用户名: 密码: 验证码:
新型球面3-RRR并联机器人的构建及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球面3-RRR机器人具有十分广阔的应用前景,是目前机器人研究领域重要的研究方向之一。本文以球面3-RRR机器人为研究对象,从新型结构的构建、工作空间优化、运动路径规划、运动分析、控制方法等若干方面,进行了深入的研究。
     针对并联机器人一类复杂机械结构,提出了一套系统性的考虑干涉影响的最大化工作空间设计方法(LIDeM)。将该方法分别应用于球面和平面3-RRR机器人,实现了各自的工作空间的最大化,并设计出一种新型3-RRR并联球面机器人机构(Triaster);对该机器人建立了数学模型,得到了终端与各杆件的运动位置关系。分析了在不同杆件系数取值下的工作空间大小,以及对应的干涉区域大小;针对Triaster,建立了运动学方程,分析了系统的奇异位形,并推导出并求解了正反运动学问题的解析公式。最后,针对一个具体的算例,通过电机和终端的转角速度和加速度之变化曲线,说明了运动学正反问题的求解过程;通过对运动学逆问题的研究,发现了保证终端输出轨迹不变的前提下电机加速度调整的规律,解决了在某一时间区间内电机加速度过高情况下的应对策略;找到了运动学正问题中三输入电机转速匹配的规律,并针对具体算例,计算并绘制了终端的运动速度、加速度与轨迹曲线;归纳推导了拉格朗日动力学方程,求得了Triaster各个运动构件相对于不同旋转轴的转动惯量、质心及质量,并以此为参数推导了每一时刻各部件的动能和势能的解析表达式,在给定终端轨迹的情况下,成功求解了输入电机的转矩变化曲线;给出了橡皮筋算法的伪代码,说明了其计算最短路径的过程,得到了终端运动空间和三电机转角空间的点云图。针对4组算例,在给定路径起点和终点坐标的前提下,计算并绘制了最短路径;获得了Triaster系统的状态空间方程,阐明了系统误差和电机输入转矩间的关系,分析了摩擦力这一系统不确定性变量的特点,讨论了其作为不确定有界函数在系统方程中的作用,及其扰动所带来的影响。随后分析了系统误差的李雅普诺夫稳定性,针对本系统的摩擦特性,设计出了一种鲁棒控制器,得出系统控制框图。最后,用一算例说明了该鲁棒控制器对机器人轨迹误差的控制;设计并建立了Triaster试验平台,针对两组输入电机的转角位移曲线,试验测试了系统的输出终端的运动轨迹,并通过与理论计算的终端轨迹的对比,说明本文所构建的球面3-RRR并联机器人能够很好地实现预定运动的输出。
     本文的研究成果可为3-RRR球面机器人的进一步研究和应用提供理论借鉴。
In human daily life, there are many applications where a whirling motion is needed. To meet such needs, the dissertation was concentrated on some robot can achieve that function, which is called3-RRR Spherical Parallel Manipulator (SPM). The main content of the dissertation can be summarized into6parts, including structure design, kinematics, dynamics, path planning, robust control and prototype experiments.
     At first, the Least Interference Design Methodology (LIDeM) was established to optimize the workspace of the robot with least mechanical interference. Based on this theory, a novel structure of3-RRR SPM, namely Triaster, was designed and built up. With its kinematics formulas, the singularity loci and interference distribution were attatined via3D spherical plots. Its inverse kinematic equation was derived, based on which Time-Interval-Proportional Extension (TIPE) strategy was raised up to insure the trajectory of Triaster's end effector unchanged when the accelerations of input motors are adjusted to meet the system requirements. The forward kinematic problem of the robot was also solved in the dissertation. Under all the reachable configurations of Triaster, the author found the angular displacements of three input motors should be matched in a range. The phenomenum was explained by some plots of angular displacements, velocities and accelerations of input motors, and some trajectory plots of its end effector. The rubberband algorithm was applied to solve the path planning of Triaster, and was proved to be feasible by4sets of testing datum. The shortest path projections were gained, which are from Riemann spherical space into Euclidian orthogonal space. For avoiding the drawbacks of Newtown method, which are too many intermediate variables and equations produced during the process, and which leads to manually unsolvable, and thus the Hamilton-Lagrangian dynamics method was adopted. The inertia, centroid and mass of each moving component of Triaster were calculated. With these parameters, the kinetic and potential energy of the robot at any moment was attained through the formulas. The relations between input torques and end effector motions were given by their plots. Each input motor power plot which is as a function of time was also given in the dissertation. There are many uncertainties in the robotic system, like friction in each joint. Focused on this uncertainty, the robust control method for the trajectory stability of Triaster was studied. The status space formula of the system was constructed and based on which the Lyapunov stability was analyzed. Accordingly, a specific robust controller was designed. With uncertain friction and robust controller impacted, the trajectory plot of Triaster's end effector was presented. In the end, for proving all these theorical things, an experiment prototyple of Triaster was built up. It connected Triaster robot body, circuit board for motor controlling, language programming software on PC and image caputure module all together. The control programs were written and burned into the circuit board to drive the motors to some expected positions. The images results of the trajectories were captured by the module. The entire image datum were analyzed and compared with the theoretical results, based on which some suggestions was given for future research.
