用户名: 密码: 验证码:
双机器人协调运动方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业的发展和机器人技术的进步使得机器人的性能不断提高,机器人应用的领域和范围正不断扩展,机器人将会越来越多地代替人类去执行更多更复杂的作业。为了适应不断提高的任务复杂性、操作智能性以及系统柔顺性等要求,双机器人乃至多机器人之间的协调和协同作业是机器人技术在工业环境中进行推广和应用急需解决的关键技术之一。由于多机器人系统(主要是多机器人操作臂)操作物体时形成闭链系统,存在受限运动及冗余度控制问题,意味着多机器人系统需要解决规划方法、解析方法和可行的控制方法等问题。
     本文以两台六自由度工业机器人的运动学协调和带有力控制的协调作业方法为研究对象,对双机器人系统的避碰路径规划方法、双机器人之间坐标系标定、协调运动轨迹规划和优化方法、带有力反馈控制的协调作业方法等问题进行了系统深入的研究,主要内容如下:
     针对双机器人系统的碰撞检测和避碰路径规划问题,提出了基于八叉树数据结构的三层球体碰撞检测模型、用于有向包围盒(Oriented Bounding Boxes,OBB)之间最短分离距离和最短穿透距离计算的SAT-SDPD算法。通过仿真验证了提出方法的有效性和可行性,比较和分析了不同包围盒建模方法的快速性和准确性。提出了基于速度排斥场的避碰路径规划和优化方法,通过数值仿真分析证明了使用改进的速度排斥场模型在双机器人避碰路径规划中具有较好的效果。
     双机器人协调焊接轨迹规划方法的研究是进行双机器人协调焊接以及保证焊接质量的前提。论文对焊缝进行了离散化及建立离散点的坐标系,提出在船型焊约束下对工件坐标系{WP}进行位姿规划的非主从式双机器人协调焊接轨迹规划方法,并提出在笛卡尔空间中基于操作性最优的工件坐标系{WP}位置的优化搜索方法。通过仿真验证了协调焊接轨迹规划方法和工件坐标系{WP}位置优化搜索方法的有效性。
     运动学协调是双机器人协调作业的基础,也是实现带有力控制的协调的前提。论文提出了获得两台机器人基座坐标系之间位姿矩阵的三点标定方法,通过数值仿真验证了提出方法的有效性;提出了通过离线计算,自动生成所需的从机器人的协调跟随运动路径点和协调镜像运动路径点的协调路径生成方法。试验结果表明,从机器人协调运动轨迹精度满足工业应用要求,验证了该离线计算方法的有效性。
     针对双机器人协调搬运作业中的内力控制问题,对双机器人共同抓取一个物体的静力学进行分析,基于现有的位置/力混合控制与阻抗控制这两种典型力学控制方法,提出了基于遗传算法优化的双机器人协调搬运速度阻尼PD控制方法。试验结果表明,相比优化前的速度阻尼P控制误差减小,验证了提出的控制方法和优化算法的有效性。
     最后为验证轨迹规划方法和力控制方法的有效性和可行性,搭建了双机器人运动学协调和力学协调两个实验平台进行试验研究。试验分为两部分,第一部分为运动学协调试验,包括了两个试验,分别为在已知主机器人末端运动路径的条件下,离线生成从机器人协调跟随运动路径试验,以及离线生成从机器人协调镜像运动路径试验。第二部分为基于力反馈阻尼控制的双机器人力学协调搬运试验。试验结果表明,双机器人运动学协调轨迹精度达到工业机器人作业要求,双机器人协调搬运内力控制具有较好的瞬态性能,跟踪精度和鲁棒性。
The development of modern industry and the improvement of robotic technology arefacilitating the performance of robots, therefore, the application field and scope of robots iscontinuously expanding and the application of them performing more works, which are evenmore complicated, instead of human, is increasing. In order to adapt to the increasingrequirement of work complexity, operation intelligent and system flexibility, the coordinationand collaborative operation of dual robot or multi-robots is the key technology, which iscritically need to be mastered, to promote and implement robotics in industrial environment.The closed chain system when multi-robot systemsoperate on objects restricted leads tomotion and redundancy control problems, which need to adress the issues in planning,analytic method and feasible control method in multi-robot system.
