基于新型分类收集系统的生活垃圾焚烧过程污染物控制及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的加快和城市生活垃圾产生量的不断增加,城市生活垃圾造成的围城现象和环境污染日益突出。城市生活垃圾的处理已成为我国和世界各国面临的重大环境问题。焚烧处理法是目前世界各国最广泛采用的处理生活垃圾的有效有段之一。由于我国现有垃圾的收运管理体系相对落后,垃圾中大量的可回收利用物质被直接焚烧造成资源的损失,与建设“资源节约型”社会的目标相违背。另一方面,我国的焚烧技术起步晚,还缺乏针对我国国情下性质复杂的城市生活垃圾的高效安全的焚烧处理技术,垃圾焚烧造成的二次污染给环境带来了巨大的压力。本研究针对我国城市生活垃圾的性质和变化趋势,以资源回收和焚烧污染控制为目标,研究建立了新型的垃圾源头分类收集与转运系统,研究了垃圾分类收运与焚烧处理综合技术体系下,垃圾焚烧炉的系统运行调控、二噁英类和多环芳烃的形成与污染控制、重金属的迁移与转化以及焚烧灰渣的资源化,研究结果对我国城市生活垃圾分类收集管理体系和与焚烧处理污染物控制技术适配的完善具有重要现实意义。研究取得的主要结论有:
     (1)依据垃圾性质的变化趋势、资源回收优先、简单方便易行等原则,确立了将生活垃圾分为厨余垃圾、干垃圾和有害垃圾等三类的城市生活垃圾分类收集技术与管理体系。优化了分类收运系统,设计建设了以废物资源回收为目的的干垃圾中转站分拣回收体系,建立了“收运压缩+中转垂直压缩+堆酵脱水”的组合脱水预处理工艺,构建了管理保障体系。通过运行实施发现垃圾分类投放正确率显著提高,建立的垃圾分类收集方法切实可行。组分显著变化导致垃圾含水率和容重升高,但组合脱水工艺可实现垃圾水分的高效脱除,含水率降低14%以上。
     (2)垃圾源头分类收集与分拣回收使纸张、织物、塑料等组分的比例下降,尤其是塑料组分显著减少达50%,厨余垃圾成为垃圾的主要组成部分。塑料袋与PVC等塑料组分的大量去除以及厨余垃圾中可溶性无机氯盐类通过脱水去除,直接导致垃圾中Cl元素的显著降低。组合脱水处理技术使垃圾湿基低位热值显著增加至5000kJ/kg以上。新型的垃圾分类收运与焚烧处理综合技术体系下,垃圾焚烧炉的处理效率显著提高,在降低助燃系统能耗的同时可显著提升垃圾焚烧过程炉膛温度。随着余热锅炉热量系统热量回收效率显著增加,汽轮机—机组的热电转化效率显著提升。
     (3)对焚烧炉烟气和尾气中7种2,3,7,8位氯取代的二苯并二噁英PCDDs和10种2,3,7,8位氯取代的二苯并呋喃PCDFs同系物浓度与毒性当量的分布特征发现,烟气向尾气转变过程中PCDFs和PCDFs的分布特征发生了显著变化。PCDD/Fs浓度与半干式烟气处理系统中PCDD/Fs的吸附去除量之间存在线性关系,PCDD/Fs同系物的浓度分布和活性炭的吸收负荷是影响二噁英去除效率的关键因素。最高毒性的2,3,7,8-TCDD在布袋除尘器飞灰中富集。共平面PCBs毒性当量对二噁英类毒性当量的贡献率不足1%,PCDD/Fs毒性当量是影响飞灰二噁英类毒性当量的决定性因子。垃圾物料的理化性质与焚烧炉工况是影响垃圾焚烧过程二噁英产生的关键因素。PCDD/Fs的浓度随着焚烧烟气中O_2、CO、HCl的含量的降低而下降,呈现正相关。新型的垃圾分类收运与焚烧处理技术体系可减少垃圾焚烧过程二噁英的产生量和毒性当量,并使二噁英富集在飞灰中从而降低向大气排放,由于二噁英排放因子降低至338.92 ng I-TEQ/t MSW。
     (4)对16种多环芳烃PAHs及7种致癌性PAHs在焚烧炉底渣、余热锅炉飞灰、布袋除尘器飞灰中的分布规律研究发现,PAHs主要分布富集在焚烧炉底渣中。灰渣中PAHs总含量、致癌性PAHs总量、PAHs致癌性毒性当量B[a]P_(eq)的顺序均为:焚烧炉底渣>余热锅炉飞灰>布袋除尘器飞灰。焚烧炉底渣与余热锅炉飞灰中PAHs的组成特征相似。新型的垃圾分类收运与焚烧处理技术体系下,底渣与飞灰中PAHs致癌性毒性当量B[a]P_(eq)均显著降低。垃圾中的氯源是影响垃圾焚烧过程中PAHs生成的关键因素。垃圾分类收集回收去除塑料和金属、组合脱水是从源头着手减少焚烧过程PAHs生成的两个重要环节。焚烧炉膛温度的显著升高是PAHs生成减少的重要因素之一。垃圾焚烧灰渣中PAHs与CO呈现正相关,与过剩空气系数呈现负相关,以CO浓度降低和过剩空气系数升高为表征的垃圾燃烧效率提高,是垃圾焚烧灰渣中多环芳烃生成减少的重要因素。
     (5)低挥发性的Cu、Cr、Ni、Mn等主要分布在焚烧炉底渣中。Hg、Cd、Zn、Pb等挥发性重金属因蒸发并冷凝吸附主要富集在各种飞灰中。焚烧灰渣中重金属含量水平受垃圾组成、焚烧过程工况特别是温度等因素影响。底渣中重金属含量显著降低与分拣去除含重金属的组分有关。飞灰中重金属的含量升高与焚烧炉膛温度的升高、重金属向飞灰中迁移并富集的速率增加有关。垃圾焚烧灰渣中各重金属在“最不利”环境条件下的最大可浸出量与灰渣中该重金属的存在形态直接相关,与水溶态、Ca离子交换态、Ag离子交换态、酸溶态等四种易浸出形态之和存在正相关性。新型的垃圾分类收运与焚烧处理技术体系,有利于重金属在飞灰中的富集而减少向大气排放,同时能降低重金属易浸出形态含量从而减少焚烧飞灰作为危险废物安全处置时重金属浸出的环境风险。
     (6)相较于飞灰,焚烧炉底渣的火山灰活性符合作为水泥的人工火山灰质混合材料。通过对底渣中影响波特兰水泥性质的SiO_2、CaO、Al_2O_3等组分的分析、微粉添加对混凝土试件强度和水泥胶砂流动度的影响研究,垃圾焚烧炉底渣的抗折强度、抗压强度及活性指数显著增加,水泥胶砂的流动度显著降低,而且烧失量降低,易磨性能显著增加,与垃圾分类后组分变化及垃圾焚烧充分、有机物质分解彻底、灰渣颗粒粒径减少等因素直接相关。新型的垃圾分类收运与焚烧处理体系下,焚烧炉底渣符合国家标准对人工火山灰质混合材料的各项技术要求,可以直接用于水泥生产的掺和料而实现在水泥和建筑行业上的资源化利用。
With rapid economic development and urbanization, the quantity of municipal solid waste (MSW) generated has increased quickly. Expanding MSW production could have a great effect on the environment and public health as the disposal of MSW has become a serious problem in China and other countries around the world. Thermal treatment using incineration technology has proven as an attractive method of MSW disposal for many years. Due to the limitation of MSW management system in China, many components in MSW which could be recycled as resource were loss during combustion. It goes against the goal for establishing "Recycking-based Society". On the other hand, MSW incineration in China is still in initial stage. Due to the complex characteristics of Chinses MSW, secondary pollution from MSW incineration has been a serious problem. In this research, a newly source-classication and transportation system was established. The operation MSW incineration, formation and pollution control of PCDD/Fs and PAHs, transfer and transformation of heavy metals during MSW incineration process were studied. Furthmeore, the ultilzaion of residues from combustion was also dicussed. Main conclusions were:
     (1) Based on the variation trend of MSW, recycling and ultization of waste, and feasibility of methods, MSW should be sorted as food waste, dry waste and harmful waste by residents. The whole system including collection, transfert and ransportation were optimized. A transfer station was designed and constructed for MSW recycling, and the combined dewatering technology" vehicle compress dewatering +mechanical dewatering + stockpile dewatering" was established. A management system were founded as well. It was shown that the separeation methods was feasible, and the correctness rates of MSW separatione increased significantly. The components of MSW changed due to the classification and recycling. Although the moisture and bulk density increased, but with a higher dewatering efficiency (more than 14%) the moisture of the classified MSW reduced significantly.