     The achievements obtained in this desertation will be helpful for the application and further research for3-RRR Spherical Parallel Manipulator.
引文
[1]Brown D J A, McLachlan R W, Conder P J. Ergonomic Computer Workstation[P].美国专利:No.6298794.
    [2]Kosik L A, Kosik T L, Telnov A. Ergonomic Computer Chair[P].美国专利:No.8087724.
    [3]Harbin B. Ergonomic PC Mounting Device Permitting Extensive Vertical, Horizontal & Angular Ranges of Motion[P].美国专利:No.6286794.
    [4]Case L. Portable Ergonomic Work Station[P].美国专利:No.5630566.
    [5]Hertz RB, Hughes PC. Kinematic Analysis of A General Double-Tripod Parallel Robot[J]. Mechanism and Machine Theory,1998,33(6):683-696.
    [6]Sewell R. Sketchy----Portrait Drawing Robot[EB/OL]. http://jarkman.co.uk/catalog/r obots/sketchy.htm.
    [7]Stewart D. A Platform with Six Degrees of Freedom[J]. Proceedings of the Institution of Mechanical Engineers,1965,180(15):371-386.
    [8]Bostelman R, Albus J, Dagalakis N, Jacoff A, Gross J. Applications of the NIST RoboCrane[J]. Robotics and Manufacturing,1994,5:403-409.
    [9]Eidelman M, Bialik V, Katzman A. Correction of deformities in children using the Taylor spatial frame[J]. Journal of Pediatric Orthopadics Part B,2006,15(6):387-395.
    [10]Tobie L. NASA Low Impact Docking System[EB/OL]. http://ntrs.nasa.gov/archive/n asa/casi.ntrs.nasa.gov/20090007783_2009006897.pdf.
    [11]Husty ML. An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms[J]. Mechanism and Machine Theory,1996,31(4):365-379.
    [12]Dietmairer P. The Stewart-Gough Platform of General Geometry Can Have 40 Real Postures[C]//Lenarcic J, Husty ML. Advances in Robot Kinematics:Analysis and Control. Netherlands:Kluwer Academic Publishers,1998:7-16.
    [13]Clavel R. Device for the Movement and Positioning of An Element in Space[P]. 美国专 利:No.4976582.
    [14]Pierrot F, Reynaud C, Fournier A. DELTA:a simple and efficient parallel robot[J]. Robotica,1990,8(2):105-109.
    [15]Viera P, Juraj U, Vladimir B, Peter S. Delta Robots-Robots for HiSpeed Manip ulation[J]. Technical Gazette,2011,18(3):435-445.
    [16]Stamper RE. A Three Degree of Freedom Parallel Manipulator with Only Translational Degrees of Freedom[D]. University of Maryland,1997.
    [17]Johann CR. Rostock 3-D Printer Prototype[EB/OL]. http://reprap.org/wiki/Rostock# Links.
    [18]Chablat D, Wenger P. Archetecture Optimization of a 3DOF Translational Parallel Mechanism for Machining Applications, The Orthoglide[J]. IEEE Transactions on Robotics and Automation,2007,19(3):403-410.
    [19]Pierrot F, Marquet F, Company O, Gil T. H4 Parallel Robot:Modeling, Design and Preliminary Experiments[C]//IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation. Seoul, Korea:IEEE,2001: 3256-3261.
    [20]Richard PL, Gosselin CM, Kong X. Kinematic Analysis and Prototyping of A Partially Decoupled 4-DOF 3T1R Parallel Manipulator[J]. ASME Journal of Mechanical Design, 2007,129(6):611-616.
    [21]Vertechy R, Parenti-Castelli V. Synthesis of 2-DOF fully spherical parallel mechanisms[C]//Lennarcic J, Roth B. Advances in Robot Kinematics:Mechanisms and Motion. Netherlands:Springer,2006:385-394.
    [22]Herve JM, Sparacino F, Jal YI, Jap T, Hervfi JM, Sparacino F. Star, A New Concept in Robotics[C]//Research Institute for Symbolic Computation. Proceedings of the 3rd International Workshop on Advances in Robot Kinematics. Ferrara, Italy:Springer,1992: 179-183.
    [23]Vischer P, Clavel R. Argos:A Novel 3-DOF Parallel Wrist Mechanism[J]. International Journal of Robotics Research,2000,19(1):5-11.
    [24]边辉,刘艳辉,梁志成,赵铁石.并联2-RRR/UPRRR踝关节康复机器人机构及其运动学[J].机器人,2010,32(1):6-12.
    [25]朱建瓴,刘成良.人体下肢康复机构设计及运动学仿真[J].计算机仿真,2007,24(3):145-148,218.
    [26]郑亚青,刘雄伟.CNC雕刻机平面并联机构的运动学设计[J].华侨大学学报(自然科学版),2002,23(3):293-299.
