用户名: 密码: 验证码:
非平衡等离子体重整甲烷制氢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能作为一种清洁高效的二次能源,在燃料电池、氢内燃机和汽轮机等应用领域有着广阔的发展前景。但目前氢气的存储和运输技术尚不成熟,因此以天然气为原料的小型分布式制氢系统得以有一席之地。特别是等离子体与非均相催化剂的协同效应在制氢研究中的应用已经受到越来越多的关注。等离子体中存在大量的电子、离子、自由基和激发态原子与分子等活性粒子,等离子体的存在能够促进化学反应快速进行。与传统的热化学方法相比,等离子体转化甲烷制氢具有反应速度快、反应温度低等优点,其装置体积小、启动快,特别适合发展成为车载制氢系统和小型分布式制氢系统。与热等离子体相比,非平衡等离子体能耗低,在较低温度条件下也能诱导反应物发生反应,因此非平衡等离子体应用于气体燃料的转化具有得天独厚的优势。制氢研究中非平衡等离子体的产生方法包括非热电弧放电、火花放电、电晕放电、微波放电和介质阻挡放电等。
     基于非平衡等离子体技术为背景,分别进行了介质阻挡放电和非热电弧放电结合催化剂转化甲烷制氢的研究,设计建立了填充床介质阻挡放电反应器、多孔陶瓷介质阻挡放电反应器、非热电弧反应器及配套实验系统,进行了放电实验、制氢实验、数值模拟与反应器结构优化等研究工作。本论文的主要研究内容和结果如下:
     提出并构建了电晕诱导介质阻挡放电反应器(放电间隙1Omm),放电区域均匀分布有金属镍粉颗粒,利用颗粒的电晕诱导作用降低了产生放电所需的外加电压,提高放电的均匀性和反应器稳定性。研究大气压较低温度条件下电晕诱导介质阻挡放电反应器内甲烷的部分氧化水蒸气重整制氢。反应器内电晕诱导颗粒的存在使介质阻挡放电可以在大间隙、低电压条件下均匀发生。分析了输入功率、氧气/甲烷摩尔比、以及预热温度对甲烷转化率和氢气选择性的影响。实验结果表明:输入功率在27-50W之间时输入功率的增加明显促进甲烷转化率升高,但当输入功率大于50W时,功率的增加对甲烷转化的促进作用相对较弱;氧气/甲烷摩尔比既影响甲烷转化率,又影响氢气选择性,在本论文实验条件下氧气/甲烷摩尔比为0.6时,氢气的选择性最高能达到112%;电晕诱导介质阻挡放电和催化剂联合作用下的甲烷转化率接近热力学平衡时的甲烷转化率,而前者反应速率明显高于后者。
     用造孔剂法制备了一系列氧化铝多孔陶瓷,并研究了多孔陶瓷的材料特性,放电特性。在外加交流高压的条件下,多孔陶瓷内可以产生稳定的大气压微放电。通过对放电的图片以及电压、电流的分析得出微放电的部分物理特性,结果显示陶瓷微孔内的微放电并不是由陶瓷的表面放电转变而成;多孔陶瓷孔内微放电的起始放电电压随着陶瓷厚度增加而升高,而随着多孔陶瓷孔隙率的增加而降低。
     催化剂/介质阻挡放电联合作用转化甲烷制氢的结果显示,其甲烷转化率远高于催化剂和介质阻挡放电各自单独作用结果之和;同时金属镍颗粒催化剂的存在降低了介质阻挡放电的放电电压,提高了放电的均匀性和稳定性,证明了催化剂/介质阻挡放电的相互增强作用。介质阻挡放电/催化剂联合作用在于降低反应温度和提高反应速率,相对于介质阻挡放电单独作用降低了能耗,以臭氧产生为例,单纯的介质阻挡放电的电耗高达7kWh/kgO3(反应物为氧气),加入催化剂后电耗降至2.7kWh/kgO3(反应物为氧气)。但介质阻挡放电应用于能源转化可能不合适,从本文试验的结果也可看出:介质阻挡放电消耗高品位的电能活化甲烷分子,提高了被活化甲烷分子的反应速率,但系统不具备良好的经济性。
     为提高小型等离子体制氢系统的经济性,设计了非热电弧等离子体结合催化剂重整甲烷制氢反应器,提高非热电弧的非平衡度从而提高等离子体能量效率。研究分析了非热电弧反应器的放电特性和点火性能。当一级旋转气流量大于80sL/min时,非热电弧能不间断产生。氧碳摩尔比率大于0.8时甲烷转化率高于80%,氢气选择性在氧碳摩尔比率较大的变化范围内超过70%。非热电弧反应器最大产氢量为1.07kgH2/h,比电耗在降为0.47MJ/kgH2,具有快速启动性能,预热条件下可在30sec启动制氢,2-3min达到稳定参数,非预热条件下10min以内即可快速启动。
Hydrogen is considered to be an ideal source of energy that could play a key role in fuel cells, combustion engines or gas turbines. Currently, the technology of hydrogen storage and transportation is not yet mature. Consequently, the design and operation of compact and distributed hydrogen production devices has attracted considerable interest for combining plasma-chemical activation of reactants with heterogeneous catalysis in hydrogen production. Compared with traditional chemical processes, plasma technology has the potential to allow design of smaller hydrogen production units with the capability of rapid response to load variations, and to offer a unique way to induce gas phase reactions. Non-equilibrium plasmas have been considered very promising for fuel gas treatment because of their non-equilibrium properties, low power requirement and capacity to induce reactions at relatively low temperatures. Non-equilibrium plasmas that have been applied to hydrogen production include non-thermal arc, spark discharge, corona discharge, microwave discharge and dielectric barrier discharge (DBD).
