用户名: 密码: 验证码:
梨新S基因的分离克隆及部分品种的S基因型、AFLP鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自交不亲和性是植物生殖过程的一种普遍现象,它作为防止近亲繁殖和物种退化的异花授粉机制,为物种的生存、发展以及种群的相对独立性提供了保障。梨是一种配子体自交不亲和性植物,其自交不亲和性主要是由S位点的等位基因所控制。在生产栽培中必须配置不同S基因型的授粉品种或通过人工授粉等措施来保证高产稳产。因此确定不同品种的S基因型将为授粉品种的配置及良种选育提供重要的科学依据。本文以冬黄等28个梨品种为实验材料,开展了品种S基因型的鉴定、新S基因的分离克隆等研究;另外,以爱甘水等30个梨为材料,采用AFLP标记技术,开展了不同品种指纹图谱和亲缘关系的相关研究。本论文主要研究结果如下:
     1.梨不同品种S基因型的确定。采用PCR-RFLP、序列测定和亲缘关系分析等技术方法,确定了宝珠(S22S33)、冰糖(S19S31)、冬黄(S20S34)、黄梨(S22S34)、金秋(S3S9)、库尔勒(S22S34)、中梨一号(S4S35)、大果水晶(S3S9)、马蹄黄(S17S19)、懋功(S12S13)、柠檬黄(S31S32)、新雅(S4S17)、早酥(S22S35)、西子绿(S1S4)、黄花(S1S2)、黄金(S3S4)、清香(S4S7)、雪峰(S4S16)、雪芳(S4S16)、雪英(S3SX)、雪芬(S3SX)等品种的S基因型。
     2.梨新S基因的分离鉴定。利用梨S基因扩增的"FTTYQ"和"anti-IIWPNV"特异引物组合,并经过克隆测序,从柠檬黄和冰糖梨中分离鉴定了梨S31-RNase新基因,该基因扩增片断大小为346bp,外显子和内含子的分别为201bp和145bp;从柠檬黄梨中分离鉴定了梨S32-RNase新基因,该扩增片断大小为999bp,外显子和内含子分别为213bp和786bp;从宝珠梨中分离鉴定了梨S33-RNase新基因,该基因扩增片断大小为532bp,外显子和内含子分别为195bp和337bp;从冬黄、库尔勒和黄梨中分离鉴定了梨S34-RNase新基因,该基因扩增片断大小为428bp,外显子和内含子分别为201bp和227bp;从早酥和中梨一号梨中分离鉴定了梨S35-RNase新基因,该基因扩增片断的大小为371bp,外显子和内含子分别为204bp和167bp。上述5个新基因在GenBank的登录号分别是:DQ072113、DQ072114、DQ082897、DQ224345和DQ224344。
     3. S35-RNase基因的cDNA克隆与表达分析。以早酥梨的雌蕊为材料,提取总RNA,采用3'RACE和5'RACE技术,从早酥梨中扩增了一个S基因的cDNA全长。对该序列进行同源性比较,发现该序列为S35-RNase基因的cDNA全长序列。该序列全长681bp,编码227个氨基酸,具有日本梨S-RNase蛋白的序列特征:5个保守区和两个高变区、具有8个保守的半胱氨酸残基以及2个保守的组氨酸残基。该基因的cDNA序列登录到GenBank,登录号为DQ224344。采用Northern杂交技术,对该基因的表达情况进行了分析,结果发现该基因在大铃铛期表达量明显高于花前3d或花后3d,并且只在雌蕊中表达。
     4.部分梨品种的AFLP分析。以爱甘水等30个梨品种为材料,利用AFLP技术进行研究,除八月酥和冀蜜两个梨品种没有特异谱带外,其它品种至少有一条以上的特异性条带,这些条带可以作为各品种进行分子鉴别的重要依据。通过聚类,发现所有品种聚为4个组:第一组主要是日本梨及与日本梨有亲缘关系的部分品种;第二组为中国砂梨品种;第三组只有2个品种:黄冠和清香梨,它们的一个共同亲本为新世纪;第四组是康德,其亲本中有一个是西洋梨,被单独聚为一类。从聚类结果看,不同的品种之间表现出了一定的地域相关性。
The plant self-incompatibility, a universal biological phenomenon in angiosperm, is an important protective mechanism of preventing close breeding and species retrogression which was formed during the long-term evolution. As a kind of rosaceae plants, Pear is a typical fruit tree of gametophytic self-incompatibility (GSI). Because of its self-incompatibility, it has a low fruiting set of self-pollination and it is necessary to arrange varieties with different S-genotype or to perform artificial pollination to ensure a stable and high yield. In this article, some cultivars'S-genotype was identified and 5 new S genes were isolated and identified. It will provide a theoretical reference for studying the self-incompatibility and for parent's selection when hybridization is carried out. At the same time,30 cultivars such as aiganshuili were studied by fluorescent AFLP. A fingerprinting has been constructed. Relationship and inheritance of the studied cultivars have been analyzed on molecular level. The purpose is to provide basis for pear classification and theoretical references for hybridization parents. Mainly study results are listed as following.