    [27]宋孟军,张明路.多足仿生移动机器人并联机构运动学研究[J].农业机械学报,2012,43(3):200-206.
    [28]晏祖根,王立权,孙智慧,卜迟武.面向食品生产的高速自动分拣系统的研究[J].包装工程,2009,30(7):16-18.
    [29]Tsai LW. Kinematics of A Three-DOF Platform with Three Extensible Limbs[C]// Lenarcic J, Parenti-Castelli V. Advances in Robot Kinematics:Mechanisms and Motion. Netherlands:Springer,1996:401-410.
    [30]Kong X, Gosselin CM. Kinematics and Singularity Analysis of A Novel Type of 3-CRR 3-DOF Tranlational Parallel Manipulator [J]. International Journal of Robotics Research, 2002,21(9):791-798.
    [31]Cervantes-Sanchez JJ, Medellin-Castillo HI. A robust classification scheme for spherical 4R linkages[J]. Mechanism and Machine Theory.2002,37(10):1145-1163.
    [32]Tsai LW. Robotic Analysis:The Mechanics of Serical and Parallel Manipulators[M], New York:Wiley-Interscience,1999:118-120.
    [33]Enferadi J, Tootoonchi AA. A novel spherical parallel manipulator:forward position problem, singularity analysis, and isotropy design[J]. Robotica,2009,27(5):663-676.
    [34]Bai S, Hansen MR, Angeles J. A robust forward-displacement analysis of spherical parallel robots[J]. Mechnism and Machine Theory,2009,44(12):2204-2216.
    [35]Fang Y, Tsai LW. Structure Synthesis of A Class of Three Degree of Freedom Rotational Parallel Manipulators [J]. IEEE Transactions on Robotics and Automation,2004,20(1): 117-121.
    [36]Kong X, Gosselin CM. Type Synthesis of Three-degree-of-freedom Spherical Parallel Manipulators[J]. International Journal of Robotics Research,2004,23(3):237-245.
    [37]Gosselin CM, Pierre ES, Gagne M. On the development of the Agile Eye[J]. IEEE Robotics and Automation Magazine,1996,3(4):29-37.
    [38]Chablat D, Wenger P. Design of a Spherical Wrist with Parallel Architecture:Application to Vertebrae of an Eel Robot[C]//IEEE Robotics and Automation Society. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE,2005:3336-3341.
    [39]Leguay-Durand S, Reboulet C. Optimal Design of A Redundant Spherical Parallel Manipulator[J]. Robotica,1997,15(4):399-405.
    [40]Asada H, Granito C. Kinematic and Static Characterization of Wrist Joints and Their Optimal Design[C]//IEEE Robotics and Automation Society. Proceedings of the 1985 IEEE International Conference on Robotics and Automation. St Louis, USA:IEEE,1985: 244-250.
    [41]Gosselin CM, Hamel JF. The agile eye:a high-performance three-degree-of-freedom camera-orienting device[C]//IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation. San Diego, USA:IEEE, 1994:781-786.
    [42]Merlet JP, Gosselin CM, Mouly N. Workspaces of Planar Parallel Manipulator [J]. Mechanism and Machine Theory,1998,33(1-2):7-20.
    [43]Bonev IA, Ryu J. A New Approach to Orientation Workspace Analysis of 6-DOF Parallel Manipulators[J]. Mechanism and Machine Theory,2001,36:15-28.
    [44]Gosselin CM, Angeles J. The Optimum Kinematic Design of A Planar Three Degree of Freedom Parallel Manipulator[J]. Mechanism and Machine Theory,1988,110(1):35-41.
    [45]Merlet JP. Determination of the Orientation Workspace of Parallel Manipulators[J]. Journal of Intelligent and Robotic Systems,1995,13(2):143-160.
    [46]Ling ZK, Chase TR. A priori geometric design of an interference free complex planar mechanism[J]. Mechanism and Machine Theory,1996,31(4):513-524.
    [47]Sen D, Joshi V. Issues in geometric synthesis of mechanisms [J]. Mechanism and Machine Theory,2004,39(12):1321-1330.
    [48]Gosselin C, Angeles J. Singularity Analysis of Closed-loop Kinematic Chains[J]. IEEE Transactions on Robotics and Automation,1990,6(3):281-290.
    [49]Macho E, Altuzarra O, Amezua E, Hernandez A. Obtaining Configuration Space and Singularity Maps for Parallel Manipulators [J]. Mechanism and Machine Theory,2009, 44(11):2110-2126.
    [50]Choudhury P, Ghosal A. Singularity and Controllability Analysis of Parallel Manipulators and Closed-loop Mechanisms [J]. Mechanism and Machine Theory,2000, 35(10):1455-1479.
    [51]Arakelian V, Briot S, Glazunov V. Increase of Singularity-free Zones in the Workspace of Parallel Manipulators Using Mechanims of Variable Structure [J]. Mechanisms and Machine Theory,2008,43(9):1129-1140.