     Base the technology of non-equilibrium plasma, dielectric barrier discharge and non-thermal arc discharge combined with catalyst were used to conversion methane for hydrogen production, respectively. We designed packed-bed dielectric barrier discharge reactor, porous ceramic dielectric barrier discharge reactor, non-thermal arc reactor and supporting experimental system. Discharge experiments, hydrogen production experiments, numerical simulation and reactor structural optimization were conducted. The main research contents and results are as follows:
     Larger discharge gap and volume may be important issues to develop a compact DBD reactor as an in situ hydrogen production device. A novel corona inducing dielectric barrier discharge (CIDBD) reactor with discharge gap10mm, with nickel powder uniformly distributed in the discharge zone, was developed to reduce the applied voltage and improve plasma uniformity. This corona inducing technique allows dielectric barrier discharge to occur uniformly in a large gap at relatively low applied voltage. Hydrogen production by reforming methane with steam and air was investigated with the hybrid reactor under atmospheric pressure and temperatures below600℃. The effects of input power, O2/C molar ratio and preheat temperature on methane conversion and hydrogen selectivity were investigated experimentally. It was found that higher methane conversions were obtained at higher discharge power, and methane conversion increased significantly with input power less than50W; the optimized molar ratio of O2/C was0.6to obtain the highest hydrogen selectivity (112%); under the synergy of dielectric barrier discharge and catalyst, methane conversion was close to the thermodynamic equilibrium conversion rate.
     Porous ceramics are sintered from alumina (wt94%), silica (wt3.5%) and MgO (wt2.5%), and the thickness range of the ceramics is4.0mm to10.7mm, the pore size of the ceramics is100μm, and the porosities of the ceramics are35%,39%and45%, respectively. We investigate the physical characteristics of discharge in porous ceramics by photographic visualization and electrical measurements. The microdischarges generated inside porous ceramics by AC high voltage represent a novel way to create stable atmospheric pressure plasmas. The physical characteristics of discharge in porous ceramics are investigated by photographic visualization and electrical measurements. Experimental results show that the surface discharge do not transit into pore microdischarges, and the onset voltage of pore microdischarges increases with thickness of ceramics, while significantly decreases with increasing porosity of ceramics.
     In order to improve the efficiency of arc discharge energy, we increase non-equilibrium degree of non-thermal arc plasma combined with catalyst. Discharge characteristics and ignition performance of the non-thermal arc reactor were studied. When first rotating gas flow rate greater than80sL/min the non-thermal arc was produced uninterruptedly. The methane conversion rate was higher than80%when the molar ratio of oxygen to carbon greater than0.8. Hydrogen selectivity was higher than70%within large range of variation of the molar ratio of oxygen to carbon. Maximum hydrogen yield of the non-thermal arc reactor is1.07kgH2/h. The specific power consumption of non-thermal arc reactor is0.47MJ/kgH2. The non-thermal arc reactor has fast start-up performance, it can start to produce hydrogen within30seconds at pre-heating condition and reach steady state within3minutes. At non-preheating condition, it can be started to produce hydrogen within10minutes.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(03):345-359.
    [2]毛宗强.氢能将成低碳时代“新能源宠儿”[J]. WTO经济导刊,2010,79(02):40-42.
    [3]钱伯章.2005年世界能源消费结构统计评论[J].上海节能,2006,(04):57.
    [4]吕静.常压非热平衡等离子体用于甲烷转化的研究[D];天津大学,2006.
    [5]钟犁.滑动弧放电等离子体重整甲烷制氢的研究[D];浙江大学,2010.
    [6]Veziroglu T N, Sahin S.21st Century's energy:Hydrogen energy system [J]. Energ Convers Manage,2008,49(7):1820-1831.
    [7]蔡炽柳.氢能及其应用前景分析[J].能源与环境,2008,(05):39-41.
    [8]Nowotny J, Veziroglu T N. Impact of hydrogen on the environment [J]. Int J Hydrog Energy,2011,36(20):13218-13224.
    [9]余亚东,毛宗强.可再生能源——氢能的发展与化石能源的替代[J].科学对社会的影响,2009,(02):61-64.