     1. Identification the S-genotype. After using the method of PCR-RFLP, sequence and genetic relationship analysis etc., some cultivars S-genotype were identified. Such as: baozhuli(S22S33)、bingtangli(S19S31)、donghuangli(S20S34)、huangli(S22S34)、jinqiuli(S3S9)、kuerleli(S22S34)、lvbaoshili(S4S35)、daguoshuijingli(S3S9) matihuangli(S17S19)、maogongli(S12S13)、ningmenghuangli(S31S32)、xinyali(S4S17)、zaosuli(S22S35)、xizilvli(S1S4)、huanghuali(S1S2)、huangjinli(S3S4)、qingxiangli(S4S7)、xuefengli(S4S16)、xuefangli(S4S16)、xueyingli(S3SX)、xuefenli(S3SX)。
     2. Isolation and identification of new S gene.5 new S-RNase genes were isolated from the cultivars such as donghuangli after PCR and sequence analysis. The isolated new S-RNase genes were S31-RNase(DQ072113), S32-RNase(DQ072114), S33-RNase(DQ082897), S34-RNase(DQ224345) and S35-RNase(DQ224344). The fragment of S31-RNase contains 346 nucleotides; the exon and intron of it contain 201 and 145 nucleotides respectively. The fragment of S32-RNase contains 999 nucleotides; the exon and intron of it contain 213 and 786 nucleotides respectively. The fragment of S33-RNase contains 532 nucleotides; the exon and intron of it contain 195 and 337 nucleotides respectively. The fragment of S34-RNase contains 428 nucleotides; the exon and intron of it contain 201 and 227 nucleotides respectively. There are 2 different nucleotides and only one different deduced amino acid between S28-RNase and S34-RNase. There are 9 different nucleotides and no different deduced amino acid between S8-RNase and S34-RNase. We concluded that S8-RNase, S28-RNase and S34-RNase are the same one. The fragment of S35-RNase contains 371 nucleotides; the exon and intron of it contain 204 and 167 nucleotides respectively.
     3. The full length cDNA of S35-RNase (genebank accession number:DQ224344) were obtained from the cultivars of Zaosu pear after using RACE technique. The analytical result suggested that S35-RNase contains 681 nucleotides, codes 229 amino acids. Furthermore, there are 8 conservative'Cys'residues forming 4 disulfide bonds,2 conservative'His'residues influencing the S-RNase activity, and 1 conservative 'Asn-Xaa-Ser/Thr'motif within RC4, which plays an important role in the folding of core structure. To study the expression characteristic of S35-RNase, the technique of northern blotting was employed and discovered that it is highly expressed in the pistil of flowers at the stage of big ball and only expressed in pistil.