    [52]Aginaga J, Zabalza I, Altuzarra O, Najera J. Improving Static Stiffness of the 6-RUS Parallel Manipulator Using Inverse Singularities [J]. Robotics and Computer-Integrated Manufacturing,2012,28:458-471.
    [53]Bonev IA, Gosselin CM. Singularity Loci of Planar Manipulators with Revolute Joints[C]//Merlet JP, Bahram R. Proceedings of 2nd Workshop on Computational Kinematics. Seoul, South Korea:291-299.
    [54]Denavit J, Hartenberg RS. A Kinematic Notation for Lower-pair Mechanisms Based on Matrices[J]. Transaction of ASME Journal of Applied Mechanisms,1955,23:215-221.
    [55]Hayati SA, Mirmirani M. Improving the Absolute Positioning Accuracy of Robot Manipulators[J]. Journal of Robotic Systems,1985,2(4):397-441.
    [56]Roberts KS. A New Representation for A Line[C]//IEEE Computer Society. In Proceedings of the Conference on Computer Vision and Pattern Recognition. Ann Arbor, USA:IEEE,1988:635-640.
    [57]Ceccarelli M. Screw Axis Defined by Giulio Mozzi in 1763 and Early Studies on Helicoidal Motion[J]. Mechanism and Machine Theory,2000,35(6):761-70.
    [58]Poinsot L. Theorie Nouvelle de la Rotation des Corps[J]. Journal de Mathematiques Pures et Appliquees,1851,16:289-336.
    [59]Chasles M. Note sur les proprietes generates du systeme de deux corps semblables entr'eux [J]. Bulletin des Sciences Mathematiques,1830,14:321-326.
    [60]Hunt KH. Kinematic Geometry of Mechanisms[M]. Oxford:Clarendon Press,1978: 365-385.
    [61]Tsai LW. Robot analysis:the mechanics of serial and parallel manipulators[M]. New York:Wiley-Interscience,1999:182-184.
    [62]Edmonds AR. Angular Momentum in Quantum Mechaniscs[M]. USA:Princeton University Press,1996:6-8.
    [63]Palais B, Palais R, Rodi S. A Disorienting Look at Euler's Theorem on the Axis of a Rotation[J]. The American Mathematical Monthly,2009,116(10):892-909.
    [64]Krey U, Owen A. Basic Theoretical Physics-A Concise Overview[M]. Germany: Springer,2007:80-83.
    [65]Rolland L. Synthesis on the Forward Kinematics Problem Algebraic Modeling for the Planar Parallel Manipulator[J]. Advances in Robotics,2006,20(9):1035-1065.
    [66]Parikh PJ, Lam SSY. A Hybrid Strategy to Solve the Forward Kinematics Problem in Parallel Manipulators [J]. IEEE Transactions on Robotics,2005,21(1):18-25.
    [67]Song WG, Zhang GW. Direct Kinematics Problem Based on RBFNN of Parallel Manipulator[J]. Journal of Northeastern University (Natural Science),2004,25(4): 386-389.
    [68]Boudreau R, Turkkan N. Solving the Forward Kinematics of Parallel Manipulators with A Genetic Algorithm[J]. Journal of Robotic Systems,1995,13(2):111-125.
    [69]Ghazanfari M, Alizadeh S, Fathian M, Koulouriotis DE. Comparing Simulated Annealing and Genetic Algorithm in Learning FCM[J]. Applied Mathematics and Computation,2007,192(1):56-68.
    [70]Hwang SF, He RS. Improving Real-parameter Genetic Algorithm with Simulated Annealing for Engineering Problems[J]. Advances in Engineering Software,2006,37(6): 406-418.
    [71]Chandra R, Rolland L. On Solving the Forward Kinematics of 3RPR Planar Parallel Manipulator Using Hybrid Metaheuristics[J]. Applied Mathematics and Computation, 2011,217 (22):8997-9008.
    [72]Alev S, Zafer B, Hybrid Genetic Algorithm and Simulated Annealing for 2 dimensional Non-guillotine Rectangular Packing Problems [J]. Applications of Artificial Intelligence, 2006,19(5):557-567.
    [73]Carricato M, Vincenzo P. Position Analysis of A New Family of 3-DOF Translational Parallel Manipulators[J]. ASME Journal of Mechanical Design,2003,125(2):316-322.
    [74]Tsai MS, Shiau TN, Tsai YJ, Chang TH. Direct Kinematic Analysis of A 3-PRS Parallel Mechanism[J]. Mechanism and Machine Theory,2003,38(2):71-83.
    [75]Kim J, Park P. Direct Kinematic Analysis of 3-RS Parallel Mechanisms [J]. Mechanism and Machine Theory,2001,36(10):1121-1134.
    [76]黄俊杰,赵俊伟.3-PRS并联机构位置正解分析[J].河南理工大学学报,2012,31(4): 434-436,452.
    [77]戴文伟,吴洪涛,杨小龙.6-3型Stewart平台并联机构的运动学正解[J].现代设计与先进制造技术,2012,41(17):43-46.