    [10]Fonseca A, Assaf E M. Production of the hydrogen by methane steam reforming over nickel catalysts prepared from hydrotalcite precursors [J]. J Power Sources,2005,142(1-2): 154-159.
    [11]Chen Z X, Grace J R, Lim C J, et al. Experimental studies of pure hydrogen production in a commercialized fluidized-bed membrane reactor with SMR and ATR catalysts [J]. Int J Hydrog Energy,2007,32(13):2359-2366.
    [12]de Jong M, Reinders A H M E, Kok J B W, et al. Optimizing a steam-methane reformer for hydrogen production [J]. Int J Hydrog Energy,2009,34(1):285-292.
    [13]Go K S, Son S R, Kim S D, et al. Hydrogen production from two-step steam methane reforming in a fluidized bed reactor [J]. Int J Hydrog Energy,2009,34(3):1301-1309.
    [14]Xu J H, Yeung C M Y, Ni J, et al. Methane steam reforming for hydrogen production using low water-ratios without carbon formation over ceria coated Ni catalysts [J]. Appl Catal a-Gen,2008,345(2):119-127.
    [15]姜玄珍.甲烷部分氧化制合成气的反应机理探索[J].浙江大学学报(自然科学版),]994,28(01):132-134.
    [16]张翅远,王华,何方,et al.甲烷部分氧化制氢机理及方法[J].能源工程,2005,(06):20-25.
    [17]Prettre M, Eichner C, Perrin M. The Catalytic Oxidation of Methane to Carbon Monoxide and Hydrogen [J]. T Faraday Soc,1946,42(3-4):335-340.
    [18]Eichner C, Perrin M, Prettre M. The mechanism of the catalytic conversion of methane by cautious combustion. [J]. Cr Hebd Acad Sci,1944,218:621-623.
    [19]Schmidt L D, Hickman D A. Synthesis Gas-Formation by Direct Oxidation of Methane over Monoliths [J]. Abstr Pap Am Chem Soc,1992,204.
    [20]Torniainen P M, Chu X, Schmidt L D. Comparison of Monolith-Supported Metals for the Direct Oxidation of Methane to Syngas [J]. J Catal,1994,146(1):1-10.
    [21]Hickman D A, Schmidt L D. Production of Syngas by Direct Catalytic-Oxidation of Methane [J]. Science,1993,259(5093):343-346.
    [22]Hickman D A, Haupfear E A, Schmidt L D. Synthesis Gas-Formation by Direct Oxidation of Methane over Rh Monoliths [J]. Catal Lett,1993,17(3-4):223-237.
    [23]Hickman D A, Schmidt L D. Synthesis Gas-Formation by Direct Oxidation of Methane over Monoliths [J]. Acs Symposium Series,1993,523:416-426.
    [24]Hickman D A, Schmidt L D. Synthesis Gas-Formation by Direct Oxidation of Methane over Pt Monoliths [J]. J Catal,1992,138(1):267-282.
    [25]Wang H M. Experimental studies on hydrogen generation by methane autothermal reforming over nickel-based catalyst [J]. J Power Sources,2008,177(2):506-511.
    [26]Rodriguez M L, Ardissone D E, Pedernera M N, et al. Influence of the oxygen feed distribution on the performance of a catalytic reactor for ATR of methane [J]. Catal Today,2010, 156(3-4):246-253.
    [27]Mosayebi Z, Rezaei M, Ravandi A B, et al. Autothermal reforming of methane over nickel catalysts supported on nanocrystalline MgAl2O4 with high surface area [J]. Int J Hydrog Energy,2012,37(2):1236-1242.
    [28]Kniep J, Anderson M, Lin Y S. Autothermal Reforming of Methane in a Proton-Conducting Ceramic Membrane Reactor [J]. Ind Eng Chem Res,2011,50(22): 12426-12432.
    [29]Kang K M, Shim I W, Kwak H Y. Mixed and autothermal reforming of methane with supported Ni catalysts with a core/shell structure [J]. Fuel Process Technol,2012,93(1):105-114.
    [30]Souza A E A M, Maciel L J L, Cavalcanti V O, et al. Kinetic-Operational Mechanism to Autothermal Reforming of Methane [J]. Ind Eng Chem Res,2011,50(5):2585-2599.
    [31]Ciambelli P, Palma V, Palo E. Comparison of ceramic honeycomb monolith and foam as Ni catalyst carrier for methane autothermal reforming [J]. Catal Today,2010,155(1-2):92-100.
    [32]Rezaei M, Meshkani F, Ravandi A B, et al. Autothermal reforming of methane over Ni catalysts supported on nanocrystalline MgO with high surface area and plated-like shape [J]. Int J Hydrog Energy,2011,36(18):11712-11717.
    [33]Gallucci F, Annaland M V, Kuipers J A M. Autothermal reforming of methane with integrated CO(2) capture in novel fluidized bed membrane reactors [J]. Asia-Pac J Chem Eng, 2009,4(3):334-344.