     4. AFLP fingerprinting analysis of 30 pear cultivars. AFLP fingerprinting technique were used to study the relationship of 30 cultivars such as aiganshuili et al. there were 28 cultivars have more than 1 characteristic bands, which were 93% among all of the cultivars. All of the cultivars were clustered into 4 groups. The cultivars of the 1st group are the Japanese pear or have genetic relationship with Japanese pear. The cultivars of the 2nd group are mainly the cultivars of Chinese pear. Huangguanli and qingxiangli were clustered to the 3rd group; these two cultivars have a common parent of shinseiki. The 4th group has only 1 cultivar of kangdeli. One of its parents is Pyrus communis.
引文
[1]Nasrallah M E. Genotype, protein, phenotype relationships in self-incompatibility of Brassica[J],Genet.Res.,1972,20:151-160.
    [2]朱利泉,王晓佳.自交不亲和植物S-位点特异性糖蛋白[J].生命的化学.1998,18(3):13-15.
    [3]Anderson MA, Cornish EC, Mau SL, et al. Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata[J]. Nature,1986,321:38-44.
    [4]De Nettancourt D.L., Incompatibility in angiosperms[M].Springer-Verlag, New York.1977.98-102.
    [5]Franklin FCH., Lawrence MJ., Franklin-Tong VE. Cell and molecular biology of self-incompatibility in flowering plants[J].Int Rev Cytol,1995,158:1-64.
    [6]Whitehouse HLK. Multiple-allelomorph incompatibility of pollen and style in the evolution of angiosperm[J]. Annals of Botany,1950,14:199-266.
    [7]Kolreuter J G. Vorlaufige Nachricht Von einigen das Geschlecht der Pflanzen betreffenden Versuchen und beobachtungen[J].Fortsexungen 1763,12:3,266.
    [8]Alabadi D., Yanovsky M.J., Mas P. et al. Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis[J]. Curr. Biol.2002,12:757-761.
    [9]Bai C. Sen P. Hofmann K. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box [J]. Cell.1996,86:263-274.
    [10]Bariola P.A., Howard C.J., Taylor, C.B. et al. The arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation[J]. Plant J.1994,6:673-685.
    [11]Nasrallah JB., Nasrallah ME. Pollen-stigma signaling in the saprophytic self-incompatibility response[J]. Plant Cell,1993,5:1325-1335.
    [12]鸟云塔娜,谭晓风.中国白梨自交不亲和基因的分离鉴定及品种S基因型的确定.中国科协第五届青年学术年会文集:科技工程与经济社会协调发展[M].中国科学技术出版社:2004(b):212-213.
    [13]Bechtold N. and Pelletier G. In planta agrobacterium mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration[J]. Methods Mol. Biol.,1998,82:259-266.
    [14]Chandler J.S., McArdle B. and Callis J. AtUBP3 and AtUBP4 are two closely related Arabidopsis thaliana ubiquitin-specific proteases present in the nucleus[J]. Mol. Gen. Genet.,1997,255: 302-310.
    [15]Deshaies R.J. SCF and Cullin/RING H2-based ubiquitin ligases[J]. Annu. Rev. Cell Dev. Biol., 1999,15:435-467.
    [16]Nasrallah JB., Nasrallah ME. The molecular genetics of self-incompatibility in Brssica[J]. VnnuRer Genet,1989,23:121-139.
    [17]Farras R.,Ferrando A., Jasik J.et al.SKP1-SnRK protein kinase interactions mediate proteasomalbinding of a plant SCF ubiquitin ligase[J]. EMBO J.,2001,20:2742-2756.
    [18]Newbigin E., Anderson MA., Clarke AE. Gametophytic self-incompatibility systems[J]. Plant Cell,1993,5:1315-1324.
    [19]Hiscock SJ., Kues U., Dickinson HG. Molecular mechanisms of self-incompatibility in flowering plants and fungi-different means to the same end[J]. Trends Cell Biol.,1996,6:421-428.
