用户名: 密码: 验证码:
游泳运动对高脂饮食大鼠胰岛素抵抗的影响及作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰岛素抵抗(insulin resistance, IR)是指胰岛素在其作用靶组织(骨骼肌、肝脏和脂肪组织)摄取和清除葡萄糖的能力低下。人体骨骼肌和脂肪组织是重要的胰岛素效应组织。研究认为,不合理的膳食结构,特别是高脂肪膳食,加上久坐不运动的生活方式,是引起IR的重要原因。运动作为一种有效的非药物防治手段,已广泛应用到防治因IR而引起的慢性代谢性疾病中,但其具体作用机制尚未完全阐明。因此,本研究以高脂饮食喂养诱导大鼠产生IR为模型,探讨不同方案的游泳运动对高脂饮食大鼠IR的影响及其相关机制。
     研究目的:
     探讨不同方案的游泳运动对高脂饮食大鼠胰岛素抵抗的影响及其相关机制。
     研究方法:
     以SD大鼠为实验对象,随机分为6组:普通饮食对照组(C组)、普通饮食连续90min运动组(CEA组)、普通饮食上下午各45min运动组(CEB组)、高脂饮食R模型组(H组)、高脂饮食IR连续90min运动组(HEA组)和高脂饮食IR上下午各45min运动组(HEB组)。通过8周高脂饲料(热卡比为蛋白质22%,脂肪38%,碳水化合物40%,提供能量约为4243Kcal/1000g)喂养建立IR大鼠动物模型,同时对大鼠实施无负重游泳运动干预。综合利用体重、空腹血糖(FBG)、空腹胰岛素(FINS)、胰岛素抵抗指数(HOMA-IR)、胰岛素敏感指数(ISI)和正糖钳试验评价动物模型的建立和运动干预的效果;通过观察运动对高脂饮食R大鼠血清游离脂肪酸(FFA)、血脂、内脏脂肪重量和骨骼肌脂质异位沉积的影响、骨骼肌PGC-1α、FAT/CD36、MG53、Cav-3和IRSmRNA表达量、骨骼肌炎症因子(CRP、TNF-α、IL-6和INF-y)含量、骨骼肌pIRS-1Ser307和pAktSer473的磷酸化水平以及MG53、IRS-1和Akt的蛋白表达水平的变化,探讨不同运动方案对高脂饮食诱导的IR大鼠骨骼肌的相关机制。通过观察运动对高脂饮食诱导IR大鼠脂肪组织FFA和TNF-a含量、脂肪组织IRS-1mRNA表达量、IKK-β和JNK信号通路的变化、pIRS-1Ser307和pAktSer473的磷酸化水平以及IRS-1和Akt的蛋白表达水平的变化,探讨不同运动方案对高脂饮食诱导的R大鼠脂肪组织的相关机制。
     研究结果:
     1.IR动物模型的评价:
     8周高脂饮食喂养后大鼠血清INS含量显著升高(p<0.01),ISI水平显著下降(p<0.01),HOMA-IR水平显著增加(p<0.01),葡萄糖输注速率(正糖钳实验)显著下降(p<0.01)。说明8周高脂饮食喂养己成功建立了IR动物模型。
     2.不同运动方案对高脂饮食大鼠IR的干预作用:
     8周游泳干预后,高脂饮食大鼠血清INS含量和HOMA-IR水平均显著降低(p<0.01),ISI水平和葡萄糖输注速率均显著增加(p<0.05或p<0.01)。但HEA组和HEB组大鼠血清INS、ISI、HOMA-IR和葡萄糖输注速率均无显著性差异(p,0.05),说明连续90min运动和上下午各45min运动均可有效改善高脂饮食大鼠R。
     3.运动对高脂饮食大鼠IP的影响——骨骼肌组织相关指标变化:
     ①大鼠内脏脂肪重量变化及骨骼肌脂质异位沉积:
     8周运动干预后,高脂饮食大鼠内脏脂肪重量、脂体比和腹脂指数、骨骼肌FFA、TG、 PGC-1αmRNA和FAT/CD36mRNA表达量均显著下降(p<0.01),骨骼肌脂质异位沉积减少。说明运动可以减少高脂饮食诱导R大鼠脂肪含量和骨骼肌脂质异位沉积,而HEA组和HEB组大鼠无显著性差异(p<0.05)。说明连续90min运动和上下午各45min运动对减少体内脂肪和骨骼肌脂质异位沉积没有差异。
     ②大鼠骨骼肌组织MG53的变化:
     8周运动干预后,高脂饮食大鼠骨骼肌MG53mRNA和MG53蛋白表达水平均显著下降(p<0.01),但HEA组和HEB组大鼠无显著性差异(p>0.05)。说明连续90min运动和上下午各45min运动可降低高脂饮食大鼠骨骼肌MG53的表达水平,但这两种运动方案对其影响没有差异。
     ③大鼠骨骼肌组织神经酰胺和炎性因子含量的变化:
     8周运动干预后,高脂饮食大鼠骨骼肌神经酰胺和炎性因子(CRP、TNF-α、IL-6和INF-y)含量均显著降低(p<0.05或p<0.01),但HEA组和HEB组大鼠无显著性差异(p>0.05)。说明连续90min运动和上下午各45min运动可降低高脂饮食大鼠骨骼肌神经酰胺和炎性因子的含量,但这两种运动方案对其影响没有差异。
     ④大鼠骨骼肌组织Cav-3mRNA表达、eNOS和GLUT4含量的变化:
     8周运动干预后,高脂饮食大鼠骨骼肌Cav-3mRNA表达量、eNOS含量和GLUT4含量显著增加(p<0.05或p<0.01)。但HEA组和HEB组大鼠无显著性差异(p>0.05)。说明连续90min运动和上下午各45min运动可增加高脂饮食大鼠骨骼肌Cav-3mRNA表达、eNOS含量和GLUT4含量,但这两种运动方案对其影响没有差异。
     ⑤大鼠骨骼肌组织IRS-1和Akt表达水平的变化:
     8周运动干预后,高脂饮食大鼠骨骼肌IRS-1mRNA表达量、IRS-1蛋白表达水平、pAktSer473磷酸化水平和Akt蛋白表达水平均显著增加(p<0.05, P<0.01), pIRS-1Ser307的磷酸化水平显著下降(p<0.01)。但HEA组和HEB组大鼠无显著性差异(p>0.05)。说明连续90min运动和上下午各45min运动可增加高脂饮食大鼠骨骼肌IRS-1和Akt表达水平,但这两种运动方案对其影响没有差异。
     4.运动对高脂饮食大鼠IR的影响——脂肪组织相关指标变化:
     ①大鼠脂肪组织FFA、TNF-a含量、IKKβ和JNK水平的变化:
     8周运动干预后,大鼠脂肪组织FFA含量、TNF-a含量、IKKβ蛋白表达水平、pJNKThr183/Tyr185磷酸化水平和JNK蛋白表达水平均显著降低(p<0.01)。但HEA组和HEB组大鼠无显著性差异(p>0.05)。说明连续90min运动和上下午各45min运动可减少高脂饮食大鼠脂肪组织FFA含量、TNF-a含量、IKKβ和JNK表达水平,但这两种运动方案对其影响没有差异。
     ②大鼠脂肪组织IRS-1和Akt表达水平的变化:
     8周运动干预后,大鼠脂肪组织IRS-1mRNA表达、IRS-1蛋白表达水平、pAktSer473的磷酸化水平和Akt蛋白表达水平均显著增加(p<0.01),pIRS-1Ser307的磷酸化水平显著下降(p<0.01)。但HEA组和HEB组大鼠之间无显著性差异(p>0.05)。说明连续90min运动和上下午各45min运动可增加高脂饮食大鼠脂肪组织IRS-1和Akt表达水平,但这两种运动方案对其影响没有差异。
     研究结论:
     1.8周高脂饮食喂养成功建立了大鼠胰岛素抵抗模型。
     2.8周持续90min运动和上下午各45min运动可有效地改善高脂饮食诱导的胰岛素抵抗。这两种运动方案对改善高脂饮食诱导胰岛素抵抗无差异。
     3.运动改善胰岛素抵抗的可能机制:
     骨骼肌的可能机制:运动可通过四条途径,即运动可通过减少高脂饮食大鼠骨骼肌脂质异位沉积、降低大鼠骨骼肌细胞修复因子MG53表达水平、降低骨骼肌炎性因子和神经酰胺水平、增加骨骼肌Cav-3的表达,促进PI3-K/Akt信号转导,改善高脂饮食大鼠IR。
     脂肪组织的可能机制为:运动可通过抑制脂肪组织IKKβ/NF-κB和JNK/SAPK炎症信号通路,增强IRS-1/PI3-K/Akt信号传导,从而改善高脂饮食大鼠IR。
Objective
     To investigate the effects of different exercise programs on high-fat-diet induced insulin resistance in rats.