    [78]叶冬明,李开明.新型三自由度并联机构工作空间分析[J].机械设计与制造,2012,2:199-201.
    [79]叶伟,方跃法,郭盛,陈志鸿.一种新型并联机构的运动分岔特性及运动学分析[J].机械工程学报,2013,49(13):8-16.
    [80]韩江义,游有鹏,虞启凯.Delta并联机构正向运动学标定方法研究[J].农业机械学报,2013,44(6):253-257.
    [81]李仕华,丁文华,龚文.一种新型3-RPRRR并联机构的运动学分析[J].燕山大学学报,2011,35(6):501-507,543.
    [82]王冰,王春海,刘凯.一种二自由度球形五杆并联机构的运动学分析[J].华北航天工业学院学报,2004,14(4):8-11.
    [83]汪汇.基于SimMechanics软件模块集的3-RRRR并联机构运动仿真[J].轻工机械,2008,26(2):29-32.
    [84]肖霄,宫金良,张彦斐.一种基于3-UPS并联机构的六维控制器运动分析[J].山东理工大学学报(自然科学版),2012,26(1):81-84.
    [85]王南,张庆恒,李伟,平恩顺.基于Pro/E和ADAMS的3-RPC并联机器人运动学与动力学仿真[J].机械设计与制造,2009,10:172-174.
    [86]王庚祥,原大宁,刘宏昭,吴现卫.空间4-SPS/CU并联机构运动学分析[J].农业机械学报,2012,43(3):207-212,199.
    [87]赵明扬,陈文家,王洪光,陈书宏,房立金,徐志刚.混合型4自由度并联机构及其运动学建模[J].机械工程学报,2002,38(1):123-126.
    [88]朱和军,周炎,石鑫,蔡雪.3DOF并联机构的分析[J].装备制造技术,2011,10:57-59.
    [89]张彦斌,张海军,吴鑫.新型纯移动并联机构的运动学和灵巧性分析[J].机床与液压,2010,38(15):13-16.
    [90]刘延斌,韩秀英,贾现召.一种6-SPS型并联机构运动学正向求解方法[J].机械设计与研究,2006,22(1):41-43.
    [91]殷宝麟,姜国栋,于峰,于影,梁艺.3-RRR型并联机构运动学研究[J].佳木斯大学学报(自然科学版),2011,29(5):703-709.
    [92]Lipschutz MM. Theory and problems of differential geometry[M]. NY:McGraw-Hill, 1969.
    [93]Dijkstra EW. A Note on Two Problems in Connection with Graphs[J]. Numerische Mathematik,1:269-271.
    [94]Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithm[M].2nd Edition. USA:MIT Press,2001:595-601.
    [95]Jorgen BJ, Gregory G. Digraphs:Theory, Algorithms and Applications[M].2nd Edition. UK:Springer,2008:55-58.
    [96]Hart PE, Nilsson NJ, Raphael B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths[J]. IEEE Transactions on Systems Science and Cybernetics,1968, 4(2):100-106.
    [97]Liang J. A Path Planning Algorithm of Mobile Robot in Known 3D Environment[J]. Procedia Engineering,2011,15:157-162.
    [98]Stentz A. Optimal & Efficient Path Planning for Partially Known Environment[C]//IJCAI. In Proceedings of the International Joint Conference on Artificial Intelligence, Montreal, Canada:Morgan Kaufmann,1995:1652-1659.
    [99]Korf RE. Depth-first Iterative-deepening:An Optimal Admissible Tree Search[J]. Artificial Intelligence,1985,27(1):97-109.
    [100]Sun X, Koenig S. The Fringe-Saving A* Search Algorithm-A Feasibility Study[C]//Veloso MM. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), India:Morgan Kaufmann,2007:2391-2397.
    [101]Daniel K, Nash A, Koenig S, Felner A. Theta*:Any-Angle Path Planning on Grids. Journal of Artificial Intelligence Research,2010,39:522-579.
    [102]Ferguson D, Stentz A. Using Interpolation to Improve Path Planning:The Field D* Algorithm[J]. Journal of Field Robotics,2006,93(9):79-101.
    [103]Jaulin L. Path Planning Using Intervals and Graphs[J]. Reliable Computing,7(1):1-15.
    [104]Bulow T, Klette R. Rubber band algorithm for estimating the length of digitized space-curves[C]//IEEE Computer Society. Proceeding of the 15th International Conference on Pattern Recognition. Barcelona, Spain:IEEE Computer Society Press, 2000:547-551.
    [105]Varahan G, Mancha D. Accurate Minkowski Sum Approximation of Polyhedral Models[J]. Graphical Models,2006,68(4):343-355.
    [106]Hershberger J. An Optimal Visibility Graph Algorithm for Triangulated Simple Polygons[J].Algorithmica,1989,4(1-4):141-155.
    [107]Conkur ES. Path Planning Using Potential Fields for Highly Redundant Manipulators [J]. Robotics and Autonomous Systems,2005,52(2-3):209-228.