     The research object of this paper is the operation methods of kinematics coordination andforce control coordination by two6DoF industrial robots. Systematic and in depth study aremade on the collision avoidance path planning, coordinate system calibration, trajectoryplanning and its optimization method of coordinated motion by dual robots, the main contentsare as follows.
     In order to solve the problem of collision detection and collision avoidance path planningof dual robot systems, collision detection model of three layers’ sphere based on octree datastructure and the SAT-SDPD algorism, which is used to compute the shortest separationdistance and the shortest penetration distance between oriented bounding boxes, are proposed.Simulations are performed to verify the effectiveness and the feasibility of the algorism aswell as to compare and analyze the efficiency and accuracy of different modeling methodusing bounding box. Collision avoidance path planning and optimization methods, based onrepulsive velocity field, are proposed. It is proved by numerical simulation analysis that theimproved repulsive velocity field model has a good effect on collision avoidance pathplanning of dual robots.
     The study of trajectory planning method of coordinated welding by dual robots is thepremise to guarantee success of coordinated welding and the welding quality. This paperestablishes the coordinate systems of weld discrete points, non-master-slave trajectoryplanning methods for dual robots coordinated welding have been proposed, whose positionand pose planning are performed in the workpiece coordinate system{WP}under down handwelding constraints. Besides, optimal value search algorithm for the position of workpiececoordinate system in Cartesian space has been proposed. The effectiveness of the trajectory planning method of coordination welding and optimization algorithm for the position ofworkpiece coordinate system is verified by simulations.
     The kinematics coordination is not only the foundation of coordinated operation by dualrobot, but also the premise of realizing force control and coordination. In this thesis, athree-point calibration method, which is used to acquire the position and pose matrix betweenthe base coordinate of dual robots, has been proposed, its effectiveness is verified bynumerical simulation. The coordinated path generation method for slave robot’s coordinatedpath points are proposed, the slave robot’s path points of both coordinated following motionand mirror motion are generated through off-line computing. The results of the experimentsindicate that the accuracy of the motion trajectory by dual robots coordination can meet therequirements of industrial applications. Therefore, effectiveness of the proposed off-linecomputing method is verified.
     To solve the problem of internal force control in coordinated transportation by dualrobots, static analysis of dual robots’ grabbing an object collaboratively is presented. Anoptimized velocity damping PD control method, which is based on two existing typicalmechanical control methods, namely position/force hybrid control method and impedancecontrol, for coordinated transportation by dual robots based on genetic algorithm, has beenproposed. Experiment results indicate that the optimized control method has smaller controlerror than that of the common velocity damping PD control method, which justifies theeffectiveness of the proposed control methods and optimization algorithm.
     Finally, to verify the effectiveness and feasibility of the trajectory planning method andforce control method, two experimental platforms for dual robots kinematic coordination andforce coordination are respectively established. The experiments consists of two parts, thefirst part is kinematic coordination experiments, which includes off-line generatingslave-robot coordinating follow motion path experiments as well as off-line generating slaverobot’s coordinating mirror motion path experiment under the condition that motion path ofthe end of master robot is known. The second part is the experiment about coordinatedtransportation by dual robots based on force feedback damping control. The results of theexperiments show that the precision of trajectory of kinematic coordination, whose internalforce control has good transient performance, tracking accuracy and robustness, by dualrobots can meet the requirement of industrial robots operation.
引文
[1]周骥平,颜景平,陈文家.双臂机器人研究的现状与思考[J].机器人,2001(2):175-177.
    [2]王越超,谈大龙,机器人.协作机器人学的研究现状与发展[J].机器人,1998(1):69-75.
    [3] Caccavale F., Chiacchio P., Marino A., Villani L. Six-dof impedance control of dual-armcooperative manipulators[J]. IEEE/ASME Transactions on Mechatronics,2008,13(5):576–586.