    [20]Lewis D. Structure of the incompatibility gene IIL Types of spontaneous and induced mutation[J]. Heredity.1951,5:399-414.
    [21]Lewis D. Serological reactions of pollen incompatibility substances[J].Pro Roy Soc(Lond.), 1952,140:127-135.
    [22]Anderson M A., Mcfadden G., Bernatzky R. et al. Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata[J]. Plant Cell.1989,1:483-491.
    [23]Al Y, Singh A, Coleman C E et al. Self-incompatibility in Peitunia inflata:Isolation and characterization of cDNAs encoding three S-allele-associated proteins[J]. Sex Plant Retrod, 1990,3:130-138.
    [24]Kaufmann H., Salamini F., Thompson R D. Sequence variability and gene structure the self-incompatibility locus of Solanum tuberosum [J]. Mol.Gen.Genet.1991,226:457-466.
    [25]Xu BB., Mu JH., Nevins DL. et al.Cloning and sequencing of cDNAs encoding two self-incompatibility associated protein in Sollanum chacoense[J]. Mol Gen Genet, 1990,224:341-346.
    [26]Broothaerts W., Janssens GA. and Proost P. et al. cDNA cloning and molecular analysis of two self-incompatibility alleles from apple[J]. Plant Mol Biol,1995,27:499-511.
    [27]Sassa H., Nishio T., Kowyama Y. et al. Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease super family [J]. Mol Gen Genet, 1996,250:547-557.
    [28]Xue Y, Carpenter R., Dickinson HG. et al. Origin of allelic diversity in Antirrhinum S locus RNases[J].Plant Cell,1996,8:805-814.
    [29]谭晓风,乌云塔娜,中西テツ等.中国梨品种自交不亲和新基因的分离鉴定[J].中南林学院学报,2005(25),1:1-3.
    [30]Kawata, Y. Amino-acid sequence of ribonucleic T2 from Aspergillus oryzae[J]. Eur. J. Biochem.1988,103:408-418.
    [31]McClure BA., Haring V, Ebert PR. et al. Style self-incompatibility gene products of Nicotiana alata are ribonuclease[J]. Nature.1989,342:955-957.
    [32]Tasai DS., Lee HS. Sequence of an S-protein of Lycopersicon peruvianum and comparison with other solanaceous S-protein[J].Sex Plant Report,1992,5:256-263.
    [33]Ioerger T R, Clark A G, Kao T-H. Polymorphism at the self-incompatibility locus in Solarnaceae predates speciation[C].Proc Natl Acad Sci USA,1990,87:732-735.
    [34]Kheyr-Pour A., Bintrim SB., Ioerger TR. et al. Sequence diversity of pistil S-proteins:associated with gametophytic self-incompatibility in Nicotiana alata[J]. Sex plant Reprot,1990,3:88-97.
    [35]Kawata Y., Sakiyama F., Hayashi F. et al. Identification of two essential histideine residues of ribonuclease T2 from Aspergillus oryzae[J]. Eur J Biochem,1990,187:255-262.
    [36]Ohgi K., Horiuchi H., Watanabe H. et al. Evidence that three histidine residues of a base non-specific and adenitis acid preferential ribonuclease from Rhzopus niveus are involved in the catalytic function[J].J Biochem,1992,112:132-138.
    [37]Kurihara H., Nonaka T., Mitsui Y. et al. The crystal structure of ribonuclease Rh from Rhizopus niveus at 2.0A resolution[J]. J Mol Biol,1996,255:310-320.
    [38]Tanaka N., Arai J., Inokuchi N. et al. Crystal structure of a plant ribonuclease, RNase LE[J]. J Mol Biol,2000,298:859-873.
    [39]Parry S., Newbigin E., Craik D. et al. Structural analysis and molecular model of a self-incompatibility RNase from wild tomato[J]. Plant Physiol,1998,116:463-469.