    [108]Hwang YK, Ahuja N. A Potential Field Approach to Path Planning[J]. IEEE Trans on Robotics and Automation,1992,8(1):23-32.
    [109]Barraquand J, Langlois B, Latombe JC. Numerical Potential Field Techniques for Robot Path Planning[J]. IEEE Transactions on Systems, Man, and Cybernetics,1992,22(2): 224-241.
    [110]Kavraki LE, Svestka P, Latombe JC, Overmars MH. Probabilistic Roadmaps for Path Planning in High-dimensional Configuration Spaces [J]. IEEE Transactions on Robotics and Automation,1996,12(4):566-580.
    [111]Kuffner JJ, LaValle SM. RRT-connect:An Efficient Approach to Single-Query Path Planning[C]//IEEE Robotics and Automation Society. IEEE International Conference on Robotics and Automation. San Fransico:IEEE,2000:995-1001.
    [112]Frazzoli E, Dahleh MA, Feron E. Real-Time Motion Planning for Agile Autonomous Vehicles[J]. Journal of Guidance, Control, and Dynamics,2002,25(1):116-129.
    [113]LaValle SM, Kuffner JJ Jr. Randomized Kinodynamic Planning[J]. International Journal of Robotics Research,20(5):378-400.
    [114]Kindel R, Hsu D, Latombe JC, Rock S. Kinodynamic Motion Planning Amidst Moving Obstacles[C]//IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics & Automation. San Francisco, US:IEEE,2000: 537-543.
    [115]Safadi H. Local Path Planning Using Virtual Potential Field[EB/OL]. http://www.cs.mcgill.ca/-hsafad/robotics/#_msocom_4.
    [116]Hsu D, Latombe JC, Kurniawati H. On the Probabilistic Foundations of Probabilistic Roadmap Planning[J]. The International Journal of Robotics Research,2006,25(7): 627-643.
    [117]邱军林,张亚红,寇海洲.基于A*算法的机器人路径规划实现[J].科教前沿,2009,(21):277-278.
    [118]李宁宁,刘玉树.改进的Dijkstra算法在GIS路径规划中的应用[J].计算机与现代化,2004,109(9):12-17.
    [119]马志艳,杨光友,陈汀,李浩.机械手避碰路径规划计算机辅助设计与模拟[J].软件,2013,34(6):72-75.
    [120]郭戈.移动机器人路径规划与环境绘图[J].机器人,2003,25(4):304-307.
    [121]仲欣,吕恬生.基于遗传算法的汽车式移动机器人路径规划方法[J].上海交通大学学报,1999,33(7):885-888.
    [122]许斯军,曹奇英.基于可视图的移动机器人路径规划[J].计算机应用与软件,2011,28(3):220-222,236.
    [123]何利,赵臣,臧军旗,桂许军,崔炜.基于几何学的路径规划方法[J].哈尔滨工业大学学报,2005,37(7):947-949.
    [124]朱德良.离散势场在迷宫机器人路径规划上的应用[J].机器人技术,2007,23(9-2):252-253,78.
    [125]段俊花,李孝安,刘立云.人工势场法在足球机器人路径规划中的应用[J].计算机测量与控制,2007,15(1):138-140.
    [126]王梅,王叶婷,屠大维,江济良,张国栋.基于混合势场法的移动机器人路径规划[J].计算机应用研究,2012,29(7):2447-2449,2460.
    [127]陆夏美,马云飞,马晓薇.基于模糊神经网络的移动操作机路径规划方法[J].哈尔滨理工大学学报,2003,8(2):39-41.
    [128]王华,赵臣,王红宝,瓮松峰.基于快速扫描随机树方法的路径规划器[J].哈尔滨工业大学学报,2004,36(7):963-965.
    [129]闫利利,严德昆,吴利波.人工免疫算法在机器人路径规划中的应用[J].计算机与数字工程,2007,35(7):18-21.
    [130]杨伟东,檀润华,颜永年,徐安平.遗传算法在快速成形轮廓路径规划中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2179-2183.
    [131]耿兴元,韩波,李平.自主微型直升机飞行路径规划研究[J].机器人,2004,26(2):145-149.
    [132]洪晔,王宏键,边信黔.基于分层马尔科夫决策过程的AUV全局路径规划研究[J].系统仿真学报,2008,20(9):2361-2363,2367.
    [133]Do WQD, Yang DCH. Inverse Dynamic Analysis and Simulation of a Platform Type of Robot[J]. Journal of Robotic Systems,1988,5(3):209-227.
    [134]Guglielmetti P, Longchamp R. A Closed Form Inverse Dynamics Model of the Delta Parallel Robot[C]//IFAC. Proceedings of International Federation of Automatic Control Conference on Robot Control. Italy:Elsevier,1994:39-44.
    [135]Lebret G, Liu K, Lewis FL. Dynamic Analysis and Control of a Stewart Platform Manipulator[J]. Journal of Robotic Systems,1993,10(5):629-655.
    [136]Pang H, Shahingpoor M. Inverse Dynamics of a Parallel Manipulator[J]. Journal of Robotic Systems,1994,11(8):693-702.