    [4] Zheng, Y.F. and Sias, F. Two robot arms in assembly, Proceedings of the IEEE InternationalConference on Robotics and Automation[C].1986, Vol.3:1230-1235.
    [5] Kraus, W., Jr.; McCarragher, Brenan J.,Hybrid position/force coordination for dual-armmanipulation of flexible materials[C]. Proceedings of the1997IEEE/RSJ International Conferenceon Intelligent Robots and Systems,1997, vol.1:202–207.
    [6]宋月娥.用于机器人离线编程的工件标定算法研究[J].哈尔滨工业大学学报,2002(6):735-738.
    [7]张文增.弧焊机器人工件坐标系快速标定方法[J]..焊接学报,2005(7):1-4.
    [8]宋月娥.弧焊机器人工具参数标定[J].焊接学报,2001(5):第1-4页.
    [9]李瑞峰,候琳琪与陶谦.机器人末端工具参数自动标定方法[J].哈尔滨工业大学学报,1998(3):74-76.
    [10]唐创奇,孟正大.弧焊机器人与变位机协调运动的实现[J].工业控制计算机,2008(1):第47-49页.
    [11]张文增.弧焊机器人工件坐标系快速标定方法[J].焊接学报,2005(7):1-4.
    [12]苏剑波.双机器人系统的基坐标系标定[J].控制理论与应用,1998(4):575-582.
    [13] Fraczek J., Busko Z. Calibration of multi-robot system without and under load using electronictheodolites[C]. Proceedings of the First Workshop on Robot Motion and Control,1999:71-75
    [14] Yalou Huang, Ming Li, Wei Lu. Guizhang Lu, Calibration of two cooperative manipulators viapseudo-closed-loop method[C]. IEEE International Conference on Systems, Man, and Cybernetics,1996(2):1465-1470.
    [15] Yalou Huang, Ming Li, Wei Lu, Guizhang Lu. Calibration of two cooperative manipulators viapseudo-closed-loop method[C]. IEEE International Conference on Systems, Man, and Cybernetics,1996(2):1465-1470.
    [16] Jouaneh, M.K., Z. Wang and D.A. Dornfeld, Trajectory planning for coordinated motion of a robotand a positioning table. I. Path specification[J]. IEEE Transactions on Robotics and Automation,1990,6(6):735-745.
    [17]何广忠,高洪明,张广军,等.机器人弧焊离线编程系统协调运动的实现[J].哈尔滨工业大学学报,2005(6):813-815.
    [18] Tian Jinsong, Wu Lin and Dai Ming. Study on general inverse kinematics of rotating/tiltingpositioner for robotic arc welding off-line programming[J]. China Welding,2001,10(1):27-33.
    [19]康艳军,朱灯林与陈俊伟.弧焊机器人和变位机协调运动的研究[J].电焊机,2005(3):46-49.
    [20]唐创奇与孟正大.弧焊机器人与变位机协调运动的实现[J].工业控制计算机,2008(1):47-49.
    [21]肖珺,何京文,张广军,等.不同型号双焊接机器人协调控制[J].上海交通大学学报,2010(44):110-113+117页.
    [22]张华军,张广军,高洪明.厚板双面双弧焊机器人任务规划及仿真[J].上海交通大学学报,2008,Vol4.PP13-16
    [23]肖珺,何京文,张广军,等.不同型号双焊接机器人协调控制[J].上海交通大学学报,2010(44):110-113+117.
    [24] Kasagami F., et al. Coordinated motion of arc welding robots using parallel data processor[C].Proceedings of the International Conference on Power Electronics and Motion Control.,IndustrialElectronics, Control, Instrumentation, and Automation,1992(2):656-663.
    [25] Luh J.Y.S., Zheng Y.F. Constrained relations between two coordinated industrial robots for motioncontrol[J]. Int. J. Robotics Res.,1987,6(3):60-70.
    [26] Gan Yahui, Dai Xianzhong. Kinematic cooperation analysis and trajectory teaching in multiplerobots system for welding [C]. IEEE16th Conference on Emerging Technologies&FactoryAutomation (ETFA),2011:1-8.