     (2) Due to reduction in source classification and separation section, conten of paper, textile and plastics decreased, plastics signicifantly lessend by 50% in particular. Kichetn waste became the main component. Cl content was decreased, which was dierectly related with the removal of a large amount od plastic bags and PVC, and the reduction of soluble chloride contaning in food waste through dewatering. The lower heat value (LHV) of feeding waste was increased to more than 5000kJ/kg, resulted from combined dewatering. The treatment efficiency of incinerator was improved and the temperature of incinerator furnace was continuously higher during the combustion process. By the newly established MSW source-classified collection and incineration system, the net enery output of the waste heat boiler increased significantly. Therefore, the energy transformation efficiency between waste heat boiler and steam turbine generator improved.
     (3) The concentration distribution and toxic equivalent quantity (TEQ) of 7 kinds of 2,3,7,8-substituted PCDDs congeners and 10 kinds of 2,3,7,8-substituted PCDFs congeners in flue gases from incinerator and the stack flue gases were studied. The ratio of PCDDs and PCDFs changed in stack flue gas compared with flue gas. 2,3,4,7,8-PeCDF was the key factor affecting the TEQ. The correlation relationship between the PCDD/Fs concentrations in flue gas and the removal quantity of PCDD/Fs in the air pollution control devices (APCD) was observed, which proved that the PCDD/Fs concentration distribution and the absorption load of active carbon were the two key factors affecting the removal efficiency of PCDD/Fs. The most toxic congener 2,3,7,8-TCDD was condensed in fly ash from bag filter (FABF). The proportion of coplanar PCBs TEQ /dioxin TEQ of FABF was less than 1%, which indicated that TEQ of PCDD/Fs was the dominant factor affecting the dioxin TEQ of FABF. The characteristcs of feeding waste and the incineration parameters principally influenced PCDD/Fs formation during combustion. Content of O_2、CO、HCl in flue gas were decreased. The correlation relationship between PCDD/Fs and content of O_2、CO、HCl in flue gas existed. These results demonstrated that PCDD/Fs formation in flue gas could be reduced, and concentrated in fly ash to lessen the emission to atmosphere with the foundation of the new MSW source-classified collection and incineration system. Furthermore, the emission factor of dioxin from the plant was reduced to 338.92 ng I-TEQ/t MSW.
     (4) Distributions of 16 PAHs and 7 carcinogenic PAHs among BA, FAB and FABF were studied. PAHs were mainly concentrated in BA. The concentrations of PAHs in fly ashes were relatively lower. The ranking of the total content of PAHs, the total content of carcinogenic PAHs and the toxic equivalency of PAHs (B[a]P_(eq)) all were: BA > FAB > FABF. The constitution of PAHs in FAB were the similar. The total content of PAHs and B[a]P_(eq) of bottom ash and fly ash from the classified MSW incineration were both decreased. Chlorine was the key factor that affecting PAHs formation during MSW combustion. Removal of metals and paper printed with heavy metal containing materials might reduce PAHs generation from MSW incineration. Therefore, sorting of plastics and metal, combined dewatering were the two important steps for reducing PAHs formation. Becasue PAHs are typical products of imcomplete combustion, and PAHs formation are sensitive to the combustion process. A negative correlation between the total PAHs and furnace temperature was observed, which proved that the increase of furnace temperature during the classified MSW incineration was one of important factors for reducing PAHs generation. Moreover, a positive correlation between the total PAHs and CO, a negative correlation between the total PAHs and excess air ratio were shown. The increase of combustion efficiency which was presented as decrease of CO and increase of excess air ratio, might significantly decrease the PAHs formation.