     Methods
     Six-week-old SD rats were randomly assigned to6groups:(1) sedentary rats fed with normal diet group (C group);(2) normal diet rats swimming1time per day(successive90min/time)(CEA group);(3) normal diet rats swimming twice per day(successive45min/time)(CEB group);(4) sedentary rats fed with high-fat diet group (H group);(5) high-fat diet rats swimming1time per day(successive90min/time)(HEA group);(6) high-fat diet rats swimming2time per day(successive45min/time)(HEB group). Rats of H group were fed with high-fat diet for8weeks to induce insulin resistance (IR). The protein provided22%, fat38%and carbohydrate40%of total energy (4243Kcal/1000g) intake. Rats in CEA group and HEA group took swim exercise1time per day(successive90min/time), rats in CEB group and HEB group took swim exercise twice per day(successive45min/time), rats in the four groups were all swam6days for8weeks. Comprehensive using body weight, FBG, FINS, HOMA-IR, ISI and he euglycemic-hyperinsulinemic clamp experiments to evaluate the animal model of IR and effects of exercise intervention. Observing the impacts of high-fat feeding and exercise on FFA, blood lipids, visceral fat, and skeletal muscle lipids deposition. Adopting real-time PCR, ELISA and Western blot to observe the mRNA expression of PGC-la, FAT/CD36, MG53, Cav-3, IRS-1, the contents of CRP, TNF-a, IL-6, INF-y, and the protein expression of MG53, IRS-1, Akt in skeletal muscle respectively, to investigate the effects of different swimming exercise programs on insulin resistance in skeletal muscle of high-fat-diet rats as well as some mechanisms. Adopting real-time PCR, ELISA and Western blot to observe the mRNA expression of IRS-1, the contents of TNF-a, and the protein expression of IKKβ, JNK, IRS-1, Akt in adipose tissue respectively, To investigate the effect of different swimming exercise program on insulin resistance in adipose tissue of high-fat-diet rats as well as some mechanisms.
     Results
     1. To evaluate IR animal model:
     After8weeks, to compared with C group, the level of insulin and HOMA-IR of H group were dramatically increased (p<0.01), the level of ISI and GIR of H group were markedly decreased (p<0.01). It was considered to become IR.
     2. Effect of different exercise programs on high-fat-diet induced Insulin resistance in rats:
     After8weeks, to compared with H group, the level of INS and HOMA-IR of HEA group were dramatically decreased (p<0.05), the level of ISI and GIR and HDL-C of HEA group were obviously increased (p<0.01). the level of INS and HOMA-IR of HEB group were dramatically decreased (p<0.01), the level of ISI and GIR and HDL-C of HEB group were obviously increased (p<0.01). But there were no differences between HEA and HEB group. It suggested that both swim exercise1time per day (successive90min/time) and swim exercise twice per day (successive45min/time) for8weeks can ameliorate high-fat-diet induced insulin resistance in
     3. The effect of different swimming exercise program on insulin resistance in skeletal muscle:
     ①The visceral fat mass and the lipid deposits in skeletal muscle:After8weeks, to compared with H group, the visceral fat mass and the abdominal fat index in both HEA and HEB group were obviously decreased (p<0.01), but there were no differences between HEA and HEB group. both in HEA group and HEB group the level of FFA and TG were dramatically decreased (p<0.01), the mRNA expression of PGC-la and FAT/CD36were also markedly decreased (p<0.01). It suggested that both swim exercise1time per day (successive90min/time) and swim exercise twice per day (successive45min/time) for8weeks can reduce lipid deposits in skeletal muscle in high-fat-diet rat. But the effects of the two exercise programs have no differences.
     ②The mRNA and protein expression of MG53in skeletal muscle:After8weeks, to compared with H group, the mRNA and protein expression of MG53were markedly decreased (p<0.01) both in HEA group and HEB group. But there were no differences between HEA and HEB group. It suggested that both swim exercise1time per day (successive90min/time) and swim exercise twice per day (successive45min/time) for8weeks can reduce the expression of MG53in skeletal muscle in high-fat-diet rat. But the effects of the two exercise programs have no differences.
     ③Ceramide and inflammatory factor in skeletal muscle:After8weeks, to compared with C group, the content of Ceramide and inflammatory factor (CRP、TNF-α、IL-6and INF-y) were significantly increased (p<0.05or p<0.01) of H group; to compared with H group, the content of Ceramide and inflammatory factor (CRP、TNF-α、IL-6and INF-y) were significantly were obviously reduced (p<0.05or p<0.01) both in HEA group and HEB group. But there were no differences between HEA and HEB group. It suggested that both swim exercise1time per day (successive90min/time) and swim exercise twice per day (successive45min/time) for8weeks can decrease the level of Ceramide and inflammatory factor in skeletal muscle in high-fat-diet rat. But the effects of the two exercise programs have no differences.
     ④The mRNA expression of Cav-3, the level of eNOS and GLUT4in skeletal muscle:After8weeks, to compared with H group, the mRNA expression of Cav-3, content of eNOS and GLUT4in skeletal muscle both in HEA group and HEB group were significantly decreased (p<0.05or P<0.01). But there were no differences between HEA and HEB group. It suggested that both swim exercise1time per day (successive90min/time) and swim exercise twice per day (successive45min/time) for8weeks can decrease the level of Cav-3, eNOS and GLUT4in skeletal muscle in high-fat-diet rat. But the effects of the two exercise programs have no differences.
     ⑤The expression of IRS-1and Akt in skeletal muscle:After8weeks, to compared with H group, the mRNA and protein expression of IRS-1, pAktSer473and Akt of skeletal muscle both in HEA group and HEB group were dramatically increased (p<0.05or p<0.01), the protein expression of pIRS-1Ser307was obviously decreased (p<0.01). But there were no differences between HEA and HEB group. It suggested that both swim exercise1time per day (successive90min/time) and swim exercise twice per day (successive45min/time) for8weeks can increase the level of IRS-1and Akt of skeletal muscle in high-fat-diet rat. But the effects of the two exercise programs have no differences.