    [34]Gallucci F, Annaland M V, Kuipers J A M. Autothermal Reforming of Methane with Integrated CO(2) Capture in a Novel Fluidized Bed Membrane Reactor. Part 2 Comparison of Reactor Configurations [J]. Top Catal,2008,51(1-4):146-157.
    [35]Gallucci F, Annaland M V, Kuipers J A M. Autothermal Reforming of Methane with Integrated CO(2) Capture in a Novel Fluidized Bed Membrane Reactor. Part 1:Experimental Demonstration [J]. Top Catal,2008,51(1-4):133-145.
    [36]Otsuka K, Mito A, Takenaka S, et al. Production of hydrogen from methane without C02-emission mediated by indium oxide and iron oxide [J]. Int J Hydrog Energy,2001,26(3): 191-194.
    [37]Muradov N Z, Veziroglu T N. From hydrocarbon to hydrogen-carbon to hydrogen economy [J]. Int J Hydrog Energy,2005,30(3):225-237.
    [38]Indarto A. Hydrogen production from methane in a dielectric barrier discharge using oxide zinc and chromium as catalyst [J]. J Chin Inst Chem Eng,2008,39(1):23-28.
    [39]许根慧,姜恩永,盛京.等离子体技术与应用[M].北京:化学工业出版社,2006.
    [40]刘永卫.甲烷和水蒸汽介质阻挡放电转化研究[D];天津大学,2008.
    [41]白海英.介质阻挡放电转化甲醇和甲烷研究[D];天津大学,2010.
    [42]赵宇含.非平衡等离子体转化甲烷的研究[D];中国科学技术大学,2008.
    [43]Wang Q Y, Li S, Gu F. Mechanism of Phase Transition from Liquid to Gas Under Dielectric Barrier Discharge Plasma [J]. Plasma Sci Technol,2010,12(5):585-591.
    [44]Tang J, Duan Y X, Zhao W. Characterization and mechanism studies of dielectric barrier discharges generated at atmospheric pressure [J]. Appl Phys Lett,2010,96(19).
    [45]Kostic M, Radic N, Obradovic B M, et al. Silver-Loaded Cotton/Polyester Fabric Modified by Dielectric Barrier Discharge Treatment [J]. Plasma Processes and Polymers,2009, 6(1):58-67.
    [46]Ye Q Z, Zhang T, Lu F, et al. Dielectric barrier discharge in a two-phase mixture [J]. J Phys D-Appl Phys,2008,41(2).
    [47]Pekarek S. Experimental study of surface dielectric barrier discharge in air and its ozone production [J]. J Phys D-Appl Phys,2012,45(7).
    [48]Reddy E L, Biju V M, Subrahmanyam C. Production of hydrogen from hydrogen sulfide assisted by dielectric barrier discharge [J]. Int J Hydrog Energy,2012,37(3):2204-2209.
    [49]Kundu S K, Kennedy E M, Gaikwad V V, et al. Experimental investigation of alumina and quartz as dielectrics for a cylindrical double dielectric barrier discharge reactor in argon diluted methane plasma [J]. Chem Eng J,2012,180(178-189.
    [50]Arjunan K P, Friedman G, Fridman A, et al. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species [J]. J R Soc Interface,2012,9(66): 147-157.
    [51]Gallon H J, Tu X, Whitehead J C. Effects of Reactor Packing Materials on H2 Production by CO2 Reforming of CH4 in a Dielectric Barrier Discharge [J]. Plasma Processes and Polymers,2012,9(1):90-97.
    [52]Huang J, Li H, Chen W, et al. Dielectric barrier discharge plasma in Ar/O(2) promoting apoptosis behavior in A549 cancer cells [J]. Appl Phys Lett,2011,99(25).
    [53]Thejaswini H C, Majumdar A, Tun T M, et al. Plasma chemical reactions in C(2)H(2)/N(2), C(2)H(4)/N(2), and C(2)H(6)/N(2) gas mixtures of a laboratory dielectric barrier discharge [J]. Adv Space Res,2011,48(5):857-861.
    [54]Pham M H, Goujard V, Tatibouet J M, et al. Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons-Influence of La(2)O(3)/gamma-Al(2)O(3) catalyst [J]. Catal Today,2011,171(1):67-71.
    [55]Wang X J, Yang Q, Yao C G, et al. Dielectric Barrier Discharge Characteristics of Multineedle-to-Cylinder Configuration [J]. Energies,2011,4(12):2133-2150.
    [56]He X F, Jin L J, Wang D, et al. Integrated Process of Coal Pyrolysis with CO(2) Reforming of Methane by Dielectric Barrier Discharge Plasma [J]. Energ Fuel,2011,25(9): 4036-4042.
    [57]Benard N, Pons J, Audier P, et al. Filaments in a Surface Dielectric Barrier Discharge Operating in Altitude Conditions [J]. Ieee Transactions on Plasma Science,2011,39(11): 2222-2223.
