessing vol.89, no.3, pp.328–332, March,2009.
    [15]D. Rabideau, Adaptive MIMO Radar Waveforms, Proceedings of the2008IEEERadar Conference, Washington DC, pp.26-30, May.2008.
    [16]J. Li, P. Stoica, X. Zheng, Signal Synthesis and Receiver Design for MIMO RadarImaging, IEEE Transactions on Signal Processing, vol.56, no.8, pp.3959-3968,Aug.2008.
    [17]Chang zheng Ma, Tat Soon Yeo, Chee Seng Tan, Yong Qiang, and Tao Zhang,Receiver Design for MIMO Radar Range Sidelobes Suppression, IEEETransactions on Signal Processing, vol.58, no.10, pp.5469-5474, Oct.2010.
    [18]C. Y. Chen and P. P. Vaidyanathan, A subspace method for MIMO radar space-timeadaptive processing, IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol.2, pp.925–928, April,2007.
    [19]C. Y. Chen and P. P. Vaidyanathan, MIMO radar space-time adaptive processingusing prolate spheroidal wave functions, IEEE Trans. Signal Process, vol.56, no.2,pp.623–635, Feb.2008.
    [20]Jian Li, Luzhou Xu, Stoica, P., Forsythe, K.W., Bliss, D.W., Range Compressionand Waveform Optimization for MIMO Radar: A Cramér–Rao Bound Based Study,Signal Processing, IEEE Transactions on, vol.56, no.1, pp.218-232, January,2008.
    [21]Klemm, R., Introduction to space-time adaptive processing, Electronics&Communication Engineering, vol.11, no.1, pp.5.
    [22]Reed, I. S., Mallett, J. D., Brennan, L. E., Rapid convergence rate in adaptive array,IEEE Trans. Aerospace Electron. Syst. AES-10(6):853-863(Nov.1947)
    [1] L.E. Brennan, I.S. Reed, Theory of adaptive radar, IEEE Transactions on Aerospaceand Electronic Systems,9(2)(1973March)237-252.
    [2] R.C. Dipietro, Extended factored space-time processing for airborne radar, in:Proceedings of26th Asilomar Conference on Signals, Systems and Computers,October1992, pp.425–430.
    [3] Z. Bao, G.S. Liao, R.B. Wu, Y.H. Zhang, Y.L. Wang, Adaptive spatial-temporalprocessing for airborne radar, Chinese Journal of Electronics,2(1)(1993)2–7.
    [4] Z. Bao, S. Wu, G.S. Liao, Z.Y. Xu, Review of reduced rank space-time adaptiveprocessing for airborne radar, In: Proceedings of CIE International Conference ofRadar,1996, pp.766–769.
    [5] H. Wang, L. Cai, On adaptive spatial-temporal processing for airborne surveillanceradar systems, IEEE Transactions on Aerospace and Electronic Systems,30(3)(1994July)660-670.
    [6] I.S. Reed, J.D. Mallett, L.E. Brennan, Rapid convergence rate in adaptive arrays,IEEE Transactions on Aerospace Electronics Systems,10(6)(1974November)853-863.
    [7] R. Klemm, Space-Time Adaptive Processing: Principles and Applications, IEERadar, Sonar, Navigation and Avionics9, London: IEE Press,1998.
    [8] R. Klemm, Principles of Space-Time Adaptive Processing, IEE Radar, Sonar,Navigation and Avionics12, London: IEE Press,2002.
    [9] R. Klemm, Adaptive clutter suppression for airborne phased array radar, Proc. IEE,130(1)(1983February)125-132.
    [10]R. Klemm, Adaptive airborne MTI: an auxiliary channel approach, Proc. IEE,134(3)(1987)269-276.
    [11]M.I. Skolnik, Radar handbook, McGraw-Hill, New York,1990.
    [12]S.D. Greve, P. Ries, Framework and taxonomy for radar space-time adaptiveprocessing (STAP) method, IEEE Transactions on Aerospace Electronic Systems,43(3)(2007)1084-1099.
    [13]W.I. Melvin, A STAP overview, IEEE Trans. Aerospace Electron. Syst. Mag.19(1)(2004)19-35.
    [14]I.S. Reed, J.D. Mallett, L.E. Brennan, Sample matrix inversion technique, in:Proceedings of the1974Adaptive Antenna System Workshop, Washington, DC, vol.1,1974March, pp.219-222.
    [15]J. Capon, High-resolution frequency-wavenumber spectrum analysis, Proc. IEEE,1969, vol.57, pp.1408-1418.
    [16]D.H. Johnson, D.E. Dudgeon, Array Signal Processing: Concepts and Techniques,Englewood Cliffs, NJ: Prentice-Hall,1993.