     4. The effect of different swimming exercise program on insulin resistance in adipose tissue:
     ①The level of FFA, TNF-α, IKKβ and JNK in adipose tissue:After8weeks, to compared with H group, the content of FFA and TNF-α in adipose tissue of H group were dramaticlly decreased (p<0.01) both in HEA and HEB group, the protein expression of IKK β pJNKThr183/Tyr185and JNK were markedly decreased (p<0.01) both in HEA and HEB group. But there were no differences between HEA and HEB group. It suggested that both swim exercise1time per day (successive90min/time) and swim exercise twice per day (successive45min/time) for8weeks can decrease the level of FFA, TNF-α, IKKβ and JNK in adipose tissue in high-fat-diet rat. But the effects of the two exercise programs have no differences.
     ②The mRNA and protein expression of IRS-1and Akt in adipose tissue:After8weeks, to compared with H group, the mRNA and protein expression of IRS-1, pAktSer473and Akt of adipose tissue both in HEA group and HEB group were dramatically increased (p<0.05or p<0.01), the protein expression of pIRS-1Ser307was obviously decreased (p<0.01). But there were no differences between HEA and HEB group. It suggested that both swim exercise1time per day (successive90min/time) and swim exercise twice per day (successive45min/time) for8weeks can increase the level of IRS-1and Akt of adipose tissue in high-fat-diet rat. But the effects of the two exercise programs have no differences.
     Conclusion
     1.8-week high-fat feeding is prone to induce IR model in rat.
     2. Both swim exercise1time per day (successive90min/time) and swim exercise twice per day (successive45min/time) for8weeks can ameliorate high-fat-diet induced insulin resistance in rats. But the effect of the two exercise program on ameliorate high-fat-diet induced insulin resistance in rats has no difference.
     3. The action mechanisms of swimming exercise on ameliorating skeletal muscle IR may through four pathways——Swimming exercise can ameliorate high-fat-diet induced skeletal muscle IR in rats through reducing lipid deposits, decreasing the mRNA and protein expression of MG53, making a decline on the level of inflammatory factors, improve the expression of Cav-3, then enhancing the PI3-K/Akt signaling transduction, thus ameliorate high-fat-diet induced skeletal muscle insulin resistance in rats.
     The action mechanisms of swimming exercise on ameliorating adipose tissue IR may be: swimming exercise can make IRS-1/PI3-K/Akt signaling transduction enhancement through inhibit inflammatory signaling pathways (IKKβ/NF-κB and JNK/SAPK), thus ameliorating high-fat-diet induced adipose tissue insulin resistance in rats.
引文
[1]廖二元,超楚生,伍汉文.内分泌学[M].北京:人民卫生出版社,2003:1443.
    [2]黄峥.胰岛素抵抗状态下大鼠心肌细胞葡萄糖转运蛋白4变化的研究[D].中国医科大学,2007.
    [3]Storlien LH, Higgins JA, Thomas TC, et al. Diet composition and insulin action in animal models[J]. Brit J Nutr,2000,83 Suppl 1:S85-90.
    [4]佟劫.有氧运动对高脂饮食诱导的胰岛素抵抗大鼠心肌细胞糖代谢的实验研究[D].西安:西安体育学院,2010.
    [5]袁荣华,黄起壬,柯临慧.胰岛素抵抗机制的研究现状和进展[J].九江学院学报:自然科学版,2010,(4):109-111.
    [6]Erol A. Insulin resistance is an evolutionarily conserved physiological mechanism at the cellular level for protection against in creased oxidative stress [J]. Bioessays,2007,29(8): 811-818.
    [7]Yeung KC, Rose DW, Dhillon AS, et al. Raf Kinase Inhibitor Protein Interacts with NF-KB-Inducing Kinase and TAK1 and Inhibits NF-KB Activation [J]. Mol Cell Biol,2001,21 (21):7207-7217.
    [8]孙彦国,陈奕名.胰岛素抵抗与糖尿病病程的关系[J].中国社区医师(综合版),2007,9(171):30.
    [9]Reaven GM. Role of insulin resistance in human disease[J]. Diabetes,1998,37(12): 1595-1607.
    [10]陈颖丽,韩学尧,毛腾淑.PAI-1与2型糖尿病血管病变关系的研究[J].临床荟萃,1999,14(8):347-349.
    [11]杨华,黄元铸.胰岛素抵抗与高血压、冠心病的关系[J].临床心血管病杂志,1997,13(2):126.
    [12]Chagnac A, Weinstein T, Korzets A, et al.Glomerular hemodynamics in severe obesity[J]. Am JPhysiol Renal Physiol,2000,278:F817
    [13]Kambham N, Markowitz GS, Valeri AM, et al.Obesity-related glomerulopathy:An emerging epidemic[J]. Kidney Int,2001,59:1489.
    [14]Verani RR. Obesity associated local segmental glomerulosclerosis:Pathological featuresofthe lesion and relationshipwith cardiomegaly and hyperlipidemia[J]. Am J Kidney Dis. 1992,20:629.
    [15]Biller J, Love BB. Diabetes and stroke[J]. Med Clin North Am,1993,77:95-110.
    [16]陈兴宝,唐玲,陈惠云,等.2型糖尿病并发症对患者治疗费用的影响评估[J].中国糖尿病杂志.2003,11(4):238-241.
    [17]刘志红.胰岛素抵抗在糖尿病肾病发病中的作用[J].中国实用内科杂志,2002,22(9): 519-521.
    [18]Ronald M, Wittehs MD, Michael B.Fowler, et al. Insulin resistant cardiomyopathy clinical evidence, mechanisms, and treatment options[J]. JAm Coll Cardiol,2008,51 (2):93-102.
    [19]Ashrith G, Algahim MF, Taegtmeyer H. Insulin resistance:marker or mediator?[J].Am JMed,2009,122:e13.
    [20]Karakikes I, Kim M, Hadri L, et al. Gene remodeling in type 2 diabetic cardiomyopathy and its phenotypic rescue with SERCA2a[J]. Plos One,2009,4(7):e6474.
    [21]de Kreutzenberg SV, Avogaro A, Tiengo A, et al. left ventficular mass in type 2 diabetes mellitus. A study employing a simple ECG index:the Cornell voltage. JEndocrinol Invest,2000, 23(3):139-144.
    [22]Dyck DJ. Adipokines as regulators of muscle metabolism and insulin sensitivity[J]. Appl Physiol Nutr Metab,2009,34(3):396-402.
    [23]Geloneze B, Pereira JA, Pareja JC, et al. Overcoming metabolic syndrome in severe obesity: adiponectin as a marker of insulin sensitivity and HDL-cholesterol im-provements after gastric bypass[J]. Arq Bras Endocrinol Metabol,2009,53(2):293-300.
    [24]Fasshauer M, Kralisch S, Klier M, et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes [J]. Biochem Biophys Res Commun,2003, 301(4):1045-1050.
    [25]朱姿英,薛耀明.高甘油三酯血症和2型糖尿病[J].中国糖尿病杂志,2003,11(2):153-41.
    [26]吕继宏,张永莉.脂代谢紊乱对胰岛素抵抗及胰岛细胞分泌的影响[J].临床合理用药,2014,7(1A):180-181.