     (5) Transfer and distribution of heavy metals in bottom ash and fly ash during MSW incineration were studied. Low volatile metals such as Cu、Cr、Ni、Mn mainly exsited in bottom ash. On the other hand, some volatile metals such as Hg, Cd, Zn and Pb, would evaporate and would be adsorpt by granule of fly ash during condensation process. Therefore, these volatile metals became rich in fly ash. Levels of heavy metals in residues are affected by feeding waste and combustion history, especially incineration temperation. Concentations of heavy metals in bottom ash were lower, probably due to the reduction of metals, metal-containing newpaper and textile in feeding waste. Volatile metals are expected to have higher transfer rate to fly ash as furnace temperature increases. Owing to the continuously higher in the incinerator furnace during the incineration of classified MSW, heavy metals concentrations in fly ashes were higher. The maximum leachable abilities of heavy metals were related with chemical special distribution of heavy metals in residues. There was a linear relationship between the maximum leachable abilities and the total content of four leacheable chemical speciations, that were water soluble, Ca exchangeable, Ag exchangeable and acid soluble, respectively. Under the newly established MSW source-classified collection and incineration system, the enrichment of heavy metals in fly ash may be advantageous for emission decrease of heay metals to atmosphere. On the hand, the decrease of leacheable chemical speciations in fly ash could be beneficial to reduce the ecological risk of heavy metals leachting, where fly ash treated specilly as hazardous waste.
     (6) As the results of volcanic activities testing for bottom ashes and fly ashes from MSW incineration, BA might be able to be applied as pozzolanic material due to its qualified activity of volcanic ash. According to chemical component analysis of BA in oxide form, particularly the distribution of SiO_2、CaO、Al_2O_3 which primarily affected the characteristics of pozzolanic cement, and the effect of BA on strength of concrete and fluidity of cement mortar, it was shown that the rupture strength, compressive strength and activity index of C-BA increased, fluidity of cement mortar decreased. In addtion, loss in ignition of BA decreased but property of grindability was improved. These might be due to the change of component of feeding waste, much more complete decomposition of organic matter and decrease of size distribution for BA, which were directly releated to the higher furnace temperature of the classified MSW incineration process. The results indicated that the newly established MSW source-classified collection and incineration system could improve the pozzolanic characteristics of BA as pozzolanic materials used for cement production, and therefore it could be conducive to BA utilization in cement and construction industry.
引文
Abad E.,Aadrados M.,Caixach J.Dioxin mass balance in a minucipal waste incinerator.Chemosphere.2000,40:1143-1147.
    Abanades S.,Flamant G,Gagnepain B.,Gauthier D.Fate of heavy metals during municipal solid waste incineration.Waste Management & Research.2002,20(1):55-68.
    Addink R.,Espourteille F.,Altwicker E.R.Role of inorganic chlorine in the formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from residual carbon on incinerator fly ash.Environmental Science & Technology.1998,32(21),3356-3359.
    Addink R.,Altwicker E.R.Role of copper compounds in the de novo synthesis of polychlorinated dibenzo-p-dioxins/dibenzofurans.Environmental Engineering Science.1998,15(1):19-27.
    Addink R.,Bavel B.V.,Visser R.,Wever H.,Slot P.,Olie K.Surface catalyzed formation of polychlorinated dibenzo-p-dioxins /dibenzofurans during municipal waste incineration.Chemosphere.1990,20(10-12):1929-1934.
    Addink R.,Olie k.Role of oxygen in formation of polychlorinated dibenzo-p-dioxins / dibenzofurans from carbon on fly ash.Environmental Science & Technology.1995,29:1586-1590.
    Alcock R.E.,Gemmill R..Jones K.C.Improvements to the UK PCDD/F and PCB atmospheric emission inventory following an emissions measurement programme.Chemosphere.1999,38(4):759-770.
    Arion A.,Baronnet E,Lartiges S.,Birat J.P.Characterization of emissions during the heating of tyre contaminated scrap.Chemosphere.2001,42:853-859.
    Bahushok V.I.,Tsang W.Gas-phase mechanism foe dioxin formation.Chemosphere.2003,51:1023-1029.
    Bai R.,Sutanto M.The practice and challenges of solid waste management in Singapore.Waste Management.2002,22:557-567.
    Barton R.G,Clark W.D.Seeker W.R.Fate of metals in waste combustion system.Combust Science & Techology.1990,74:343-359.
    Beievi H.,Langmeier M.Factors determing the element behavior in municipal Solid waste incinerators.2.Laboratory experiments.Environmental Science & Technologly.2000,34:2507-2511.
    Beievi H.,Moench H.Environmental Science & Technology,2000Factors determining the element behavior in municipal solid waste incinerators.1.Field studies.Environmental Science and Technology.2000,34:2501-2506.
    Bie R.S.,Li S.Y.,Wang H.Characterization of PCDD/Fs and heavy metals from MSW incineration plant in Harbin.Waste Management.2007,27(12):1860-1869.
    Biswas P.,Wu C.Y.Control of toxic metal emissions from combustors using sorbents:a review. Journal of the Air & Waste Management Association.1998,48(2):113-127.
    Boos R.,Budin R.,Hartl H.L,Stock M.,Wurst F.PCDD-and PCDF-destruction by a SCR-unit in a municipal waste incinerator.Chemosphere.1992,25:375-382.
    Brunner P.H.,Monch H.The flux of Metals through municipal solid waste incinerators.Waste Management & Research.1986.4:105-119.
    Buchholz B.A.,Landsberger S.Trace metal analysis of size-fractioned municipal solid waste incinerator fly ash and its leachates.Journal of Environment Science Health.1993,A28(2):423-443.
    Buser H.R.Formation of polychlorinated dibenzofurans (PCDFs) and dibenzo-p-dioxins (PCDDs) from the pyrolysis of chlorobenzenes.Chemosphere.1979,6:415-424.
    California Department of Health Services (CDHS).Guidelines for Chemical Carcinogen Risk Assessments and Their Scientific Rationale.State of California,Health and Welfare Agency,Sacramento,CA.1985.
    California Department of Health Services (CDHS).Health Effects of Dibenzodioxins and Dibenzofurans.State of California,Health and Welfare Agency,Sacramento,CA.1986.
    Callen M.S.,de la Cruz M.T.,Marinov S.,Murillo R.,Stefanova M.,Mastral A.M.Flue gas cleaning in power station by using electron beam technology.Influence on PAH emissions.Fuel Processing Technology.2007,88:251-258
    Cecinato,A.Polynuclear aromatic hydrocarbons (PAH),Benz(a)pyrene (BaPY) and nitrated-PAH (NPAH) in suspended particulate matter.Annali di Chimica.1997,87:483-496.