    [40]Cornish EC., Pettitt JM., Bonig I. et al. Developmentally controlled expression of a gene associated with self-incompatibility in Nicotiana alata[J]. Nature,1987,326:99-102.
    [41]Certal A. C., Sanchez A M., Kokko H. et al., S-RNases in apple are expressed in the pistil along the pollen tube growth path[J]. Sexual Plant Reproduction,1999,12,2:94-98.
    [42]Lee HS., Huang S., Kao TH. S-protein control rejection of incompatibility pollen in Petunia inflata[J].Nature,1994,367:560-563.
    [43]Murfett J., Strablala T. J., Zurek D. M. et al. S-RNase and interspecific pollen rejection in the genus Nicotiana:multiple pollen-rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species[J]. Plant Cell,1996,8:943-958.
    [44]Clark KR., Okuley J., Collins PD. et al. Sequence variability and developmental expression of S-alleles in self-incompatible and pseudo self-incompatible Petunia[J].Plant Cell,1990,2:815-826.
    [45]乌云塔娜,黄曙光,谭晓风.植物自交不亲和基因研究进展[J].生命科学研究,2004,2:59-64.
    [46]Franklin-Tong VE., Franklin FCH. Gametophytic self-incompatibility in Papaver rhoeas:There is no evidence for the involvement of stigmatic ribonuclease activity[J]. Plant Cell Enviro,1991,14:423-429.
    [47]Foote HC., Ride JP., Franklin-Tong VE. et al.Cloning and expression of a distinctive of class of self-incompatibility(S)gene from papaver rhoeas L[J].Proc Natl Acad Sci USA,1994, 91:2265-2269.
    [48]Franklin-Tong VE., Ride JP., Franklin FCH. Recombinant stigmatic self-incompatibility (S-)protein elicits a Ca2+ transient in pollen of Papaver rhoeas[J].Plant J,1995,8:299-307.
    [49]Franklin-Tong VE., Ride JP., Reed N. et al.The self-incompatibility response in Papver rhoeas is mediated by catabolic free calcium[J].Plant J,1993,4:163-177.
    [50]Jaordan ND., Kakeda K., Conner A., et al. S-protein mutants indicate a functional role for SBP in the self-incompatibility reaction of Papaver rhoeas[J]. Plant J,1999,20:119-125.
    [51]Hearn MJ., Franklin FCH., Ride JP. Identification of a membrane glycoprotein in pollen of Papaver rhoeas which binds stigmatic self-incompatibility(S-) protein[J]. Plant J.1996,9:467-475.
    [52]Kakeda K., Jordan ND., Conner A.,et al. Identification of residues in a hydrophilic loop of the Papaver rhoeas S protein that play a crucial role in recognition of incompatible pollen[J].Plant Cell,1998,10:1723-1732.
    [53]Beecher B., Mufett J. and McClure BA. RNase I from Escherichia coli cannot substitute for S-RNase in rejection of Nicotiana plumbaginifolia pollen[J]. Plant Mol Biol 1989,36:553-563.
    [54]Kao T-h., and McCubblin A. Molecular and biochemical bases of gametophytic self-incompatibility in Solanaceae[J]. Plant Physiol Biochem,1997,35:171-176.
    [55]Zurek DM., Mou B., Beecher B. et al. Exchanging Nicotiana alata disrupts pollen domains between S-RNases from recognition[J]. Plant J,1997,11:797-808.
    [56]Matton DP., Maes O., Laublin G. et al. Hypervariable domains of self-incompatibility RNase mediate allele-specific pollen recognition [J]. Plant Cell,1997,9:1757-1766.
    [57]Vericaa JA, McCubbin AG and Kao T-h. Are the hyperariable regions of S-RNase sufficient for allele-specific recognition of pollen[J]. Plant Cell,1998,10:311-314.
    [58]Mather K. Specific differences in Petunia intlata incompatibility[J].J Genet,1943,45:215-235.