    [27]李跃松,王静,潘凌峰,等.胰岛素抵抗与血尿酸、空腹血糖和血脂代谢关系的分析[J].现代预防医学,2012,39(22):5951-5953;5959.
    [28]McGarry JD. Dysregulation of fatty acidmetabolism in the etiology of type2 diabetes[J]. Diabetes,2002,51(1):7-18.
    [29]Sun Y, Liu S, Ferguson S, et al. Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenicmice[J]. J BiolChem,2002,277:23301-71.
    [30]Kitt FP, Gerald IS. Etilogy of insulin resistance[J].^m JMed,2006,119(5A):s10-61.
    [31]Yu C, Chen Y, Cline GW, et al. Mechanism bywhich fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle[J]. J Biol Chem,2002,277:50230-61.
    [32]BarbaraM, JanjaM, Andrej J, et al. Molecularmechanism of insulin resistance and associated diseases[J]. Clin Chim Acta,2006,375:20-351.
    [33]YoshikawaH, TajiriY, Sako Y, et al. Effects of free fatty acids on B-cell functions:a possible involvement of peroxisome proliferators-activated receptorsAor pancreatic/duodenal homeobox[J]. Metabolism,2001,50:613-81.
    [34]Grundy SM, Hansen B, Smith SC, et al, Clinical Management of Metabolic Syndrome Report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association Conference on scientific issues related to management[J]. Circulation, 2004,109:551-61.
    [35]Arcasoy SM, Kreit JW. Thrombolytic therapy of pulmonary embolism:a comprehensive review of current evidence[J]. Chest,1999,115:1695-7071.
    [36]Ascaso JF, Real JT, Merchante A, et al. Lipoprotein phenotype and insulin resistance in familial combined hyperlipidemia[J]. Metabolism,2000,49 (12):1627-311.
    [37]Eschwege E. The dysmetabolic syndrome, insulin resistance and increased cardiovascular (CV) morbidity and mortality in type 2 diabetes:aetiological factors in the development of CV complications[J]. Diabetes Metab,2003,29 (4 Pt2):S19-271.
    [38]Abbasi F, Brown BW, Lamendola C, et al. Relationship between obesity, insulin resistance, and coronary heart disease risk[J]. J Am Coll Cardiol,2002,40:937-431.
    [39]Hamel E, Pacouret G, Vincentelli D, et al. Thrombolysis or heparin therapy inmassive pulmonary embolism with right ventricular dilation:results from a 128-patientmonocenter registry[J]. Chest 2001; 120:120-51.
    [40]McRae SJ, Ginsberg JS. Initial treatment of venous thrombo embolism[J]. Circulation,2004, 110:s3-91.
    [41]Konstantinides S, Tiede N, te Geibel A, et al. Comparision of alteplase versus heparn for resolution of major pulmonary embolism[J]. AM J Cardiol,1998,82:966-701.
    [42]王志国,杨晔.胰岛素抵抗与高血压研究进展[J].中华老年心脑血管病杂志,2007,8(7):495-496.
    [43]Guo X, Cheng S, Taylor KD, et al. Hypertension genes are genetic markers for insulin sensitivity and resistance [J]. Hypertension,2005,45:799-803.
    [44]Nagai M, Kamide K, Rakugi H, et al. Role of endothelin-1 induced by insulin in the regulation of vascular cell growth[J]. Am JHypertens,2003,16:223-228.
    [45]黄成群,张红叶,杨军,等.高血压遗传因素与胰岛素抵抗[J].高血压杂志,1997,5:97-99.
    [46]李光伟,李春梅,孙淑湘,等.胰岛素抵抗——遗传和环境因素致高血压的共同途径[J].中华内科杂志,2003,42:11-15.
    [47]李光伟,胡英华,潘孝仁,等.血浆胰岛素水平与血压的关系及肥胖对其影响[J].中华心血管病杂志,1993,21:276-278.
    [48]陈燕燕,李光伟,李春梅,等.G蛋白B3亚单位C825T与高血压胰岛素抵抗及肥胖的关联[J].中华医学杂志,2003,83:1229-1232.
    [49]仲英洁,胡云.胰岛素抵抗和胰岛素受体亚型A与肿瘤[J].医学综述,2012,18(3):339-341.
    [50]CetinM, ColakR, Bayram F, et al. High prevalence of diabetes in patients with pancreatic cancer in central Anatolia, Turkey[J]. Diabetes Res Clin Pract,2002,58(2):97-100.
    [51]Hu FB, Manson JE, Liu S, et al. Prospective study of adult onset diabetes mellitus (type2) and risk of colorectal cancer in women[J]. JNatl Cancer Inst,1999,91:542-547.
    [52]Borugian MJ, Sheps SB, Whittemore AS, et al. Carbohydrates and colorectal cancer risk among Chinese in North America[J]. Cancer Epidemiol Biomarkers Prev,2002,11:187-193.
    [53]Leroith D, Helman L.The new kid on the block(ade) of the IGF-1 receptor[J]. Cancer Cell, 2004,5(3):201-202.
    [54]Weber MM, Fottner C, Liu SB, et al. Overexpression of the insulin-like growth factor I receptor in human colon carcinomas[J]. Cancer,2002,95(10):2086-2095.
    [55]Leinonen E, Hurt-Camejo E, Wiklund O, et al. Insulin resistance and adiposity correlatewith acute-phase reaction and soluble celladhesionmolecules in type2 diabetes[J]. Atherosclerosis, 2003,166 (2):387-394.
    [56]Guerrero-RomeroF, Rodriquez-MoranM. Relation ofCreactive protein to featuresof themetabolic syndrome in normalglucose tolerant, impaired glucose tolerant, and newly diagnosed type2 diabetes subjects[J]. Diabetes Metab,2003,29(1):6.5-71.
    [57]Shao J, Yamashita H, Qiao L, et al. Phosphatidylinositol 3-Kinase redistribution is associated with skeletal muscle insulin resistance in gestational diabetes mellitus[J]. Diabetes, 2002,51(1):19-29.
    [58]杨风英,牛燕媚,刘彦辉,等.有氧运动对高脂膳食诱导的胰岛素抵抗小鼠骨骼肌细胞IRS-1及其丝氨酸磷酸化活性的影响[J].中国运动医学杂志,2011,30(1):36-41.
    [59]汤諹,李树清,李凡,等.缺血后适应对树鼩海马CA1区神经元Akt信号转导调控的机制研究[J].中国病理生理杂志,2011,27(3):560-565.
    [60]Matsuzaki H, Daitoku H, Hatta M, et al. Insulin-induced phosphorylation of FKHR (Foxol) targets to proteasomal degradation[J]. Proc Natl Acad Sci USA,2003,100(20):11285-11290.
    [61]Kim YB, Peroni OD, Aschenbach WG, et al. Muscle-specific deletion of the Glut4 glucose transporter alters multiple regulatory steps in glycogen metabolism[J]. Mol Cell Biol,2005,25 (21):9713-9723.
    [62]李秀钧.胰岛素抵抗综合征[M].北京:人民卫生出版社,2001:108-110.
    [63]Chavez JA, Knotts TA, Wang LP, et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids[J]. JBiol Chem,2003,278(12): 10297-10303.