    Cecinato,A.,Repetto,M.,Guerriero,E.,Allegrini,I.,.Levels and sources of polynuclear aromatic hydrocarbons in the Genoa-Cornigliano area.In:Brebbia C.A.,Ratto C.F.,Power H.(Eds.),Proceedings of Air Pollution VI.WIT Press,Southampton,UK.1998b:587-596.
    Chandler A.J.,Eighmy T.T.,Hartlen J.Municipal solid waste incineration residues.The Netherlands:Elsevier B.V.1997,339-478.
    Chang M.B.,Wu H.T.,Huang C.K.Evaluation on speciation and removal efficiencies of mercury from municipal solid waste incinerators in Taiwan.The Science of the Total Environment.2000,246(2-3):165-173.
    Chang F.Y,Wey M.Y.Comparison of the characteristics and bottom and fly ashes generated from various incineration processes,Journal of Hazardous Materials.2006,B138:594-603.
    Chang N.B.,Chang Y.S.,Chen W.C.Evalutaion of heat value and its prediction for refuse-derived fuel.The Science of the Total Environment.1997,197:138-148.
    Chang N.B.,Wang S.F.Integrated analysis of recycling and incineration programs by goal programming techiques.Waste Management & Research.1997,15:121-136.
    Chang H.B.,Chung Y.T.Dioxin content in fly ashes of MSW incineration in Taiwan,Chemosphere.1998,36(9):1959-1968.
    Chang Y.S.,Chen W.C,Chang N.B.Comparative evaluation of RDF and MSW incineration.Journal of Hazardous Materials.1998,58:33-45.
    Chen CM.The emission inventory of PCDD/PCDF in Taiwan.Chemosphere.2004,34: 1413-1420.
    Chen T.,Yan J.H.,Lu S.Y.,Li X.D.,Gu Y.L.,Dai H.F.,Ni M.J.Cen K.F.Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in China,Journal of Hazardous Materials.2008,150:510-514.
    Chimenos J.M.,Fernadez M.A.,Espiell F.Characteriziation of the bottom ash in municipal solid waste incineration.Journal of Hazardous Materials.1999,A64:211-222.
    Chung S.S.,Poon C.S.Recovery system in Guangzhou and Hongkong.Resources,Conservation and Recycling.1998,23:29-45.
    Collins J.F.,Brown J.P.,Alexeeff G.V.,Salmon A.G..Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives.Regulation Toxicology and Pharmacology.1998,28:45-54.
    Collins J.F.,Brown J.P.,Dawson S.V.,Marty M.A.Risk assessment for benzo(a)pyrene.Regulation Toxicology and Pharmacology.1991,13:170-184.
    Conner J.R.,Hoeffner S.L.A critical review of stabilization/solidification technology.Critical Reviews in Environmental Science and Technology,1998,28(4):397-462.
    de Leer E.W.B.,Lexmond R.J.,de Zeeuw M.A.“De novo”-synthesis of chlorinated biphenyls,dibenzofurans and dibenzo-p-dioxins in the fly ash catalyzed reaction of toluene with hydrochloric acid.Chemosphere.1989,19(18-19):1141-1152.
    Department of the environment.Dioxin in the environment.Pollution Paper No.27.London:HMSO.1989.
    Department of Toxic Substances Control (DTSC).A toxic equivalency procedure for estimating 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in mixtures of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans.In Supplemental Guidance for Human Health Multimedia Risk Assessments of Hazardous Waste Sites and Permitted Facilities,Interim final,chap.9.California Department of Toxic Substances Control,Sacramento,CA,July.1992.
    Deutsch-Wenzel R.P.,Brune H.,Grimmer O.,Dettbarn G,Misfeld J.Experimental studies in rat lungs on the carcinogenicity and dose-response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons.Journal of the National Cancer Institute.1983,71:539-544.
    Dickson L.C.,Lenoir D.,Hutzinger O.Quantitative comparison of de novo and precursor formation of polychlorinated dibenzo-p-dioxins under simulated municipal solid waste incineration postcombustion conditions.Environmental Science & Technology.1992,26:1822-1828.
    Dong C.Q.,Jin.B.S.,Li D.J.Predicting the heating value of MSW with a feed forward neural network.Waste Management.2003,23:103-106.
    Dugenest S.,Casabianca H.,Grenier-Loustaiot M.F.Municipal solid waste incineration bottom ash:physicochemical characterization of organic matter.Analusis.1999,27:75-81.
    Durlak S.K.,Biswas P.,Shi J.C.Equilibrium analysis of the affect of temperature,moisture and sodium content on heavy metal emissions from municipal solid waste incinerators.Journal of Hazardous Materials.1997,56:1-20.
    Durlak S.K.,Biswas P.,Shi J.C.,Bernhard M.J.Characterization of polycyclic aromatic hydrocarbons particulate and gaseous emission from polystyrene combustion.Environmental Science & Technology.1998,.32(15):2301-2307.
    Dyke P.H.,Stratford J.Changes to the TEF schems can have significant impacts on regulation and management of PCDD/F and PCB.Chemosphere.2002,47:103-116.Eddings E.G.The formation and control of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofuran (PCDF) emssions.Department of chemical and fuels engineering.Univeristy of Utah.1999.
    Escalante-Garcia J.I.,Sharp J.H.The effect of temperature on the early hydration of Portland cement and blended cements.Advances in cement research.2000,12(3):121-130.
    Fiedler H.Thermal formation of PCDD/PCDF:a survey.Environmental Engineering Science.1998,15(1):49-58.
    Fillipponi P.,Polettini A.,Pomi R.,Sirini P.Physical and mechanical properties of cement-based produced containing incineration bottom ash.Waste Management.2003,23:145-156.
    Gold L.,Slone T.,Backman G,Magaw R.,da Costa M.,Ames B.Second chronological supplement to the Carcinogenic Potency Database:Standardized results of animal bioassays published through December 1984 and by the National Toxicology Program through May 1986.Environ.Health Perspect.1987,74:237-329.
    Gold L.,Slone T,Bernstein L.Summary of carcinogenic potency and positivity for 492 rodent carcinogens in the Carcinogenic Potency Database.Environ.Health Perspect.1989,79:259-272.
    Gold L.,Slone T,Backman G,Eisenberg S.,DaCosta M.,Wong M.,Manley N.,Ames,B.Third chronological supplement to the Carcinogenic Potency Database:Standardized results of animal bioassays published through December 1986 and by the National Toxicology Program through June 1987.Environ.Health Perspect.1990,84:215-285.