    [17]R. Klemm, Introduction to space-time adaptive processing, Electronics&Communication Engineering Journal,11(1)(1999February)5-12.
    [1] L. E. Brennan and I. S. Reed Theory of adaptive radar.IEEETrans,1973,AES-9(2):237-252
    [2] R. KLEMM:'Adaptive clutter suppression for airborne phased array radars', IEEProc. F&H, Commun., Radar&Signal Process./Microwaves, Opt.&Antennas,1983,130,(1), pp.125-13
    [3] R. KLEMM:‘Space-time adaptive processing; principles and applications’. IEERadar Sonar Navigation and Avionics,1998, vol.9
    [4] R. KLEMM:‘Adaptive airborne MTI: an auxiliary channel approach’, IEE Proc. F,1987,134,(3), pp.269-276
    [5] R. C. DIPPETRO:‘Extended factored space-time processing for airborne radarsystem’. Proc.26th Asilomar Conf. Signals, Systems and Computers, October1992,pp.425–430
    [6] Z. BAO, G. S. LIAO, R. B. WU, Y. H. ZHANG, Y. L. WANG:‘Adaptivespatial-temporal processing for airborne radars’, Chin. J.Electron.,1993,2,(1), pp.2–7
    [7] Z. BAO, S. WU, G. S. LIAO, Z. Y. XU:‘Review of reduced rank space-timeadaptive processing for airborne radar’. Proc. Int. Conf. Radar, Beijing, China,1996, pp.766–769
    [8] H. WANG, L. CAI:‘On adaptive spatial-temporal processing for airbornesurveillance radar systems’, IEEE Trans. Aerosp. Electron. Syst.,1994,30,(3), pp.660–669
    [9] R. S. ADVE, T. B. HALE, M. C. WICKS:‘Joint domain localized adaptiveprocessing in homogeneous and non-homogeneous environments, part I:homogeneous environments’, IEE Proc., Radar Sonar Navig.,2000,147, pp.66–73
    [10]J. S. GOLDSTEIN, I. S. REED, P. A. ZULCH:‘Multistage partially adaptive STAPCFAR detection algorithm’, IEEE Trans. Aerosp. Electron. Syst.,1999,35,(2), pp.645–661
    [11]R. D. BROWN, R. A. SCHNEIBLE, M. X. WICKS, H. WANG, Y. ZHANG:‘STAP for clutter suppression with sum and difference beams’, IEEE Trans. Aerosp.Electron. Syst.,2000,36,(2), pp.634–646
    [12]X. M. Li, D. Z. Feng, H. W. Liu, M. D. Xing, and Z. BAO:‘Spatial-TemporalSeparable Filter for Adaptive Clutter Suppression in Airborne Radar’, IETElectronics Letters, Feb.2008,44(5), pp.380-381
    [13]C. CPARARO, G. CAPRARO, D. WEINER, M. WICKS:‘Improved STAPperformance using knowledge-aided secondary data selection’. Proc.2004IEEERadar Conf., Philadelphia, PA, April2004, pp.361–365
    [14]C. T. CAPRARO, G. T. CAPRARO, A. DE MAIO, A. FARINA, M. WICKS:‘Demonstration of knowledge-aided space-time adaptive processing usingmeasured airborne data’, IEE Proc., Radar Sonar Navig.,2006,153,(6), pp.487–494
    [15]T. C. CHRISTOPHER, T. C. GERARD, B. IVAN, D. W. DONALD, C. W.MICHAEL, J. B. WILIAM:‘Implementing digital terrain data in knowledge-aidedspace-time adaptive processing’, IEEE Trans. Aerosp. Electron. Syst.,2006,42,(3),pp.1080–1099
    [16]D. B. SHANNON, G. KARL, M. RANGASWAMY:‘STAP using knowledge-aidedcorrelation estimation and the FRACTA algorithm’, IEEE Trans. Aerosp. Electron.Syst.,2006,42,(3), pp.1043–1057
    [17]W. L. MELVIN, G. A. SHOWMAN:‘An approach to knowledge-aided covarianceestimation’, IEEE Trans. Aerosp. Electron. Syst.,2006,42,(3), pp.1021–1042
    [18]A. FARINA, P. LOMBARDO, F. CARAMANICA:‘Non-linear non-adaptiveclutter cancellation for airborne early warning radar’. IEE Int. Radar Conf., Radar’97, Edinburgh, October1997, pp.420–424
    [19]X. M. Li, D. Z. Feng, H. W. Liu, M. D. Xing, and D. Luo: Two-dimensionalpulse-to-pulse canceller of ground clutter in airborne radar. Radar, Sonar&Navigation, IET Volume3, Issue2, April2009Page(s):133–143
    [20]I. M. SKOLNIK:‘Radar handbook’(McGraw-Hill, New York,1990)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700