    [64]Planavila A, Alegret M, Sanchez RM, et al. Increased Akt protein expression is associated with decreased ceramide content in skeletal muscle of troglitazone-treated mice[J]. Biochem Pharmacol,2005,69(8):1195-1204.
    [65]Wallin T, Ma Z, Ogata H, et al. Facilitation of fatty acid uptake by CD36 in insulin-producing cells reduces fatty-acid-induced insulin secretion and glucose regulation of fatty acid oxidation[J]. Biochim Biophys Acta,2010,1801:191-197.
    [66]任路平,宋光耀,刘娜等.高脂和高果糖饲料喂养大鼠肌细胞内长链酯酰辅酶A和含量及其与胰岛素抵抗的关系[J].基础医学与临床,2011,31(9):1047-1048.
    [67]Schmit Z, Peiffer C. Signalling aspects of insulin resistance in skeletal muscle:mechanisms induced by lipid oversupply[J]. Cell Signal,2000,12:583-941.
    [68]高宇,宋光耀.骨骼肌脂肪酸代谢与胰岛素抵抗[J].中国老年学杂志,2009,29(3):378-381.
    [69]Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storate and mobilization in the pathogenesis of insulin resistance and type 2 diabetes[J]. Endocrine Reviews,2002, 23(2):201-229.
    [70]BodenG, Lebed B, Sehatz M, et al. Effects of acute changes of Plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects[J]. Diabetes,2001,50: 1612-1617.
    [71]Simoneau JA, Colberg SR, Thaete FL, et al. Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women[J]. FASEB J,1995,9:273-278.
    [72]Folmes CD, Lopaschuk GD. Role of malonyl-CoA in heart disease and the hypothalamic control of obesity[J].Cardiovasc Res,2007,73(2):278-87.
    [73]Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction[J]. Diabetes,2006,55 Suppl 2: S9-S15.
    [74]Liu C, Lin JD. PGC-1 coactivators in the control of energy metabolism[J]. Acta Bioch Bioph Sin,2011,43(4):248-257.
    [75]Benton CR, Nickerson JG, Lally J, et al. Modest PGC-1alpha overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria[J]. JBiol Chem,2008,283(7):4228-4240.
    [76]孙婧瑜,漆正堂,丁树哲.FAT/CD36、AMPK和PGC-1a在运动干预高脂饮食性肥胖中的作用机制[J].中国运动医学杂志,2013,32(2):174-178.
    [77]Renzhi Han. Muscle membrane repair and inflammatory attack in dysferlinopathy[J]. Skeletal Muscle,2011,1:10.
    [78]田利源,陈红星,邓继先.一个新的与泛素化有关的蛋白家族——TRIM家族[J].生物技术通讯,2007,18(2):270-273.
    [79]仇艳光,王江雁,王沛.TRIM蛋白家族结构与抗病毒功能[J].中国免疫学杂志,2013,29(1):107-110.
    [80]Cai C, Masumiya H, Weisleder N, et al. MG53 nucleates assembly of cell membrane repair machinery [J]. Nature Cell Biol,2009,11:56-64.
    [81]Cao CM, Zhang Y, Weisleder N,et al. MG53 Constitutes a primary determinant of cardiac ischemic preconditioning[J]. Circulation,2010,121:2565-2574.
    [82]Song R, Peng W, Zhang Y, et al. Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders[J]. Nature,2013,21; 494(7437):375-9.
    [83]Burkin DJ, Wuebbles RD. A molecular bandage for diseased muscle[J]. Sci Transl Med, 2012,4(139):139fs19.
    [84]Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans:cause and consequences[J]. Free Radic Biol Med,2011,51(5):942-50.
    [85]Wang X, Xie W, Zhang Y, et al. Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent MG53-mediated membrane repair[J]. Circ Res,2010,107:76-83.
    [86]Weisleder N, Takeshima H, Ma J:Mitsugumin 53 (MG53) facilitates vesicle trafficking in striated muscle to contribute to cell membrane repair[J]. Commun Integr Biol,2009,2:225-226.
    [87]Cai C, Weisleder N, Ko JK, et al. Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin[J]. J Biol Chem,2009,284: 15894-15902.
    [88]Cai C, Masumiya H, Weisleder Net al. MG53 regulates membrane budding and exocytosis in muscle cells[J]. JBiol Chem,2009,284:3314-3322.
    [89]Wei Y1, Chen K, Whaley-Connell AT, et al. Skeletal muscle insulin resistance:role of inflammatory cttolines and reactive oxygen species[J]. Am JPhysiol Regul-Integr,2008,294(3): R673-80.
    [90]Lee JS, Bruce CR,Tunstall RJ,et al. Interaction of exercise and diet on GLUT4 protin and gene expression in type1 and type2 rate skeletal muscle[J].Acta Physiol Scand,2002,175:37-44.
    [91]Zorzano A, Munoz P, Camps M, et al. Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber. [J]. Diabetes,1996,45 (1):70-76.
    [92]Liu F, Dallas Yang Q, Castriota G, et al. Development of a novel GLUT4 translocation assay for identifying potential novel therapeutic targets for insulin sensitization. [J]. Biochem J,2009, 418(2):413-420.
    [93]邱凯,高宏凯,蔡晓军.葡萄糖转运蛋白4与骨骼肌、脂肪组织胰岛素抵抗的关系[J].中国实用医药,2008,3(3):129-130.
    [94]Chen HC, Bandyopadhyay G. Sajan MP, et al. Activation of the ERK pathways and typical protein kinase C isoforms in exercise and aminoimidazole-4-carboxamide-l-beta-D-riboside (AICAR)-stimulated glucose transport[J]. JBiol Chem,2002,277(26):23554-23562.
    [95]Farese RV. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states[J]. Am J Physiol Endocrinol Metab,2002,283(1): El-E11.
    [96]Jakobsen SN, Hardie DG, Morrice N, et al.5'-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside[J]. J Biol Chem 2001,276(50):46912-46916.
    [97]Misra P, Chakrabarti R. The role of AMP kinase in diabetes[J]. Indian J Med Res 2007,125: 389-398.
    [98]Apiradee S, Coletta DK, Estela W, et al. Effect of Acute Exercise on AMPK Signaling in Skeletal Muscle of Subjects with Type 2 Diabetes[J]. Diabetes 2007,56:836-848.
    [99]Karlsson HK, Zierath JR, Susan K, et al. Insulin-Stimulated Phosphorylation of the Akt Substrate AS 160 Is Impaired in Skeletal Muscle of Type 2 Diabetic Subjects[J]. Diabetes 2005, 54:1692-1697.
    [100]Lessard SJ, Rivas DA, Chen ZP, et al. Tissue-specific effects of Rosiglitazone and Exercise in the treatment of lipid-induced insulin resistance. Diabetes,2007,56:1856-1864.
    [101]Penumathsa SV, Thirunavukkarasu M, Zhan L, et al. Resveratrol enhances GLUT-4 translocation to the caveolar lipid raft fractions through AMPK/Akt/eNOS signalling pathway in diabetic myocardium[J]. J Cell Mol Med,2008,12(6A):2350-2361.
    [102]Tan Z, Zhou LJ, Mu PW, et al. Caveolin-3 is involved in the protection of resveratrol against high-fat-diet-induced insulin resistance by promoting GLUT4 translocation to the plasma membrane in skeletal muscle of ovariectomized rats[J]. JNutr Biochem,2012,23(12):1716-24.