    Goldstein N.The state of garbage in America.Biocycle.1997,38(4):60-70.
    Greenberg R.R.,Zoller W.H.,Gordon G.E.Composition and size distribution of particles released in refuse incineration Environmental Science & Technology.1978,12 (5):25-32.
    Gullet B.K.Emissions of dioxins from opening burning.International workshop on the reduction and control of dioxin/furan from combustion.Oct 18-20.2004.Hangzhou.
    Gullett B.K.,Bruce K.R.,Beach L.O.Effect of metal catalysts on the formation of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran precursors.Chemosphere.1990,20:1945-1952.
    Habs M.,Schmahl D.,Misfeld J.Local carcinogenicity of some environmentally relevant polycyclic aromatic hydrocarbons after lifelong topical application to mouse skin.Arch.Geschwulstforsch.1980,50:266-274.
    Halonen I.,Tarhanen J.,Ollikainen S.,Ruokojaervi P.,Tuppurainen K.,Ruuskanen J.The effect of inorganic and organic chlorine on formation of highly chlorinated organic compounds during incineration:Laboratory pilot study.Chemosphere.1994,28(12):2129-2138.
    Hartenstein H.U.,Horvay M.Overview of municipal waste incineration industry in west Europe (based on the German experience).Journal of Hazardous Materials.1996,47:31-42.
    Hasselriis R,Licata A.Analysis of heavy metal emission data from municipal waste combustion.Journal of Hazardous Materials.1996,47:77-102.
    Hatanaka T.,Kitajima A.,Takeuchi M.Role of copper chloride in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during incineration.Chemosphere.2004,57:73-79.
    He P.J.,Zhang H.,Zhang C.G.,Lee D.J.Characteristics of air pollution control residues of MSW incineration plant in Shanghai.Journal of Hazardous Materials.2004,116:229-237.
    Heindle A.,Hutzinger O.Search for industrial sources of PCDD/F (1) Approaches in Federal Republic of Germany.Chemosphere.1986,15:2001-2002.
    Hoover S.M.,Zeise L.,Pease W.S.,Lee L.E.,Hennig M.P.,Weiss L.B.,Cranor C.Improving the regulation of carcinogens by expediting cancer potency estimation.Risk Anal.1995,15:267-280.
    Huang H.,Buekens A.On the mechanisms of dioxin formation in combustion processes.Chemosphere.1995,31:4099-4117.
    Iino F.,Imagawa T.,Takeuchi M.,Sadakata M.,Weber R.Formation rates of polychlorinated dibenzofurans and dibenzo-p-dioxins from polycyclic aromatic hydrocarbons,activated carbon and phenol.Chemosphere.1999,39(15):2749-2756.
    International Agency for Research on Cancer (IARC).IARC Monograph on the Evaluation Carcinogenic Risk of the Chemical to Human Supplement.1987,7:42.
    International Agency for Research on Cancer (IARC).Diesel and gasoline exhausts and some nitroarenes.IARC Monograph on the Evaluation Carcinogenic Risk of the Chemical to Human.1989,46:375.
    Ishikawa R.,Buekens A.,Huang H.,Watanabe K.Influence of combustion conditions on dioxin in an industrial-scale fluidized-bed incinerator:experimental study and statistical modeling.Chemosphere.1997,35:465-477.
    Johansson I.,van Bavel B.Polycyclic aromatic hydrocarbons in weathered bottom ash from incineration of municipal solid waste.Chemosphere.2003,53:123-128.
    Johansson I.,van Bavel B.Levels and patterns of polycyclic aromatic hydrocarbons in incineration ashes.Science of the Total Environment.2003,311:221-231.
    Johnson A.,Brandemberger S.,Peter B.Acid neutralizing capacity of municipal waste incinerator bottom ash.Environmental Science & Technology.1995,29:142-147.
    Jung C.H.,Matsuto T.,Tanaka N.,Okada T.Metal distribution in incineration residues of municipal solid waste (MSW) in Japan.Waste Management.2004,24:381-391.
    Kao CM.,Wu M.J.Enhanced TCDD degradation by Fenton's reagent preoxidation.Journal of Hazardous Materials.2000,74:197-211.
    Kerby C.S.,Rimstidt J.D.Mineralogy and surface properties of municipal solid waste ash. Environmental.Science & Technology.1993,27(4):652-660.
    Khalfi A.,Trouve G,Delobel R.,Delfosse L.Correlation of CO and PAH emissions during laboratory-scale incineration of wood waste furnitures.Journal of Analytical and Applied Pyrolysis.2000,56:243-262.
    Kilgroe J.D.Control of dioxin,furan and mecury emissions from municipal waste combustors.Journal of Hazardous Materials.1996,47:163-194.
    Kosson D.S.,van der Sloot H.A.,Holmes T.,Wiles C.Leaching properties of untreated and treated residues tested in the USEPA program for evaluation of treatment and utilization technologies for municipal waste combustor residues.Goumans J J J R,van der Sloot H A,Aalbers Th.G.Waste Materials in Construction.The Netherlands:Elsevier Science Publishers B.V,1991.119-134.
    Kosson D.S,Kosson T.T,van der Sloot H.A.Evaluation of solidification/stabilization treatment processes for municipal waste combustion residues (project summary) (EPA/600/SR293/167).Washington:U S Environmental Protection Agency,1993.1-8.
    Kuzuhara S.,Sato H.,Kasai T.,Nakamura E.Influence of metallic chlorides on the formation of PCDD/Fs during low-temperature oxidation of carbon.Environmental Science & Technology.2003,37(11):2431-2435.
    Li C.T.,Zhuang H.K.,Hsieh L.T.,Lee W.J.,Tsao M.C.PAH emission from incineration of three plastic wastes.Environmental International.2001,27:61-67.
    Li C.T.,Lee W.J.,Mi H.H.,Su C.C.PAH emission from the incineration of waste oily sludge and PE plastic mixtures.Science of the Total Environment.1995,170(3):171-183.
    Liljelind P.,Unsworth J.,Maaskan O.t,Marklund S.Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction.Chemosphere.2001,42:615-623.
    Lin K.L.,Lin D.F.Hydration characteristics of municipal solid waste incineratior bottom ash slag as a pozzolanic material for use in cement.Cement & Concrete Composites.2006,28:817-823.
    Linak W.P.,Wendt J.O.L.Toxic metal emissions from incineration:Mechanisms and control.Progress in Energy and Combustion Science.1993,19:145-185.