    [137]Miler K, Clavel R. The Lagrange-Based Model of Delta-4 Robot Dynamics[J]. Robotersysteme,1992,8:49-54.
    [138]Codourey A, Burdet E. A Body-Oriented Method for Finding a Linear Form of the Dynamic Equation of Fully Parallel Robots[C]//IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico:IEEE,1997:1612-1618.
    [139]Miller K. Experimental Verification of Modelling of Delta Robot Dynamics by Application of Hamilton's Principle[C]//IEEE Robotics and Automation Society. Proceedings of IEEE International Conference on Robotics and Automation. Nagoya, Japan:IEEE,1995:532-537.
    [140]Huang T, Liu S, Mei J. Chetwynd DG. Optimal Design of 2-DOF Pick-and-Place Parallel Robot Using Dynamic Performance Indices and Angular Constraints [J]. Mechanism and Machine Theory,2013,70:246-253.
    [141]Ellis RE, Ricker SL. Two Numerical Issues in Simulating Constrained Robot Dynamics[J]. Transaction on Systems, Man and Cybernetics.1994,24(1):19-27.
    [142]Pang H, Shahinpoor M. Inverse Dynamics of a Parallel Manipulator[J]. Journal of Robotic Systems,1994,11(8):693-702.
    [143]Ebert-Uphoff L, Kozak K. Review of the role of quasi-coordinates for the kinematic and dynamic modeling of parallel manipulators [C]//Gosselin CM, Ebert-Uphoff I. Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators. Quebec, Canada:ASME,2002:328-338.
    [144]Abdellatif H, Heimann B. Computational Efficient Inverse Dynamics of 6-DOF Fully Parallel Manipulators by Using the Lagrangian Formalism[J]. Mechanism and Machine Theory,2009,44(1):192-207.
    [145]Bhattacharya S, Hatwal H, Ghosh A. An On-line Estimation Scheme for Generalized Stewart Platform Type Parallel Manipulators[J]. Mechanism and Machine Theory,32(1): 79-89.
    [146]Zhang CD, Song SM. An Efficient Method for Inverse Dynamics of Manipulators Based on the Virtual Work Principle[J]. Journal of Robotic Systems,1993,10:605-627.
    [147]Wang J, Gosselin CM. A New Approach for the Dynamic Analysis of Parallel Manipulators[J]. Multibody System Dynamics,1998,42:1119-1140.
    [148]Gherman B, Pisla D, Vaida C, Plita N. Development of Inverse Dynamic Model for A Surgical Hybrid Parallel Robot with Equivalent Lumped Masses[J]. Robotics and Computer-Integrated Manufacturing,2012,28(3):402-415.
    [149]Lu Yi. Using Virtual Work Theory and CAD Functionalities for Solving Active Force and Passive Force of Spatial Parallel Manipulators[J]. Mechanism and Machine Theory, 2007,42(7):839-858.
    [150]Wang J, Gosselin CM. A New Approach for the Dynamic Analysis of Parallel Manipulators [J]. Mutibody System Dynamics,1998,7:317-334.
    [151]Zhang CD, Song SM. An Efficient Method for Inverse Dynamics of Manipulators Based on the Virtual Work Principle[J]. Journal of Robotic Systems,1993,10(5): 605-627.
    [152]Tsai LW. Solving the Inverse Dynamics of A Stewart-Gough Manipulator by the Principle of Virtual Work[J]. Journal of Mechanical Design,2000,122(1):3-9.
    [153]Gallardo J, Rico JM, Frisoli A, Checcacci D, Bergamasco M. Dynamics of Parallel Manipulators by Means of Screw Theory[J]. Mechanism and Machine Theory,2003, 38(11):1113-1131.
    [154]Carbonari L, Battistelli M, Callegari M, Palpacelli MC. Dynamic Modeling of a 3-CPU Parallel Robot via Screw Theory[J]. Mechanical Science,2013,4:185-197.
    [155]Pfreundschuh GH, Suger TG, Kumar V. Design and Control of a ThreeDegreeofFreedom, In-Parallel, Actuated Manipulator[J]. Journal of Robotic Systems,1994,11(2):103-115.
    [156]Yoon WK, Takashi S, Yuichi T, Masaru U. Stiffness Analysis and Design of a Compact Modified Delta Parallel Mechanism[J]. Robotica,2004,22(4):463-475.
    [157]Carbone G, Ceccarelli M. A Stiffness Analysis for a Hybrid Parallel-Serial Manipulator[J]. Robotica,2004,22(5):567-576.
    [158]Xu L, Li Y. Investigation of joint clearance effects on the dynamic performance of a planar 2-DOF pickOand-place manipulator[J]. Robotics and Computer-Integrated Manufacturing,2014,30(1):62-73.
    [159]Ting KL, Zhu J, Watkins D. The effects of joint clearance on position and orientation deviation of linkages and manipulators[J]. Mechaism and Machine Theory,2000,35(3): 391-401.