    [58]Gallon H J, Kim H H, Tu X, et al. Microscope-ICCD Imaging of an Atmospheric Pressure CH4 and CO2 Dielectric Barrier Discharge [J]. Ieee Transactions on Plasma Science, 2011,39(11):2176-2177.
    [59]Ha C S, Kim D H, Lee H J, et al. Discharge Images of a Dielectric-Bamer-Free Atmospheric-Pressure Microplasma Controlled by an External Ballast Capacitor [J]. Ieee Transactions on Plasma Science,2011,39(11):2378-2379.
    [60]Li W, Jiang X M, Xu K L, et al. Determination of ultratrace nitrogen in pure argon gas by dielectric barrier discharge-molecular emission spectrometry [J]. Microchem J,2011,99(1): 114-117.
    [61]Udagawa K T, Zuzeek Y, Lempert W R, et al. Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses [J]. Plasma Sources Sci Technol,2011,20(5).
    [62]Chernyak V, Naumov V, Yukhymenko V, et al. Non-Equilibrium Ignition of Hydrocarbon-Air Mixture in Non-Thermal Blowing Arc Discharge Plasma [J]. Cappsa 2005, Proceedings,2005,200-200.
    [63]Diatczyk J, Komarzyniec G, Stryczewska H D. Spectroscopic diagnostic of non-thermal plasma generated in gliding arc discharge plasma reactor [J]. Prz Elektrotechniczn,2008,84(5): 309-311.
    [64]Du C M, Wang J, Zhang L, et al. The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization [J]. New J Phys,2012,14.
    [65]Ghezzar M R, Belhadj M, Abdelmalek F, et al. Non-thermal plasma degradation of wastewater in presence of titanium oxide by gliding arc discharge [J]. Progress of Green Oxidation/Reduction Technologies,2006,141-147.
    [66]Odeyemi F, Gallagher M, Rabinovich A, et al. Non thermal plasma reforming of hydrocarbon fuels with gliding arc discharge [J]. Abstr Pap Am Chem Soc,2010,240.
    [67]Petitpas G, Gonzalez-Aguilar J, Darmon A, et al. Ethanol and E85 Reforming Assisted by a Non-thermal Arc Discharge [J]. Energ Fuel,2010,24(2607-2613.
    [68]Wang Z B, Chen G X, Wang Z, et al. Effect of a floating electrode on an atmospheric-pressure non-thermal arc discharge [J]. J Appl Phys,2011,110(3).
    [69]Burlica R, Hnatiuc B, Hnatiuc E, et al. Effect of Electrical Current on H(2)/H(2)O(2) Generation in Non-Thermal Plasma Gliding Arc Reactors [J]. Environ Eng Manag J,2011,10(4): 579-583.
    [70]Koutsky J, Vesela J. Evaluation of white metal adhesion (conventional casting and thermal wire arc spraying) by ultrasonic non-destructive method [J]. J Mater Process Tech,2004, 157(724-728.
    [71]Kaminska A, Cormier J M, Pellerin S, et al. Study of non-thermal AC arc [J]. High Temp Mater P-Us,2001,5(3):403-415.
    [72]Rueangjitt N, Sreethawong T, Chavadej S, et al. Non-Oxidative Reforming of Methane in a Mini-Gliding Arc Discharge Reactor:Effects of Feed Methane Concentration, Feed Flow Rate, Electrode Gap Distance, Residence Time, and Catalyst Distance [J]. Plasma Chem Plasma Process, 2011,31(4):517-534.
    [73]Gangoli S P, Gutsol A F, Fridman A A. A non-equilibrium plasma source:magnetically stabilized gliding arc discharge:I. Design and diagnostics [J]. Plasma Sources Sci Technol,2010, 19(6).
    [74]Gangoli S P, Gutsol A F, Fridman A A. A non-equilibrium plasma source:magnetically stabilized gliding arc discharge:Ⅱ. Electrical characterization [J]. Plasma Sources Sci Technol, 2010,19(6).
    [75]Kogelschatz U. Dielectric-barrier discharges:Their history, discharge physics, and industrial applications [J]. Plasma Chem Plasma Process,2003,23(1):1-46.
    [76]Czernichowski A. Gliding Arc-Applications to Engineering and Environment Control [J]. Pure Appl Chem,1994,66(6):1301-1310.
    [77]Czernichowski A, Czernichowski M, Czernichowski P, et al. Reforming of methane into Syngas in a plasma-assisted reactor [J]. Abstr Pap Am Chem Soc,2002,223.
    [78]Czernichowski A, Czernichowski P. GLIDARC-ASSISTED CLEANING OF FLUE GAS FROM DESTRUCTION OF CONVENTIONAL OR CHEMICAL WEAPONS [J]. Environ Prot Eng,2010,36(4):37-45.
    [79]Czernichowski A, Czernichowski P, Ranaivosoloarimanana A. Plasma Pyrolysis of Natural Gas in Gliding Arc reactor [J]. Hydrogen Energy Progress Xi, Vols 1-3,1996,661-669.