    [27]张华军,张广军,蔡春波,等.双面双弧焊机器人主从协调运动控制[J].焊接学报,2011,32(1):25-28.
    [28]黄水儿.焊接机器人在车身生产线中的规划设计[J].机电技术,2004(1):68-72.
    [29]王育哲.喷漆机器人在汽车车身涂装中的应用[J].中国涂料,2007(4):44-48.
    [30] Alexander Spiller, Alexander Verl. Superimposed Force/Torque-Control of Cooperating Robots[C].201041st International Symposium on and20106th German Conference on Robotics(ROBOTIK),2010:1–7.
    [31] Barbara M. Braun, Gregory P. Starr, John E. Wood, et al. A framework for implementingcooperative motion on industrial controllers [J]. IEEE Transactions on Robotics and Automation,2004,20(3):583–589.
    [32] Yoshikawa, T. Dynamic manipulability of robot manipulators[C]. Proceedings of IEEEInternational Conference on Robotics and Automation,1985(2):1033-1038.
    [33]熊有伦,丁汉,刘恩沧.机器人学[M].北京:机械工业出版社,1993.
    [34] Sukhan Lee,Dual redundant arm configuration optimization with task-oriented dual armmanipulability[J]. IEEE Transactions on Robotics and Automation,1989,5(1):78-97.
    [35]姚建初,丁希仑,战强,张启先.冗余度机器人基于任务的方向可操作度研究[J].机器人,2000,22(6):501-505.
    [36] Ahmad S. and Luo S. Coordinated motion control of multiple robotic devices for welding andredundancy coordination through constrained optimization in Cartesian space[J]. IEEETransactions on Robotics and Automation,1989,5(4):409-417.
    [37]陈国锋,杨昂岳,双臂机器人位姿的方向可操作性[J].机器人,1996,18(2):108-114.
    [38] Pobil A.P., Perez M., Martinez B. A practical approach to collision detection between generalobjects[C]. Proceedings of IEEE International Conference on Robotics and Automation,1996(1):779-784.
    [39] Kao-Shing Hwang, Ming-Yi Ju, Yu-Jen Chen. Speed alteration strategy for multijoint robots inco-working environment[J]. IEEE Transactions on Industrial Electronics,2003,50(2):385-393.
    [40] Gottschalk S., Lin M.C. and Manocha D. OBBTree A hierarchical structure for rapid interferencedetection[C]. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics,1996(30):171-180.
    [41] Klosowski J, Held M, Mitchell J, Sowizral H, Zikan K. Efficient collision detection usingbounding volume hierarchies of k-dops[J]. IEEE Transactions on Visualization and ComputerGraphics,1998,4(1):21-37.
    [42] Jung-Woo Chang. Efficient collision detection using a dual OBB-sphere bounding volumehierarchy[J]. Computer-Aided Design,2010,(42):50-57.
    [43] Fang Zhigang, Jiang Jianxun, Xu Jie, Wang Xiaochi. Efficient collision detection using boundingvolume hierarchies of OBB-AABBs and its application[C]. International Conference on ComputerDesign and Applications (ICCDA),2010(5):242-246.
    [44] Harald Schmidl, Nolan Walker, Ming C. Lin. CAB: Fast Update of OBB Trees for CollisionDetection between Articulated Bodies[J]. Journal of Graphics Tools,2004,9(2)1-9.
    [45] Chang C., Chung M. J., Bien Z. A Collision-Free Motion Planning for Two Robot Arms usingMinimum Distance Functions[C]. IEEE International Workshop on Intelligent Robots,1988:757–762.
    [46] Cao B., Dodds G.I., Irwin G.W. Implementation of time-optimal smooth and collision-free pathplanning in a two robot arm environment[C]. Proceedings of IEEE International Conference onRobotics and Automation,1995(1):715-720.
    [47] Bosscher P., Hedman D. Real-time collision avoidance algorithm for robotic manipulators[C].IEEE International Conference on Technologies for Practical Robot Applications,2009:113-122.