    Ling Y.C.,Hou P.C.C.A Taiwanese study of 2,3,7,8-substitued PCDD/Fs and coplanar PCBs in fly ashes from incinerators.Journal of Hazardous Materials.1998,58:83-91.
    Liu B.J.,Xie Y.J.,Zhou S.Q.,Yuan Q.J.Influence of ultrafine fly ash comprisite on the fluidity and compressive strength of concrete.Cement & Concrete Research.2000,30:1489-1493.
    Liu Z.Q.,Liu Z.H.,Li X.L.Status and prospect of the appliciation of municipal solid waste incineration in China.Applied Thermal Engineering.2006,26:1193-1197.
    Luijk R.,Akkerman D.M.,Slot P.,Olie K.,Kapteijn F.Mechanism of formation of polychlorinated dibenzo-p-dioxins and dibenzofurans in the catalyzed combustion of carbon.Environmental Science & Technology.1994,28:312-321.
    Lundstedt S.,van Bavel B.,Haglund P.,Tysklind M.,Oberg L.U..Pressurised liquid extraction of polycyclic aromatic hydrocarbons from contaminated soils.Journal of Chromatography A.2000,833:151-162.
    Malcolm H.M.,Dobson S.The calculation of an environmental assessment level (EAL) for atmospheric PAHs using relative potencies.Department of the Environment,London,UK.1994:34-46.
    Mastral A.M.,Lopez J.M.,Callen M.S.,Garcia T.,Murillo R.,Navarro M.V.Spatial and temperature PAH concentrations in Zaragoza,Spain.The Science of the Total Environment.2003,307:111-214.
    Mastral A.M.,Callen M.,Murillo R.,Garcia T.Assessment of PAH emissions as a function of coal combustion variables in fluidised bed.2.Air excess percentage.Fuel.1998,77(13):1513-1516.
    McDougall,F.,White,P.,Franke,M.Integrated Solid Waste Management:A Life Cycle Inventory.Blackwell Science,London.2001.
    McGrath T.,Sharma R.,Hajaligol M.An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials.Fuel.2001,80:1787-1797.
    McKay.Dioxin characterisation,formation and minimisation during municipal solid waste (MSW) incineration:review.Chemical Engineering Journal.2002,86:343-368.
    Menzie C.A.,Potocki B.B.,Santodonato J.Ambient concentrations and exposure to carcinogenic PAHs in the environment.Environmental Science & Technology..1992,26(7):1278-1284.Ministry of Environment,Republic of Korea.Waste Management Act.1999 pp 162.
    Milligan M.S.,Altwicker E.R.llhechanistic Aspects of the de Novo Synthesis of Polychlorinated Dibenzo-p-dioxins and Furans in Fly Ash from Experiments Using Isotopically Labeled Reagents.Environmental Science & Technology.1995,29:1353-1358.
    Mangialardi T.,Paolini A.E.,Polettini A.,Sirini P.Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices.Journal of Hazardous Materials.1999,70(1-2):53-70.
    Morf L.S.,Brunner P.H.,Spaun S.Effect of operating conditions and input variations on the partiioning of metals in a municipal solid waste incinerator.Waste Management & Research.2000,18:4-14.
    Müller J.,Dongmann G.,Frischkorn C.G.B.The effect of aluminium on the formation of PAH,methyl-PAH and chlorinated aromatic compounds during thermal decomposition of PVC.Journal of Analytical and Applied Pyrolysis.1997,43:157-168.
    Murray,R.Creating Wealth from Waste.Demos,London,UK.1999.
    National Pollutan Inventory.Emission estimation technique manual for combustion in boiler.2001.9.25,version 1.1
    Nestrick J.J.,Lamparski L.L.,Crummett W.B.Thermolytic surface reaction of benzene and Iron(3)chloride to form chlorinated PCDD/PCDF.Chemosphere.1987,16(4):777-790.
    Nie Y.F.Development and prospects of municipal solid waste (MSW) incineration in China. Frontiers of environmental Science & Engineering in China.2008,2(1):1-7.
    Office of Dioxin Control.Environmental Management Bureau.Ministry of the Environment.Government of Japan.Dioxin,2003.
    Oh J.E.,Lee K.T.,Lee J.W.,Chang Y.S.The evaluation of PCDD/Fs from various incinerators.Chemosphere.1999,38:2097-2108.
    Olie K.,Vermeulen P.L.,Hutzinger O.Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands.Chemosphere.1977,6:455-459.
    Olie K.,Addink R.,Schoonenboom M.Metals as catalysts during the formation and decomposition of chlorinated dioxins and furans in incineration processes.Journal of the Air & Waste Management Association.1998,48:101-105.
    Palo CD.,Stefanis P.D.,Massa M.,Montani R.Emission of Polycyclic Aromatic Hydrocarbons (PAH) from Solid Waste Incinerator Equipped with an After-Combustion Chamber.Polycyclic Aromatic Compounds.1996,9(1-4):45-51.
    Rappe C,Andersson,R.Bergqvist P.A.,Brohede C,Hansson M.,Kjeller L.O.,Lindstrom G,Marklund S.,Nygen M.,Swanson S.E.,Tysklind M.,Wiberg K.Overview on environmental fate of chlorinated dioxins and dibenzofurans-sources,levels and isomeric pattern in various matrices.Chemosphere.1987,16:1603-1618.
    Ravindra K.,Sokhi R.,Van Grieken R..Atmospheric polycyclic aromatic hydrocarbons:Source attribution,emission factors and regulation.Atmospheric Environment.2008,42:2895-2921.
    Saka S.Substance flow approach for the control of PCDD/Fs dioxins like PCBs.Proceding of JCIPEC.Seoul,Korea.Jun 8-10.2000.
    Sakurai T.EP.645172.1995-03-29.
    Shaub W.M.,Tsang W.Dioxin formation in incinerators.Environmental Science & Technology.1983,17:721-730.
    Stanmore B.R.The formation of dioxins in combustion systems.Review.Combustion and Flame.2004,136:398-427.
    Sakai S.,Urano S.,Takatsuki H.Leaching behavior of PCBs and PCDDs/Fs from some waste materials.Waste Management.2000,20(2-3):241-247.
    Shimoda T.,Wokoyama S.Eco-cement:A new portland cement to solve municipal and industrial waste problems.Creating with Concrete:Proceedings International Conference.1999,17-30.