    [103]PruehnieR, Katsiaras A, He J, etal. Exereise training increases intramyocellular lipid and oxidative capaeity in older adults[J]. Am JPhysiol Endoerinol Metab,2004,287:E857-E862.
    [104]罗雪婷.有氧运动及膳食干预对胰岛素抵抗大鼠骨骼肌脂质代谢的影响[D].上海:上海体育学院:2010.
    [105]Tarnopolsky MA, Rennie CD, Robertshaw HA, et al. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substratet use, and mitochondrial enzyme activity[J]. Am JPhysiol,2007,292:R1271-R1278.
    [106]白震民,王安利,李胜志.运动对胰岛素抵抗大鼠骨骼肌GLUT4和PKBP mRNA表达的影响[J].北京体育大学学报,2010,33(6):44-46.
    [107]Towler MC, Hardie DG AMP-activated protein kinase in metabolic control and insulin signaling[J]. Circ Res,2007,100(3):328-341.
    [108]Olmes B, Dohm GL. Regulation of GLUT4 gene expression during exercise[J]. Med Sci Sports Exerc,2004,36(7):1202-1206.
    [109]Boden G Obesity and free fatty acids[J]. Endocrinol Metab Clin North Am,2008,37: 635-646.
    [110]Rebrin K, Steil GM, Mittelman SD, et al. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs[J]. JClin Invest,1996,98:741-749.
    [111]Kelly DE, Mokan M, Simoneau JA, et al. Interaction between glucose and free-fatty-acid metabolism in human skeletal muscle[J]. JClin Invest,1993; 92:91-98.
    [112]Zhao T, Hou M, Xia M, et al. Globular adiponectin decreases leptin-induced tumor necrosis factor-alpha expression by murine macrophages:involvement of cAMP-PKA and MAPK pathways. Cell Immunol,2005,238(1):19-30.
    [113]Lewis GF, Uffelman KD, Szeto LW, et al. Interaction between free acids and insulin in the acute control of very low density lipoprotein production in humans[J]. JClin Invest,1995; 95:158-166.
    [114]焦平.游离脂肪酸诱导脂肪细胞炎症反应和胰岛素抵抗的分子机制研究[D].吉林:吉林大学,2009:72-73.
    [115]Schenk S, Saberi M, Olefsky JM. Insulin sensitivity:modulation by nutrients and inflammation[J]. JClin Invest,2008,118(9):2992-3002.
    [116]Baldwin AS Jr. The NF-kappa B and I kappa B proteins:new discoveries and insights[J]. Annu Rev Immunol,1996; 14:649-683.
    [117]Scheidereit C. IkappaB kinase complexes:gateways to NF-kappaB activation and transcription[J]. Oncogene,2006 Oct 30; 25(51):6685-6705.
    [118]Mercurio F, Murray BW, Shevchenko A, et al. IkappaB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex [J]. Mol Cell Biol,1999,19(2): 1526-1538.
    [119]Yamaoka S1, Courtois G, Bessia C, et al. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell,1998,93(7): 1231-1240.
    [120]Rothwarf DM, Zandi E, Natoli, et al. IKK-gamma is an essential regulatory subunit of the I kappaB kinase complex[J]. Nature,1998; 395:297-300.
    [121]Karin M. How NF-kappaB is activated:the role of the IkappaB kinase (IKK) complex[J]. Oncogene,1999,18:6867-6874.
    [122]Jiao P, Xu H. Adipose inflammation:cause or consequence of obesity-related insulin resistance[J]. Diabetes, Metabolic Syndrome and Obesity,2008:25-31.
    [123]Li Q, Van Antwerp D, Mercurio F, et al. Severe liver degeneration in mice lacking the I kappa B gene[J]. Science,1999,284:321-325.
    [124]Hu Y, Baud V, Delhase M, et al Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of I kappaB kinase[J]. Science,1999,284:316-320.
    [125]Gao Z, Hwang D, Bataille F, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. JBiol Chem,2002; 277:48115-48121.
    [126]Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest, 2006,116:1793-1801.
    [127]Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway:regulation, function and role in human disease[J].Biochim Biophys Acta,2007,1773:1341-1348.
    [128]Yang R, Trevillyan JM. c-Jun N-terminal kinase pathways in diabetes[J]. Int J Biochem Cell Biol,2008,40:2702-2706.
    [129]Davis RJ. Signal transduction by the JNK group of MAP kinases [J]. Cell,2000,103: 239-252.
    [130]Waeber G, Delplanque J, Bonny C. The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes [J]. Nat Genet,2000,24:291-295.
    [131]Jaeschke A, Czech MP, Davis RJ. An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue[J]. Genes Dev,2004,18:1976-1980.
    [132]Tilg H, Mosche AR. Inflammatory mechanisms in the regulation insulin resistance [J]. Mol Med,2008; 14:222-231.
    [133]毛丽娟,许豪文.运动对TNF-a含量及其mRNA的影响[J].北京体育大学学报,2004,27(7):930-932.
    [134]张荣健.运动对飞行员临界高血压病患者血压、NK细胞活性、SIL-2R. TNF水平的影响[J].中国运动医学杂志,1998,2:79-80.
    [135]杨洪涛,李娟,陈巍等.运动对胰岛素抵抗大鼠脂肪组织氧化应激及验证的影响[J].西安体育学院学报,2010,27(2):206-209.
    [136]Takuya S, Tetsuya I, Takako K, et al. Exercise training decreases expression of inflammation-related adipokines through reduction of oxidative stress in rat white adipose tissue [J]. Biochem Bio Res Co,2009,379(2):605-609.
    [1]Kraegen EW, Clark PW, Jenkins AB, et al. Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats[J]. Diabetes,1991,40:1397.
    [2]李晨钟,张素华,舒昌达,等.用高脂肪膳食复制胰岛素抵抗大鼠模型[J].基础医学与临床,2000,20(3):93-95.
    [3]鲁瑾,邹大进,张家庆.高脂饮食诱发大鼠胰岛素抵抗后肿瘤坏死因子-a的改变[J].中国糖尿病杂志,1999,7(5):254-256.
    [4]Storlien LH, Jenkins AB, Chisholm DJ, et al. Influence of dietary fat composition on development of insulin resistance in rats:Relationship muscle triglycerides and fatty acid in muscle phospholipid[J]. Diabetes,1991,40:289-291.
    [5]Haffner SM, Gonzalez C, Miettinen H, et al. A prospective analysis of the HOMA model:the mexico city diabetes study[J]. Diabetes Care,1996,19(10):1138-1141.
    [6]李光伟.胰岛素敏感性评价及其在临床研究中的应用[J].中华内分泌代谢杂志,2000,16(3):198-200.
    [7]Kraegen EW, James DE, Bennet SP, et al. Insulin sensitivity in the rat determined by euglycemic clamp[J]. Physiol,1983,245:E1-E4.
    [8]Prada et al. Western-diet modulates insulin signaling. Endoerinology,2005,146(3): 1576-1587.
    [9]Tzatsos A. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via Raptor-dependent mTOR-mediated IRS-lphosphoration[J]. Mol Cell Biol,2006,26(1):63-76.
    [10]谢明智,刘海帆,张凌云,等.实验性肥胖及糖尿病大鼠模型[J].药学学报, 1985,20:801-806.
    [11]Storlien LH, James DE, Burleigh KM, et al. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats[J]. Am J Physiol,1986,251: E576-583.