    [80]Czernichowski A, Nassar H, Ranaivosoloarimanana A, et al. Spectral and electrical diagnostics of gliding arc [J]. Acta Phys Pol A,1996,89(5-6):595-603.
    [81]Czernichowski A, Wesolowska K, Asme. Glidarc-assisted production of synthesis gas through partial oxidation of natural gas [M]. New York:Amer Soc Mechanical Engineers,2003.
    [82]Nozaki T, Muto N, Kadio S, et al. Dissociation of vibrationally excited methane on Ni catalyst-Part 2. Process diagnostics by emission spectroscopy [J]. Catal Today,2004,89(1-2): 67-74.
    [83]Juurlink L B F, McCabe P R, Smith R R, et al. Eigenstate-resolved studies of gas-surface reactivity:CH4 (nu(3)) dissociation on Ni(100) [J]. Phys Rev Lett,1999,83(4):868-871.
    [84]Juurlink L B F, Smith R R, Killelea D R, et al. Comparative study of C-H stretch and bend vibrations in methane activation on Ni(100) and Ni(111) [J]. Phys Rev Lett,2005,94(20).
    [85]Nair S A, Nozaki T, Okazaki K. Methane oxidative conversion pathways in a dielectric barrier discharge reactor-Investigation of gas phase mechanism [J]. Chem Eng J,2007,132(1-3): 85-95.
    [86]Sarmiento B, Brey J J, Viera I G, et al. Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge [J]. J Power Sources,2007,169(1): 140-143.
    [87]Pietruszka B, Heintze M. Methane conversion at low temperature:the combined application of catalysis and non-equilibrium plasma [J]. Catal Today,2004,90(1-2):151-158.
    [88]Heintze M, Pietruszka B. Plasma catalytic conversion of methane into syngas:the combined effect of discharge activation and catalysis [J]. Catal Today,2004,89(1-2):21-25.
    [89]Pietruszka B, Anklam K, Heintze M. Plasma-assisted partial oxidation of methane to synthesis gas in a dielectric barrier discharge [J]. Appl Catal a-Gen,2004,261(1):19-24.
    [90]Nozaki T, Miyazaki Y, Unno Y, et al. Energy distribution and heat transfer mechanisms in atmospheric pressure non-equilibrium plasmas [J]. J Phys D-Appl Phys,2001,34(23): 3383-3390.
    [91]Nozaki T, Muto N, Kado S, et al. Dissociation of vibrationally excited methane on Ni catalyst-Part 1. Application to methane steam reforming [J]. Catal Today,2004,89(1-2):57-65.
    [92]Hammer T, Kappes T, Baldauf M. Plasma catalytic hybrid processes:gas discharge initiation and plasma activation of catalytic processes [J]. Catal Today,2004,89(1-2):5-14.
    [93]Hammer T, Kappes T, Schiene W. Plasma catalytic hybrid reforming of methane [J]. Utilization of Greenhouse Gases,2003,852(292-301.
    [94]Hammer T, Kappes T, Schlene W. Plasma catalytic hybrid reforming of methane. [J]. Abstr Pap Am Chem Soc,2002,223(U580-U580.
    [95]Bromberg L, Cohn D R, Rabinovich A, et al. System optimization and cost analysis of plasma catalytic reforming of hydrocarbons. [J]. Abstr Pap Am Chem Soc,1999,218(U632-U633.
    [96]Bromberg L, Cohn D R, Rabinovich A, et al. System optimization and cost analysis of plasma catalytic reforming of natural gas [J]. Int J Hydrog Energy,2000,25(12):1157-1161.
    [97]Bromberg L, Cohn D R, Hadidi K, et al. Plasmatron natural gas reforming. [J]. Abstr Pap Am Chem Soc,2004,228(U687-U687.
    [98]Bromberg L, Cohn D R, Rabinovich A, et al. Hydrogen manufacturing using low current, non-thermal plasma boosted fuel converters. [J]. Abstr Pap Am Chem Soc,2001,221(U493-U493.
    [99]Cormier J M, Rusu I. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors [J]. J Phys D-Appl Phys,2001,34(18):2798-2803.
    [100]Chao Y, Lee H M, Chen S H, et al. Onboard motorcycle plasma-assisted catalysis system-Role of plasma and operating strategy [J]. Int J Hydrog Energy,2009,34(15):6271-6279.
    [101]Chao Y, Huang C T, Lee H M, et al. Hydrogen production via partial oxidation of methane with plasma-assisted catalysis [J]. Int J Hydrog Energy,2008,33(2):664-671.
    [102]Chen H L, Lee H M, Chen S H, et al. Review of plasma catalysis on hydrocarbon reforming for hydrogen production-Interaction, integration, and prospects [J]. Appl Catal B-Environ,2008,85(1-2):1-9.
    [1]Raizer Y P. Gas Discharge Physics [M]. Berlin:Springer-Verlag,1991.
    [2]Tang J, Duan Y X, Zhao W. Characterization and mechanism studies of dielectric barrier discharges generated at atmospheric pressure [J]. Appl Phys Lett,2010,96(19).