    [59]Al Y, Kron E, Kao T-h. S-allele arc retained and expressed in a self-compatible cultivar of Petuniabrida[J], Sex Plant Retrod,1991,230:353-358.
    [60]Beratzky R. Glaven Rh. Rivers BA. S-related protein can be recombined with self-compatibility in interspecific derivatives of copersicon. Biochem[J]. Genet,1997,33:215-222.
    [61]Gola JF., Clarke AE., Newbigin E. et al.A relic S-RNase is expressed in the styles of self-compatible nicoriana sylvestris[J].Plant J,1998,16:591-599.
    [62]McClure B., Mou B., Canevscini S. et al. A small asparagines-rich protein required for S-allele-specific pollen rejection in Nicotiana[J].Proc Natl Acad Sci USA,1999,96:13548-13553.
    [63]Teh-hui Kao, Tatsuya, Tsukamoto. The molecular and genetic bases of S-RNase-Based Self-incompatibility [J]. The plant cell.2004,16(Supplement):S72-S83.
    [64]Hershko A. and Ciechanover A. The ubiquitin system[J]. Annu. Rev. Biochem.,1998,67:425-479.
    [65]Igic B. and Kohn J.R.. Evolutionary relationships among self-incompatibility RNases[J]. Proc. Natl. Acad. Sci. USA,2001,98:13167-13171.
    [66]Luu D.T. Qin K. Laublin G. et al. Rejection of S-heteroallelic pollen by a dualspecific S-RNase in Solanum Chacoense predicts a multineric SI pollen component[J]. Genetics,2001,159: 329-335.
    [67]Nasrallah ME., Wallace DH. Immunochemical detection of antigens in self-incompatibility genotypes of cabbage[J]. Nature,1967,213:700-701.
    [68]Nasrallah JB., Kao-H., Chen CH. et al.Amino acid sequences of glycoproteins encoded by three alleles of the S-locus of Brassica oleracea[J].Nature,1987,213:617-619.
    [69]Nasrallah JB., Kao ThH., Goldberg ML. et al. A cDNA clone encoding an S-locus specific glycoprotein from Brassica oleracea[J].Nature,1985,318:263-267.
    [70]Stein JC., Howlett B., Boyer DC. et al.Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea[J].Proc Natl Acad Sci USA,1991,88:8816-8820.
    [71]Schopfer CR., Nasrallah ME., Nasrallah JB.The male determinant of self-incompatibility in Brassica[J]. Science,1999,286:1697-1700.
    [72]Takayama S., Shiba H., Iwano M. et al. The pollen determinant of self-incompatibility in Brassica campestris[J]. Proc Natl Acad Sci USA,2000,97:1920-1925.
    [73]Boyes DC., Nasrallah JB. An anther-specific gene encoded by an S-locus haplotype of Brassica produces complementary and differentially regulated transcripts[J].Plant Cell,1995,7:1283-1294.
    [74]Yu K., Schfer U., Glavin TL. et al. Molecular characterization of the S locus in two self-incompatible Brassica napus lines[J]. Plant Cell,1996,2369-2380.
    [75]Cui Y., Brugiere N., Jackman L. et al. Structural and transcriptional comparative analysis of the S locus regions in two self-incompatible Brassica napus lines[J]. Plant Cell,1999,11:2217-2231.
    [76]Cabrillae D., Delorme V., Garin J. et al. The S]5 self-incompatibility haplotype in Brassica oleracea includes three S-gene family members expressed in stigmas[J]. Plant Cell, 1999,11:971-986.
    [77]Suzuki G., Kai N., Hirose T. et al. Genomic organization of the S-locus:Identification and characterization of genes in SLG/SRK region of S9 haplotype of Brassica campestris[J]. Genetics,1999,3:391-400.