    Schatzwitz B.,Brandt G,Gafner F.,Schlump E.,Buhler R.,Hasler P.Nussbaumer T.Dioxin emissions from wood combustion.Chemosphere.1994,29:2005-2013.
    Shin K.J.,Chang Y.S.Characterization of polychlorinated dibenzo-p-dioxins,dibenzofurans,biphenyls,and heavy metals in fly ash produced from Korean municipal solid waste incinerators,Chemosphere.1999,38(11):2655-2666.
    Stanmore B.R.The formation of dioxins in combustion systems.Combustion and flame.2004,136:398-427.
    Stiegliz L.,Vogg H.On the formation conditions of PCDD/PCDF in fly ash from municipal solid waste incinerators.Chemosphere.1987,16:1917-1922.
    Stieglitz L.,Zwick G.,Beck J.,Bautz H.,Roth W.Role of particulate carbon in the de-novo synthesis of polychlorinated dibenzodioxins and-furans in fly ash.Chemosphere.1990,20:1953-1958.
    Takasuga,T.Makino T,Tsubota K.,Takeda N.Formation of dioxins (PCDDs/PCDFs) by dioxin-free fly ash as a catalyst and relation with several chlorine-sources.Chemosphere.2000,40(9-11):1003-1007.
    Takeshita R.,Akimoto Y.,Nito S.Relationship between the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans and the control of combustion,hydrogen chloride level in flue gas and gas temperature in a municipal waste incinerator.Chemosphere.1992,24:589-598.
    Tejima H.,Shibakawa S.,Osumi K.,Kawashima M.Dioxin emission behavior in MSW incinerator designed after Japanese guidelines for controlling dioxin.Chemosphere.1998,37(9-12):2309-2314.
    Tessier A.,Campbell P.GC,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals.Analytical Chemistry.1979,51(7):844-851.
    Tsai P.J.,Shieh H.Y.,Lee W.J.Characterization of PAHs in the atmosphere of carbon black manufacturing workplaces.Journal of Hazardous Materials.2002,A91:25-42.
    Tuppurainen K.,Halonen I.,Ruokojarvi P.,Tarhanen J.Ruuskanen J.Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms:A review.Chemosphere.1998,36(7):1493-1511.
    Ukisu Y.,Miyadera T.Dechlorination of polychlorinated dibenzo-p-dioxins catalyzed by noble metal catalysts under mild conditions.Chemosphere.2002,46:507-510.
    United States Environmental Protection Agency (USEPA).Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons,PA/600/R-93/089.United States Environmental Protection Agency.1993.
    United States Environmental Protection Agency (USEPA).Federal Register of Environmental documents,United States Environmental Protection Agency,1995.
    Uchida S.,Kamo H.,Kubota H.The source of HC1 emission from municipal refuse incinerators.Industrial & Engineering Chemistry Research.1988,27:2188-2190.
    van der Sloot H.A.,Piepers O.,Kok A.A Standard Leaching Test for Combustion Residues.Technical Report Bureau Energy Research Projects BEOP-31.1984
    Vehiow J.,Bergfeidt B.,Hunsinger H.PCDD/F and related compounds in solid residues from municipal solid waste incineration-a literature review.Waste Management & Research.2006,24:404-420.
    Verhulst D.,Buekens A.,Spencer P.J.,Eriksson G.Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces.Environmental Science & Technology.1996,30:50-56.
    Vogg H.,Braun H.The Specific role of cadmium and mercury in municipal solid waste incineration.Waste Management & Research.1986,4:64-74.
    Vogg H.,Metzger M.,Stieglitz L.Recent finding on the formation and decomposition of PCDD/Fs in MSW incineration.Waste Management & Research.1987,5:285-294.
    Wang D.L.,Xu X.B.,Zheng M.H.,Chiu C.H.Effect of copper chloride on the emissions of PCDD/Fs and PAHs from PVC combustion.Chemosphere.2002,48:857-863.
    Wang K.S.,Lin K.L.,Huang Z.Q.Hydraulic activity of municipal solid waste incinerator fly-ash-slag-blended eco-cement.Cement and Concrete Research.2001,31(1):97-103.
    Wang L.C.,Lee W.J.,Lee W.S.,Chang-Chien G.P.,Tsai P.J.Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans.Science of the Total Environment.2003,302:185-198.
    Wang J.,Levendis Y.A.,Richter H.,Howard J.B.,Carlson J.Polycyclic aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene:the effect of the primary furnace temperature.Environmental Science & Technology.2001,35(17):3541-3552.
    Wang K.S.,Chiang K.Y.,Lin S.M.,Tsai,C.C.Sun C.J.Effects of chlorides on emissions of toxic compounds in waste incineration:Study on partitioning characteristics of heavy metal.Chemosphere.1999,38(8):1833-1849.
    Wang K.S.,Chiang K.Y.,Tsai C.C,Sun C.J.,Tsai C.C,Lin K.L.The effects of FeC13 on the distribution of the heavy metals Cd,Cu,Cr,and Zn in a simulated multimetal incineration system.Environment International.2001,26:257-263.
    Weber R.,lino F.,Imagawa T.,Takeuchi M.,Sakurai T.,Sadakata M.Formation of PCDF,PCDD,PCB,and PCN in de novo synthesis from PAH:Mechanistic aspects and correlation to fluidized bed incinerators.Chemosphere.2001,44(6):1429-1438.
    Wey M.Y,Chao C.Y.,Yu L.J.The influences of heavy metals on PAHs formation during incineration.Toxicological and Environmental Chemistry.1996,56:35-45.
    Wey M.Y,Su J.L.,Chen J.C Influence of operating conditions on the formation of heavy metal compounds during incineration.Journal of the Air & Waste Management Association.1999,49:444-453.
    Wey M.Y,Chao C.Y.,Wei M.C,Yu L.J.,Liu Z.S.The influence of heavy metals on partitioning of PAHs during incineration.Journal of Hazardous Materials.2000,A77:77-87.
    Westblad C.W.,Levendis Y.A.,Richter H.,Howard J.B.,Carlson J.A study on toxic organic emissions from batch combustion of styrene.Chemosphere.2002,49:395-412.
    Wheatley L.,Levendis Y.A.,Vouros P.Exploratory study on the combustion and PAH emissions of selected municipal waste plastics.Environmental Science & Technology.1993,27:2885-2893.
    Wilken M.,Comelsen B.,Zeschmar B.Distribution of PCDD/PCDF and other organochlorine compounds in different municipal solid waste fractions.Chemosphere.1992,25(7-10):1517-1523.