    [48] Quinlan S. Efficient distance computation between non-convex objects[C]. Proceedings of IEEEInternational Conference on Robotics and Automation,1994(4):3324-3329.
    [49] Del Pobil A. P., Sema M. A. and lovet J. A New Representation for Collision Avoidance andDetection[C]. Proceedings of IEEE International Conference on Robotics and Automation,1992:246-251.
    [50] Pobil A.P., Perez M., Martinez B. A practical approach to collision detection between generalobjects[C]. Proceedings of IEEE International Conference on Robotics and Automation,1996(1):779-784.
    [51] Lin M.C., Canny J.F. A fast algorithm for incremental distance calculation[C]. Proceedings ofIEEE International Conference on Robotics and Automation,1991,vol.2, Page(s):1008-1014
    [52] Ehmann S.A., Lin M.C. Accelerated proximity queries between convex polyhedra by multi-levelVoronoi marching[C]. Proceedings of IEEE/RSJ International Conference on Intelligent Robotsand Systems,2000(3):2101-2106.
    [53] Larsen E., Gottschalk S., Lin M., and Manocha D. Fast proximity queries with swept spherevolumes[J]. Tech. Report TR99-018, Department of Computer Science, Univ. of North Carolina,1999.
    [54] Larsen E., Gottschalk S., Lin, M.C., Manocha, D. Fast distance queries with rectangular sweptsphere volumes[C]. Proceedings of IEEE International Conference on Robotics and Automation,2000(4):3719-3726.
    [55] Kim Y., Lin M., Manocha D. Deep: An incremental algorithm for penetration depth computationbetween convex polytopes[C]. Proceedings of IEEE Conference on Robotics and Automation,2002:921–926.
    [56] Houle M.E., Toussaint G.T. Computing the width of a set[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,1988,10(5):761-765.
    [57] Shin Y.S., Bien Z. A Novel Method of Collision-free Trajectory Planning for Two Robot ArmsSystems[C]. IEEE International Conference on Systems, Man, and Cybernetics.1988(2):791-794.
    [58] Chang C., Chung M.J., Lee B.H. Collision avoidance of two general robot manipulators byminimum delay time[C]. IEEE International Conference on Systems, Man, and Cybernetics.1994,24(3):517-522.
    [59] Bien Z., Lee J. A minimum-time trajectory planning method for two robots[J]. IEEE Transactionson Robotics and Automation.1992,8(3):414-418.
    [60] Lee B.H. and Lee C.S.G. Collision-Free Motion Planning of Two Robots[C]. IEEE InternationalConference on Systems, Man, and Cybernetics.1987,17(1):21-32.
    [61] Chiddarwar S.S., Babu N.R. Dynamic priority allocation for conflict free coordinatedmanipulation of multiple agents[C]. IEEE International Conference on Automation Science andEngineering,2009:549-554.
    [62] Park M.G., Jeon J.H., Lee M.C. Obstacle avoidance for mobile robots using artificial potentialfield approach with simulated annealing[C]. IEEE International Symposium on IndustrialElectronics.2001,(3):1530-1535.
    [63] Cetin O., Zagli I., Yilmaz G. Establishing Obstacle and Collision Free Communication Relay forUAVs with Artificial Potential Fields[J]. Journal of Intelligent and Robotic Systems: Theory andApplications.2012:1-12.
    [64] Borenstein J. and Koren Y. Real-time obstacle avoidance for fast mobile robots[J]. IEEETransactions on Systems, Man and Cybernetics.1989,19(5):1179-87.
    [65] Braun B.M., Starr G.P., Wood J.E., Lumia, R. A framework for implementing cooperative motionon industrial controllers[J].IEEE Transactions on Robotics and Automation.2004,20(3):583-589.
    [66] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots[C]. IEEE InternationalConference on Robotics and Automation,1985:500-505.