    [3]何贤俊.电晕介质阻挡放电特性研究[D];中国科学技术大学,2009.
    [4]Nozaki T, Hiroyuki T, Okazaki K. Hydrogen enrichment of low-calorific fuels using barrier discharge enhanced Ni/gamma-Al2O3 bed reactor:Thermal and nonthermal effect of nonequilibrium plasma [J]. Energ Fuel,2006,20(1):339-345.
    [5]Juurlink L B F, McCabe P R, Smith R R, et al. Eigenstate-resolved studies of gas-surface reactivity:CH4 (nu(3)) dissociation on Ni(100) [J]. Phys Rev Lett,1999,83(4):868-871.
    [6]Nozaki T, Muto N, Kado S, et al. Dissociation of vibrationally excited methane on Ni catalyst-Part 1. Application to methane steam reforming [J]. Catal Today,2004,89(1-2):57-65.
    [1]Raizer Y P. Gas Discharge Physics [M]. Berlin:Springer-Verlag,1991.
    [2]Braun D, Gibalov V, Pietsch G. Two-dimensional modelling of the dielectric barrier discharge in air [J]. Plasma Sources Sci Technol,1992,1(3):166-174.
    [3]Gibalov V I, Pietsch G J. The development of dielectric barrier discharges in gas gaps and on surfaces [J]. J Phys D-Appl Phys,2000,33(20):2618-2636.
    [1]Hensel K, Matsui Y, Katsura S, et al. Generation of microdischarges in porous materials [J]. Czechoslovak Journal of Physics,2004,54(C683-C689.
    [2]Hensel K, Katsura S, Mizuno A. Dc microdischarges inside porous ceramics [J]. Ieee Transactions on Plasma Science,2005,33(2):574-575.
    [3]Hensel K. Microdischarges in ceramic foams and honeycombs [J]. European Physical Journal D,2009,141-148.
    [4]Hoferer B, Schwab A J. Investigation of discharge phenomena in porous materials [J]. 2002 Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2002, 530-533.
    [5]Ayrault C, Barrault J, Blin-Simiand N, et al. Oxidation of 2-heptanone in air by a DBD-type plasma generated within a honeycomb monolith supported Pt-based catalyst [J]. Catal Today,2004,89(1-2):75-81.
    [6]Ayrault C, Barrault J, Tatibouet J M, et al. Oxidation of 2-heptanone in air by a DBD-type plasma generated within a honeycomb monolith supported PT-based catalyst. [J]. Abstr Pap Am Chem Soc,2003,225,U55.
    [7]Hensel K, Tardiveau P. ICCD camera imaging of discharges in porous ceramics [J]. Ieee Transactions on Plasma Science,2008,36(4):980-981.
    [8]Hensel K, Martisovit V, Machala Z, et al. Electrical and optical properties of AC microdischarges in porous ceramics [J]. Plasma Processes and Polymers,2007,4(7-8):682-693.
    [9]倪卫洁.A1203多孔陶瓷制备工艺及其DBD特性研究[D];中国科学技术大学,2010.
    [10]Hensel K, Sato S, Mizuno A. Sliding discharge inside glass capillaries [J].Ieee Transactions on Plasma Science,2008,36(4):1282-1283.
    [11]Sato S, Hensel K, Hayashi H, et al. Honeycomb discharge for diesel exhaust cleaning [J]. Journal of Electrostatics,2009,67(2-3):77-83.
    [1]Nozaki T, Muto N, Kado S, et al. Dissociation of vibrationally excited methane on Ni catalyst-Part 1. Application to methane steam reforming [J]. Catal Today,2004,89(1-2):57-65.
    [2]Nozaki T, Hiroyuki T, Okazaki K. Hydrogen enrichment of low-calorific fuels using barrier discharge enhanced Ni/gamma-Al2O3 bed reactor:Thermal and nonthermal effect of nonequilibrium plasma [J]. Energ Fuel,2006,20(1):339-345.
    [3]Nozaki T, Miyazaki Y, Unno Y, et al. Energy distribution and heat transfer mechanisms in atmospheric pressure non-equilibrium plasmas [J]. J Phys D-Appl Phys,2001,34(23): 3383-3390.
    [4]Nozaki T, Muto N, Kadio S, et al. Dissociation of vibrationally excited methane on Ni catalyst-Part 2. Process diagnostics by emission spectroscopy [J]. Catal Today,2004,89(1-2): 67-74.
    [5]Nair S A, Nozaki T, Okazaki K. Methane oxidative conversion pathways in a dielectric barrier discharge reactor-Investigation of gas phase mechanism [J]. Chem Eng J,2007,132(1-3): 85-95.
    [6]Morgan W L. A Critical-Evaluation of Low-Energy Electron-Impact Cross-Sections for Plasma Processing Modeling.2. Cf4, Sih4, and Ch4 [J]. Plasma Chem Plasma Process,1992, 12(4):477-493.