    Wikstrom E.,Lofvenius G..,Rappe C,Marklund S.Influence of level and form of chlorine on the formation of chlorinated dioxins,dibenzofurans,and benzenes during combustion of an artificial fuel in a laboratory reactor. Environmental Science & Technology. 1996, 30: 1637-1644.
    Wiles C. C., Sheperd P. Beneficial use and recycling of municipal waste combustion residues-a comprehensive resource document. USA: National Renewable Energy Laboratory. BK-570-25841. 1999, 6-50.
    Wile C. C. Municipal solid waste combustion ash: state-of-the-knowledge. Journal of Hazardous Materials. 1996, 47: 325-344.
    Wislocki P. G., Bagan E. S., Lu A. Y. H., Dooley K. L., Fu P. R, Han-Hsu H., Beland F. A., Kadlubar F. F. Tumorigenicity of nitrated derivatives of pyrene, benz[a]anthracene, chrysene and benzo[a]pyrene in the newborn mouse assay. Carcinogenesis. 1986, 7:1317-1322.
    Wynder, E. L., Hoffman D. A study of tobacco carcinogenesis. Ⅶ. The role of higher polycyclic hydrocarbons. Cancer. 1959, 12:1079-1086.
    Yassaa N., Meklati B. Y., Cecinato A., Marino F. Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City Area. Atmospheric Environment. 2001, 35: 1843-1851.
    Yasuhara A., Tanaka Y., Katami T., Shibamoto T. The role of metals in dioxin formation from combustion of newspapers and polyvinyl chloride in an incinerator. Chemosphere. 2005, 58: 891-896.
    Yan J. H., Chen T., Li X. D., Zhang J., Lu S. Y., Ni M. J., Cen K. F. Evaluation of PCDD/Fs emission from fluidized bed incinerators co-firing MSW with coal in China. Journal of Hazardous Materials. 2006, 135: 47-51.
    You X. F. Polycyclic aromatic hydrocarbon (PAH) emission from co-firing municipal solid waste(MSW) and coal in a fluidized bed incinerator. Waste Management. 2008, 28: 1543-1551.
    Yuan H., Wang L. A., Su F. W., Hu G. Urban solid waste management in Chongqing: Challenges and opportunities. Waste Management. 2006, 26:1052-1062.
    Zhang H. J., Nia Y. W., Chen J. R, Zhang Q.. Influence of variation in the operating conditions on PCDD/F distribution in a full-scale MSW incinerator. Chemosphere. 2008, 70(4): 721-730.
    曹云春,严建华,李晓东,陈彤,岑可法.垃圾焚烧炉中二噁英生成机理的研究进展.热力发电.2005,(9):15-20.
    曹征良,李伟文,陈玉伦.偏高岭土在混凝土中的应用.深圳大学学报(理工版).2004,2:183-186.
    岑可法,徐旭,谷月玲,池涌,严建华,蒋旭光.工业废弃物和生活垃圾流化床焚烧技术的研究.西安交通大学学报.2000,34(1):1-8.
    陈彤.城市生活垃圾焚烧过程中二噁英的形成机理及控制技术研究.浙江大学博士学位论文.2006.
    池东华.垃圾焚烧飞灰在水泥中的固化稳定化研究.东华大学硕士学位论文.2003.
    邓小华,周恭明.我国与发达国家资源再生产业状况比较及分析.北方环境.2004,29(6):4-7.
    冯军会,何品晶,章骅,邵立明.二噁英类化合物在生活垃圾焚烧飞灰中的分布.中国环境科学.2005,25(6):737-741.
    国家统计局.中国统计年鉴(1998年).北京:中国统计出版社.1999.
    何品晶,章骅,王正达,章灿钢.生活垃圾焚烧飞灰的污染特性.同济大学学报.2003,31(8):972-976
    何惠君.城市垃圾分类收集与分类处理的科学性与前景.环境卫生工程.1997,(2):24-26.
    金宜英,田洪海,聂永丰,殷惠民,海颖,陈左生.3个城市生活垃圾焚烧飞灰中二噁英类分析.环境化学.2003,24(3):21-25.
    李建新.垃圾焚烧过程重金属污染物的迁移机理及稳定化处理技术研究.浙江大学博士学位论文.
    李晓.基于德国经验寻找中国垃圾处理的出路.科技情报开发与经济.2006,16(10):107-109.
    李晓东,陆胜勇,徐旭,严建华.中国部分城市生活垃圾热值的分析.中国环境科学.2001,21(2):156-160.
    刘群慧,王明杰,高敏.城市生活垃圾热值估算方法研究.环境卫生工程.1999,7(3):100-106.
    刘阳生.城市固体废物焚烧二噁英污染防治技术.现代化工.2002,6:59-52.
    聂永丰.三废处理工程技术手册:固体废物卷.北京:化学工业出版社.2000.
    祁明峰.燃烧过程中多环芳烃的生成与数值模拟.浙江大学硕士学位论文.2003.
    宋立杰.城市垃圾焚烧灰渣的稳定化处理研究.同济大学硕士学位论文.2000.
    孙恒虎,郑娟荣.低温煤渣火山灰活性的机理研究.煤炭学报.2000,25(6):664-667.
    王海瑞,王华.城市生活垃圾直接气化熔融焚烧过程控制.北京:冶金工业出版社.2008.
    徐旭.燃烧过程中二噁英的生成及排放特性的研究.浙江大学博士学位论文.2002.
    杨忠灿.垃圾焚烧过程氯源对HCl和二噁英排放特性影响的初步研究.浙江大学硕士学位论文.2003.
    岳峻峰,金保升,董长青.城市生活垃圾炉排炉焚烧的应用于发展前景.能源研究与利用.2001.5:32-35.
    张永照.城市垃圾焚烧技术和二噁英排放控制.工业锅炉.2004,5:1-7.
    浙江大学,杭州锦江集团.城市生活垃圾焚烧技术及发电示范工程项目总结.浙江省科技重点项目鉴定资料.杭州:浙江大学.1999.
    周宏仓,仲兆平,金保升,黄亚继,肖睿.管道活性炭喷射脱除焚烧炉烟气中的多环芳烃.中国环境科学.2004,24(2):252-256.
    朱蓓蓉,杨全兵.几种火山灰质掺合料的火山灰活性研究.粉煤灰综合利用.2005,2:3-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700