    [67] Ju M.-Y., Liu J.-S., Hwang K.-S. Real-time Velocity Alteration Strategy for Collision-freeTrajectory Planning of Two Articulated Robot Manipulators[J]. Journal of Intelligent and RoboticSystems: Theory and Applications.2002,33(2):167-186.
    [68] Bosscher P, Hedman D. Real-time collision avoidance algorithm for robotic manipulators[C].Industrial Robot.2011,38(2):186-197.
    [69] Mediavilla M., Fraile J.-C., Galindo I.J. Teresa González M. Selection of Strategies forCollision-free Motion in Multi-manipulator Systems[J]. Journal of Intelligent and Robotic Systems:Theory and Applications.2003,38(1):85-104.
    [70] Dauchez P., Delebarre X., Bouffard Y., Degoulange E. Task modeling and force control for atwo-arm robot[C]. Proceedings of the IEEE International Conference on Robotics and Automation,1991:1702-1707.
    [71] Hayati S. Hybrid position/force control of multi-arm cooperating robots[C]. Proceedings of theIEEE International Conference on Robotics and Automation,1986:82-89.
    [72] Hu Y. and Goldenberg A. An adaptive approach to motion and force control of multiplecoordinated robot arms[C]. Proceedings of the IEEE International Conference on Robotics andAutomation,1989:1091-1096.
    [73] Kopf C. D. Two arm hybrid position/force control with dynamic compensation[C]. New YorkASME in Robots and Manufacturing,1988:371-380.
    [74] Knmar V., Yun X., Paljug E. and Sarkar N. Control of contact conditions for manipulation withmultiple robotic systems[C]. Proceedings of the IEEE International Conference on Robotics andAutomation,1991:170-175.
    [75] Uchiyama M. and Dauchez P. A symmetric hybrid positiodforce control scheme for thecoordination of two robots[C]. Proceedings of the IEEE International Conference on Robotics andAutomation,1988:350-356.
    [76] Uchiyama M., Iwasawa N., Hakombri K. Hybrid position/force control for coordination of atwo-arm robot[C]. Proceedings of the IEEE International Conference on Robotics and Automation,1987:1242-1247.
    [77] Unseren M. A. A new technique for dynamic load distribution when two manipulators mutually lifta rigid object, part1: The proposed technique, part2: Derivation of entire system model andcontrol architecture[C]. Proceedings of the World Automation Congresses on IntelligentAutomation and Soft Computing, Trends in Research, Development, and Applications,1994:359-372
    [78] Arimoto S., Wyazaki F. and Kawamura S. Cooperative motion control of multiple robot arms orfingers[C]. Proceedings of the IEEE International Conference on Robotics and Automation,1987:1407-1412.
    [79] Hayati S., Tso K. and Lee T. Generalized maste/slave coordination and control for a dual-armrobotic system[C]. New York ASME in Robots and Manufacturing,1988:421-430.
    [80] Rosuge K., Koga M., Furata K. and Nosaki K. Coordinated motion control of robot arm based onvirtual intemal model[C]. Proceedings of the IEEE International Conference on Robotics andAutomation,1989:1097-1102.
    [81] Schneider S. A. and Cannon R. H. Object impedance control for cooperative manipulation: Theoryand experimental results[C]. IEEE Transactions on Robots and Automation,1992,8(3):383-394.
    [82] Tao I. M., Luh J. Y. S., and Zheng Y. F. Compliant coordination of two moving robots[J]. IEEETransactions on Robots and Automation,1990,6(3):322-330.
    [83] Chiacchio P., Chiaverini S., and Siciliano B. Cooperative control schemes for multiple robotmanipulator systems[C]. Proceedings of the IEEE International Conference on Robotics andAutomation,1992:2218-2223.
    [84] Murphey T.D., Horowitz M. Adaptive cooperative manipulation with intermittent contact[C].IEEE International Conference on Robotics and Automation,2008:1483-1488
    [85]周军,丁希仑.基于遗传算法的双臂机器人模糊力/位混合控制[J].机器人,2008,30(4):318-325.