    [160]Afroun M, Chettibi T, Hanchi S. Planning Optimal Motions for a Delta Parallel Robot[C]//Giuseppe Conte.14th Mediterranean Conference on Control and Automation. Ancona, Italy:IEEE,2006:1-6.
    [161]Orin DE, McGhee RB, Vukobratovic M, Hartoch G. Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing Newton-Euler Methods[J]. Mathematical Biosciences, 1979,43(1-2):107-130.
    [162]Craig J, Hsu P, Sastry SS. Adaptive Control of Mechanical Manipulators[C]//IEEE. Proceedings of IEEE International Conference on Robotics and Automation. Washington DC, US:IEEE Computer Society Press,1986:190-195.
    [163]Hsu P, Bodson M, Sastry S, Paden B. Adaptive Identificaiton and Control for Manipulators Without Using Joint Accelerations[C]//IEEE. Proceedings of IEEE International Conference on Robotics and Automation. Raleigh, US:IEEE Press,1987:
    [164]Walker MW. Adaptive Control of Manipulators Containing Closed Kinematic Loops[J]. Transaction of IEEE Robotics and Automation,1990,6(1):10-19.
    [165]Yoo BK, Ham WC. Adaptive Control of Manipulator Using Fuzzy Compensator [J]. Transaction of IEEE on Fuzzy Systems,2000,8(2):186-199.
    [166]Stan SD, Gogu G, Manic M, Balan R, Rad C. Fuzzy Control of a Three Degree of Freedom Parallel Robot[J]. Technological Developments in Education and Automation, 2010:437-442.
    [167]Noshadi A, Mailah M, Zolfagharian A. Intelligent Active Force Control of a 3-RRR Parallel Manipulator Incorporating Fuzzy Resolved Acceleration Control[J]. Applied Mathematical Modelling,2012,36(6):2370-2383.
    [168]Kim N-I, Lee C-W, Chang P-H. Sliding Mode Control with Perturbation Estimation: Application to Motion Control of Parallel Manipulator[J]. Control Engineering Practice, 1998,6(11):1321-1330.
    [169]Kozdk K, Ebert-Uphoff I, Singhose W. locally linearized dynamic analysis of parallel manipulators and application of input shaping to reduce vibration[J]. Journal of Mechanical Design,2004,126(1):156-158.
    [170]罗磊,莫锦秋,王石刚,蔡建国.并联机构动力学建模和控制方法分析[J].上海交通大学学报,2005,39(1):75-78.
    [171]钟英英,楼云江,徐毅.并联机构动力学建模及控制研究[J].机械设计及制造,2009,26(4):5-8,21.
    [172]敖银辉,陈新,李克天.基于微分几何的并联机构动力学及复合控制[J].中国机械工程,2007,18(11):1339-1342.
    [173]徐轶轲,刘强.两自由度并联机构动力学分析及其控制补偿策略[J].机械工程师,2006,(2):113-114.
    [174]张秀峰,孙立宁.精密并联机器人控制算法及控制系统研究[J].机械工程学报,40(4):177-180.
    [175]王波,朱振华,李刚.自适应同步控制策略在3-RRR平面并联机构中的应用.机电技术,2009,(3):1-4.
    [176]丛爽,王杨,尚伟伟.自适应控制策略在并联机构上的应用[J].制造业自动化,29(7):45-49.
    [177]杨涛,马嘉,侯增广,谭民.Stewart并联机构主动隔振平台的非线性L2鲁棒控制[J].机器人,2009,31(3):2 1 0-216,223.
    [178]刘延斌,郭志佳,韩建海.并联机构驱动奇异的分层递阶滑模控制方法[J].中国机械工程,2012,23(8):928-934.
    [179]王洪斌,王洪瑞,肖金壮.并联机器人轨迹跟踪积分变结构控制的研究[J].燕山大学学报,27(1):25-28.
    [180]蔡开云,郝秀清,徐宗刚,马瑞亭.压电陶瓷驱动三平移并联机构的模糊控制[J].山东理工大学学报(自然科学版),2010,24(1):42-45,49.
    [181]高国琴,宋庆,夏文娟.并联机构的动力学分析及其无模型智能控制[J].机械设计及制造,2011,9:90-92.
    [182]蒋其友,高国琴.基于FNN的Terminal滑模算法在并联机器人控制中的应用[J].机械设计与制造,2008,5:171-173.
    [183]吴军,李铁民,唐晓强.平面并联机构的残余振动控制[J].机械工程学报,2006,42(11):49-53.
    [184]叶芳林,胡俊峰.基于SimMechanics的高速3-RRR并联机构动力学分析与控制[J].机械设计与制造,2013,2:157-159,162.
    [185]Bonev IA, Ryu J. A New Approach to Orientation Workspace Analysis of 6-DOF Parallel Manipulators[J]. Mechanism and Machine Theory,2001,36(1):15-28.
    [186]Gosselin CM, Angeles J. The Optimum Kinematic Design of A Spherical Three Degree of Freedom Parallel Manipulator [J]. Mechanism and Machine Theory,1989,111: 202-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700