    [7]王健.催化剂耦合介质阻挡放电制取臭氧的试验和模型研究[D];中国科学技术大学,2009.
    [1]Bromberg L, Cohn D R, Hadidi K, et al. Plasmatron natural gas reforming. [J]. Abstr Pap Am Chem Soc,2004,228(U687-U687.
    [2]Bromberg L, Cohn D R, Rabinovich A, et al. Emissions reductions using hydrogen from plasmatron fuel converters [J]. Int J Hydrog Energy,2001,26(10):1115-1121.
    [3]Bromberg L, Cohn D R, Rabinovich A, et al. Hydrogen manufacturing using low current, non-thermal plasma boosted fuel converters. [J]. Abstr Pap Am Chem Soc,2001,221 (U493-U493.
    [4]Bromberg L, Cohn D R, Rabinovich A. Plasmatron fuel converter-catalyst systems for aftertreatment of diesel vehicle emissions [J]. Int J Vehicle Des,2001,25(4):275-282.
    [5]Bromberg L, Cohn D R, Rabinovich A, et al. System optimization and cost analysis of plasma catalytic reforming of natural gas [J]. Int J Hydrog Energy,2000,25(12):1157-1161.
    [6]Bromberg L, Cohn D R, Rabinovich A, et al. Compact plasmatron-boosted hydrogen generation technology for vehicular applications [J]. Int J Hydrog Energy,1999,24(4):341-350.
    [7]Czernichowski A, Czernichowski P. Glidarc-Assisted Cleaning of Flue Gas from Destruction of Conventional or Chemical Weapons [J]. Environ Prot Eng,2010,36(4):37-45.
    [8]Czernichowski A, Czernichowski P. Plasma-assisted selective partial oxidation of tars and other pollutants in producer gases [J]. Abstr Pap Am Chem Soc,2010,239.
    [9]Czernichowski A, Czernichowski M. Fischer-Tropsch products from compact reactor and high-temperature Iron catalyst [J]. Abstr Pap Am Chem Soc,2010,239.
    [10]Czernichowski A, Wesolowska K. FUEL 154-GlidArc plasma for CO2 dry reforming [J]. Abstr Pap Am Chem Soc,2008,235.
    [11]Czernichowski M, Czernichowski A, Wesolowska K. FUEL 194-Compact reactor for Fischer-Tropsch process [J]. Abstr Pap Am Chem Soc,2006,232.
    [12]Czernichowski A, Czernichowski M, Wesolowska K. FUEL 153-Generation of 1 kg/h of hydrogen from diesel oil or soybean biodiesel [J]. Abstr Pap Am Chem Soc,2006,232.
    [13]Czernichowski A, Wesolowska K, Asme. Glidarc-assisted production of synthesis gas through partial oxidation of natural gas [M]. New York:Amer Soc Mechanical Engineers,2003.
    [14]Czernichowski A, Czernichowski M, Czernichowski P, et al. Reforming of methane into Syngas in a plasma-assisted reactor. [J]. Abstr Pap Am Chem Soc,2002,223.
    [15]Czernichowski A, Czernichowski M, Czernichowski P, et al. Reforming of methane into Syngas in a plasma-assisted reactor [J]. Abstr Pap Am Chem Soc,2002,223.
    [16]Czernichowski A. GlidArc assisted preparation of the synthesis gas from natural and waste hydrocarbons gases [J]. Oil Gas Sci Technol,2001,56(2):181-198.
    [17]Xia W D, Li L C, Zhao Y H, et al. Dynamics of large-scale magnetically rotating arc plasmas [J]. Appl Phys Lett,2006,88(21).
    [18]Xia W D, Zhou H L, Zhou Z P, et al. Evolution of cathodic arc roots in a large-scale magnetically rotating arc plasma [J]. Ieee Transactions on Plasma Science,2008,36(4): 1048-1049.
    [19]Zhou H L, Zhou Z P, Li L C, et al. Investigation of a novel large area dispersed arc plasma source with time-resolved ICCD Imaging [J]. Ieee Transactions on Plasma Science,2008, 36(4):1082-1083.
    [20]Zhou H L, Li L C, Cheng L, et al. ICCD imaging of coexisting arc roots and arc column in a large-area dispersed arc-plasma source [J]. leee Transactions on Plasma Science,2008,36(4): 1084-1085.
    [21]Li L C, Xia W D, Mon H L, et al. Experimental observation and numerical analysis of arc plasmas diffused by magnetism [J]. European Physical Journal D,2008,47(1):75-81.
    [22]Li L C, Chen Q, Zhou H L, et al. Images of a large-scale magnetically rotating arc [J]. Ieee Transactions on Plasma Science,2008,36(4):1080-1081.
    [23]Li L C, Bai B, Zhou Z P, et al. Axial magnetic-field effects on an argon arc between pin and plate electrodes at atmospheric pressure [J]. leee Transactions on Plasma Science,2008,36(4): 1078-1079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700