    [86] Thobbi Anand., Gu Ye., Weihua Sheng. Using human motion estimation for human-robotcooperative manipulation[C]. IEEE/RSJ International Conference on Intelligent Robots andSystems,2011:2873-2878.
    [87] Uchiyama M. and Dauchez P. A symmetric hybrid position/force control scheme for thecoordination of two robots[C]. Proceedings of the IEEE International Conference on Robotics andAutomation,1988,(1):350-356.
    [88] Kosuge K., Ishikawa J., Furuta K. and Sakai M. Control of Single-Master Multi-Slave ManipulatorSystem Using VIM[C]. Proceedings of the IEEE International Conference on Robotics andAutomation,1990,(2):1172-1177.
    [89] Bonitz R.G., Hsia T.C. Internal force-based impedance control for cooperating manipulators[J].IEEE Transactions on Robotics and Automation,1996,12(1):78-89.
    [90] Bonitz R.G. and Hsia T.C. Robust dual-arm manipulation of rigid objects via palm grasping-theoryand experiments[C]. Proceedings of the IEEE International Conference on Robotics andAutomation,1996(4):3047-3054.
    [91] Bouffard-Vercelli Y., Dauchez P. and Delebarre X. Force-controlled assembly with a two-armrobot: How and where to perform it within the workspace[C]. Proceedings of the1993IEEE/RSJInternational Conference on Intelligent Robots and Systems,1993,(3):1977-1984.
    [92]周军,丁希仑,陆震.冗余度双臂机器人轴孔装配的三维动态仿真与实验[J].机器人,2006,28(4):422-427.
    [93] Zheng Y.F. and Sias F. Two robot arms in assembly[C]. Proceedings of the IEEE InternationalConference on Robotics and Automation,1986(3):1230-1235.
    [94] Schneider S.A. and Cannon R.H.Jr. Object impedance control for cooperative manipulation: theoryand experimental results[J]. IEEE Transactions on Robotics and Automation,1992,8(3):383-394.
    [95] Dobkin D., Hershberger J., Kirkpatrick D., and Subhash Suri. Computing the intersection-depthof polyhedra[J]. Algorithmica,1993,(9):518-533.
    [96] Ahuja N, Nash C. Octree representations of moving objects[C]. Computer Vision, Graphics andImage Processing,1984,26(2):207-216.
    [97]吴明华,余永翔,周济.采用空间分割技术的八叉树干涉检验算法[J].计算机学报,1997,20(9):849-854.
    [98]黎自强,滕弘飞.一种多臂机器人关节间碰撞检测快速算法[J].大连理工大学学报,2007(4):527-532.
    [99]刘海涛.工业机器人的高速高精度控制方法研究[D].广州:华南理工大学,2012.
    [100] Uchiyama M. and Dauchez P. A symmetric hybrid position/force control scheme for thecoordination of two robots[C]. in Proc. IEEE Int.Conf. Robot. Automat., Philadelphia, PA,1988:350–356.
    [101] Craig J.J(美).机器人学导论第3版[M].机械工业出版社,2006,ISBN:9787111186816.
    [102] Nakamura Y., Nagai K. and Yoshikawa T. Mechanics of coordinative manipulation by multiplerobotic mechanisms[C]. Proceedings of the IEEE International Conference on Robotics andAutomation,1987(4):991-998.
    [103] Seraji H. Adaptive admittance control: an approach to explicit force control in compliantmotion[C]. Proceedings of the IEEE International Conference on Robotics and Automation,1994(4):2705-2712.
    [104] Pelletier M., Daneshmend L.K. An adaptive compliant motion controller for robot manipulatorsbased on damping control[C]. Proceedings of the IEEE International Conference on Robotics andAutomation,1990(1):78-83.
    [105] Schneider S.A. and Cannon R.H.Jr. Object impedance control for cooperative manipulation: theoryand experimental results[J]. IEEE Transactions on Robotics and Automation,1992,8(3):383-394.
    [106] ZHANG Tie, OUYANG Fan. Offline motion planning and simulation of two-robot weldingcoordination [J]. Frontiers of Mechanical Engineering,2012,7(1):81-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700