    [12]卜石,杨文英,王昕,等.胰岛长期高脂饲养对大鼠葡萄糖刺激的胰岛素分泌的影响[J].中华内分泌代谢杂志,2003,19:25-28.
    [13]许岭翎,向红丁,张荣,等.高脂饮食诱发血糖升高的动物模型中瘦素与胰岛素变化的关系[J].基础医学与临床,2001,21:441-444.
    [14]殷俊,陈名道,周丽斌,等.长程高脂饮食对实验大鼠糖尿病形成的影响[J].中国医师杂志,2004,6:47-49.
    [15]Hevener A, Reichart D, Janez A, et al. Female rats do not exhibit free fatty acid-induced insulin resistance[J]. Diabetes,2002,51:1907-1912.
    [16]李秀军.肥胖与胰岛素抵抗[J].中华糖尿病杂志,2005,13(6):401.
    [17]吴凡,徐定波,万方锐.肥胖儿童骨密度及胰岛素抵抗水平研究[J].临床研究,2013,20(34):58-59.
    [18]Boden G, Chen X, Iqbal N Acute.Lowing of plasma fatty acide lower basal insulin secretion in diabetic and nondiabetic subjects[J]. Diabetes,1998,47:1609-1612.
    [19]Defronzo FA, Gunnarsson R, Bfokman O, et al. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type Ⅱ) diabetes mellitus[J]. J Clin Invest,1985,76:149-151.
    [20]Applegate EA, Upton DE, Stern JS. Exercise and detraining:effect on food intake, adiposity and lipogenesis in Osborne-Mendel rats made obese by a high fat diet[J]. J Nutr,1984, 114(2):447-59.
    [21]Chalkley SM, Hettiarachchi M, Chisholm DJ, et al. Long-term high-fat feeding leads to severe insulin resistance but not diabees in Wistar rats[J]. Am J Physiol Endocrinol Mebab,2002, 282:E1231-8.
    [22]Muoio DM, Newgard CB. Mechanisms of disease:molecular and metabolicmechanismsof insulin resistance and beta-cell failure in type 2 diabetes[J]. Nat Rev Mol Cell Biol,2008,9(3): 193-205.
    [23]田爱平,郭赛珊,申竹芳.高脂饲料与胰岛素抵抗动物模型[J].中国药理学通报,2006,22(3):267-9.
    [24]De Fronzo RA, Tobin JD, Anadres R. Glucose clamp technique:a method for quantifying insulin secretion and resistance. Am J Physiol,1979,237:E214-332.
    [1]Katarina Melzera, Bengt Kayserb, Wim HM Saris,et al. Effects of physical activity on food intake[J]. Clin Nutr,2005,24(6):885-895.
    [2]Boden G, Chen X,Iqbal N Acute.Lowing of plasma fatty acide lower basal insulin secretion in diabetic and nondiabetic subjects[J]. Diabete,1998,47:1609-1612.
    [3]Veilleux A, Caron-Jobin M. Vsisceral adipocyte hypertrophy is associated with dyslipidemia independent of body composition and fat distribution in women[J]. Diabetes,2011,60(4): 1055-1062.
    [4]FU JR, MASFERRER TL, NEEDLEMAN P, et al. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes[J]. J Boil Chem,1990,265: 16737-16740.
    [5]李蕾.运动延缓高脂诱导大鼠胰岛素抵抗形成的研究[D].上海:上海体育学院,2010:60-61.
    [6]楼望.运动、高脂膳食对大鼠骨骼肌FAT/CD36表达及血脂的影响[M].北京体育大学.2009.
    [7]Noland RC, Thyfault JP, Henes ST, et al. Artificial selection for high-capacity endurance running is protective against high-fat diet-induced insulin resistance. Am J physiol-Endo Metab, 2007,293(1):E31-E41.
    [8]Petibois C, Cassaigne A, Gin H, et al. Lipid profile disorders induced by long-term cessation of physical activity in previously highly endurance-trained subjects. J Clin Endocr Metab,2004, 89(7):3377-3384.
    [9]Couillard C, DesPres JP, Lamarehe B, et al. Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides:evidence from men of the Health, Risk Faetors, Exercise Training and Geneties (HERITAGE) Family Study. Arterioselerosis, thrombosis, and vascular biology,2001,21(7):1226-1232.
    [1]Unger RH, Orei L. Diseases of liporegulaation:new perspective on obesity and related disorders. JFASEB,2001,15:312-321.
    [2]Janssen 1, Fortler A, Hudson R, et al. Effects of energy-restrictive diet with or without exercise on abdominal fat, intermuscular fat, and metabolic risk factors in obese women. Diabetes Care,2002,25:431-438.
    [3]Wu CK, Yang CY, Lin JW, et al. The relationship among central obesity, systemic inflammation, and left ventricular diastolic dysfunction as determined by structural equation modeling[J]. Obesity,2011,20(3):36-42.
    [4]Veilleux A, Caron-Jobin M. Vsisceral adipocyte hypertrophy is associated with dyslipidemia independent of body composition and fat distribution in women[J]. Diabetes,2011,60(4): 1055-1062.
    [5]FU JR, MASFERRER TL, NEEDLEMAN P, et al. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes[J]. J Boil Chem,1990,265: 16737-16740.
    [6]柳红芳.多不饱和脂肪酸对高脂诱导大鼠胰岛素抵抗的干预及其机制研究[D].中国人民解放军军医进修学院博士后出站工作报告,2004.
    [7]李蕾.运动延缓高脂诱导大鼠胰岛素抵抗形成的研究[D].上海:上海体育学院,2010:60-61.
    [8]刘毅.长期高脂饮食对大鼠骨骼肌胰岛素敏感性的影响及机制探讨[D].山东:山东大学,2006:16-17.
    [9]Van Loon LJ, Goodpaster BH. Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state[J]. Pflugers Arch,2006,451(5):606-616.
    [10]Cho H,Mu J,Kim J K,et al.Insulin resistance and diabetes mellitus-like syndromein mice lacking the protein kinase Akt2(PKB beta)[J]. Science,2001,292(5522):1728-31.
    [11]Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance[J]. Physiol Rev, 2006,86:205-243.
    [12]Goodpaster BH, He J, Watkins S, et al. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance trained athletes[J]. J Clin Endoerinol Metab,2001,86: 5755-5761.
    [13]Turcotte L P,Swenberger J R,Zavitz Tucker M,et al.Increased fatty acid uptake and altered fatty acid metabolism in insulin-resistant muscle of obese Zucker rats[J].Diabetes,2001,50(6): 1389-96.
    [14]Smith A C,Mullen K L,Junkin K A,et al.Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia[J]. Am J Physiol Endocrinol Metab,2007,293(1):E172-81.
    [15]Bradley N S, Snook L A, Jain S S.Acute endurance exercise increases plasma membrane fatty acid transport proteins in rat and human skeletal muscle[J]. Am J Physiol Endocrinol Metab, 2012,302(2):E183-9.
    [16]Olesen J, Kiilerich K, Pilegaard H. PGC-1α-mediated adaptations in skeletal muscle[J]. PflugersArch,2010,460(1):153-162.
    [17]Benton CR, Nickerson JG, Lally J, et al. Modest PGC-1 alpha overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria[J]. JBiol Chem,2008,283(7):4228-4240.
    [18]SmithBK, BonenA, Holloway GP. A dual mechanism of action for skeletal muscle FAT/CD36 during exercise[J]. Exerc Sport Sci Rev,2012,40(4):211-217.
    [19]张媛,漆正堂,丁树哲.耐力训练对高脂膳食大鼠骨骼肌线粒体脂肪氧化及PGC-1α基因表达的影响[J].天津体育学院学报,2010,25(3):193-196.
    [20]孙婧瑜,漆正堂,丁树哲.FAT/CD36. AMPK和PGC-1α在运动干预高脂饮食性肥胖中的作用机制[J].中国运动医学杂志,2013,32(2):174-178.
    [21]Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance[J]. Physiol Rev,2006,86:205-243.
    [22]Burkin DJ, Wuebbles RD. A molecular bandage for diseased muscle[J]. Sci Transl Med, 2012,4(139):139fs19.
    [23]Cai C, Masumiya H, Weisleder N, et al. MG53 nucleates assembly of cell membrane repair machinery[J]. Nat Cell Biol,2009,11(1):56-64.
    [24]Ruisheng Song, Wei Peng,Yan Zhang, et al. Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders[J]. Nature,2013,494:375-381.
    [25]Fredsted A, Gissel H, Madsen K, et al. Causes of excitation-induced muscle cell damage in isometric contractions:mechanical stress or calcium overload? [J]. Am JPhysiol Regul-Integr Co,2007,292(6):R2249-2258.
    [26]Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans:cause and consequences. Free Radic Biol Med,2011,51(5):942-950.
    [27]唐艳婕,贺仕刚,秦旭平.游泳训练通过降低MG53表达改善Ⅱ型糖尿病大鼠骨骼肌糖代谢[J].西安体育学院学报,2014,31(2):220-224.
    [28]崔玉鹏,杨则宜,周丽丽等.篮球运动员大负荷运动训练后血清肌红蛋白与肌酸激酶及其同工酶的变化[J].体育科研,2004,25(2):36-38.
    [29]刘振玉.运动训练与肌酸激酶研究进展[J].天津体育学院学报,1999,14(1):30-32.
    [30]许豪文.肌酸激酶和运动员的机能评定[J].中国运动医学杂志,1987,6(3):164-167.
    [31]Hotamisligil GS. Inflammation andmetabolic disorders[J]. Nature,2006,444(7121): 860-867.
    [32]Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes [J]. J Clin Invest,2005, 115(5):1111-1119.
    [33]Cosentino F, Assenza GE. Diabetes and inflammation[J]. Herz,2004,29:749-759
    [34]Savage DB, Petersen KF, Shulman GI. Mechanisms of insulin resistance in humans and possible links with inflammation[J]. Hypertens,2005,45:828-833.
    [35]Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction[J]. J Biol Chem,1997, 272:971-976.
    [36]Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance[J]. Science,1996,271:665-668.
    [37]Fasshauer M, Klein J, Lossner U, Paschke R. Interleukin (IL)-6 mRNA expression is stimulated by insulin, isoproterenol, tumour necrosis factor alpha, growth hormone, and IL-6 in 3T3-L1 adipocytes[J]. Horm Metab Res,2003,35:147-152.
    [38]Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects[J]. J Biol Chem,2003,278:45777-45784.
    [39]Path G, Bornstein SR, Gurniak M, Chrousos GP, Scherbaum WA, Hauner H. Human breast adipocytes express interleukin-6 (IL-6) and its receptor system:increased IL-6 production by beta-adrenergic activation and effects of IL-6 on adipocyte function[J]. J Clin Endocrinol Metab, 2001,86:2281-2288
    [40]Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes[J]. Diabetes,2002,51:3391-3399.
    [41]Straczkowski M1, Kowalska I, Nikolajuk A, et al. Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle[J]. Diabetes,2004,53(5): 1215-21.
    [42]Chavez JA1, Knotts TA, Wang LP, et al.A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids[J]. J Biol Chem,2003,278(12): 10297-303.
    [43]Chavez JA1, Holland WL, Bar J, et al. Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling[J]. J Biol Chem,2005,280(20): 20148-53.
    [44]Zick Y. Ser/Thr phosphorylation of IRS proteins:a molecular basis for insulin resistance[J]. Sci STKE,2005,(268):4.
    [45]Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signaling pathways:insights into insulin action[J]. Nat Rev Mol Cell Biol,2006,7(2):85-96.
    [46]Zick Y. Uncoupling insulin signaling by serine/threonine phosphorylation:a molecular basis for insulin resistance[J]. Biochem Soc Trans,2004,32:812-816.
    [47]刘效磊,牛燕媚,傅力.mTOR/S6K1信号通路研究进展[J].中国运动医学杂志,2010,29(1):118-121.
    [48]Yamamoto M,Toya Y,Schwencke C,et al.Caveolin is an activator of insulin receptor signaling[J]. JBiol Chem,1998,273(41):26962-26968.
    [49]Penumathsa SV, Thirunavukkarasu M, Zhan L, et al. Resveratrol enhances GLUT-4 translocation to the caveolar lipid raft fractions through AMP/Akt/eNOS signalling pathway in diabetic myocardium[J]. J Cell Mol Med,2008,12(6A):2350-2361.
    [1]Rebrin K, Steil GM, Mittelman SD, et al. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs[J]. J Clin Invest,1996,9 8:741-749.
    [2]Lewis GF, Uffelman KD, Szeto LW, et al. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production inhumans[J]. JClin Invest,1995,95:158-166.
    [3]Zhao T, Hou M, Xia M, et al. Globular adiponection decreases leptin-induced tumor necrosis factor-alpha expression by murine macrophages:involvement of cAMP-PKA and MAPK pathways[J]. Cell Immunol,2005,238:19-30.
    [4]刘佳.跑台训练对高脂饮食致胰岛素抵抗大鼠脂肪组织TNF-a的影响[D].河北:河北师范大学.2009:25.
    [5]孙晖.生活方式干预对胰岛素抵抗大鼠脂肪组织肿瘤坏死因子α及其受体表达的影响[D].湖北:华中科技大学.2007.
    [6]Suganami T, Tanimoto-Koyama K, Nishida J, et al. Role of the Toll-like receptor4/NF-kappa B pathway in saturated fatty acid-induced inflammatory changes in the interactionbetween adipocytes and macrophages[J]. Arterioscler Thromb Vasc Biol,2007,27:84-91.
    [7]Permana PA, Menge C, Reaven PD. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance [J]. Biochem Biophys Res Commun,2006,341(2):507-14.
    [8]Ruan H, Hacohen N, Golub TR, et al. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory [J]. Diabetes,2002,51:1319-1336.
    [9]Lobo S1, Bernlohr DA. Fatty acid transport in adipocytes and the development of insulin resistance[J]. Novartis Found Symp,2007; 286:113-21; discussion 121-6,162-3,196-203.
    [10]Dey D, Pal BC, Biswas T, et al. A Lupinoside prevented fatty acid induced inhibition of insulin sensitivity in 3T3 L1 adipocytes [J]. Mol Cell Biochem,2007,300(1-2):149-57.
    [11]焦平.游离脂肪酸诱导脂肪细胞炎症反应和胰岛素抵抗的分子机制研究[D].吉林:吉林大学,2009:72-73.
    [12]程桦.肥胖、代谢综合征与炎症[J].国外医学内分泌学分册,2004,24(3):151-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700