    [78]Gaude T., Friry A., Heizmann P. et al. Expression of a self-incompatibility gene in a self-compatible line of Brassica oleracea[J]. Plant Cell,1993,5:75-86.
    [79]Gaude T., Rougier M., Heizmann P. et al. Expression level of the SLG gene is not correlated with the self-incompatibility phenotype in the class IIS haplotypes of Brassica oleracea[J].Plant.Mol.Bio.1995,27:1003-1014.
    [80]Stein JC., Dixit R., Nasrallah ME. et al. SRK the stigma-specific S locus receptor kinase of Brassica is targeted to the plasma membrane in transgenic tobacco[J].Plant Cell.1996,8:429-445.
    [81]Delorne V., Giranton JL., Hatzfeld Y., et al. Characterization of the S locus genes, SLG and SRIC, of the Brassica S3 haplotype:identification of a membrane-localized protein encoded by the S locus receptor kinase gene[J].Plant.1995,7:429-440.
    [82]Cui Y., Bi YM., Brugiere N., et al. The S locus glycoprotein and the S receptor kinase are sufficient for self-pollen rejection in Brassica[J].Proc. Natl. Acad.Sci.USA.2000,97:3713-3717.
    [83]Takasaki T., Hatakeyama K.,Suzuki G. et al. The S receptor kinase determines self-incompatibility in Brassica stigma[J].Nature.2000,403:913-916.
    [84]Terami H., Torikata H. and Shimazu Y. Analysis of the sterility factors existing in varieties of the Japanese pear[J]. Studies Hort Inst Kyoto Imp Univ,1946,3:267-271.
    [85]杨谷良,谭晓风,乌云塔娜.确定梨自交不亲和基因型研究的技术进展[J].中南林学院学报,2005,25:74-77.
    [86]Harlow E., Lane D. Antibodies:A Laboratory Manual. Cold Spring Harbor Laboratory Press[M], Cold Spring Harbor, NY, p.,1988:349.
    [87]Herr J.M. Jr. A new clearing squash technique for the study of ovule development in angiosperms[J]. Am. J. Bot.,1971,58:894-790.
    [88]Hiratsuka S., Detection and inheritance of a stylar protein associated with a self-incompatibility genotype of Japanese pear[J].Euphytica,1992,61:55-59.
    [89]Hiratsuka S. Characterization of an S-allele associated protein in Japanese pear[J]. Euphytica, 1992,62:103-110.
    [90]Sassa H., Hirano H. Identification and characterization of stylar glycoproteins associated with self-incompatibility genes of Japanese pear, Pyurs serotina Rehd[J].Mol Gen Genet.,1993, 241:17-25.
    [91]Gutierrez R.A., Green P.J. Phylogenetic profiling of the Arabidopsis thaliana proteome:what proteins distinguish plants from other organisms[J]. Genome Biol.,2004,5:R53.
    [92]Tao R., Yamane H., Sassa H. et al. Identification of stylar RNase associated with gametophytic self-incompatibility in almond (Prunes dulcis)[J].Plant Cell Physiol,1997,38:304-311.
    [93]Boskovic R., Tobutt KR. Correlation of stylar ribonuclease zymograns with incompatibility alleles in sweet cherry[J].Euphytica,1996,90:245-250.
    [94]Boskovic R., Russell K., Tobutt KR. Inheritance of stylar ribonucleases in cherry progenies and reassignment of incompatibility alleles to incompatibility groups[J]. Euphytica,1997,95:221-228.
    [95]Hiratsuka S., Kitoh Y, Matsushima J. Induction of deformed pollen tube tips and their morphological characteristics in self-incompatible Japanese pear[J]. J. Japan Soc Hort Sci,1991,60:257-265.
    [96]#12
    [97]Lansari A., Iezzoni A. A preliminary analysis of self-imcompatibility in sour cherry[J]. Hort. Sci.,1990,25(12):1636-1638.
    [98]Kao, T.H., Tsukamoto, T. The molecular and genetic bases of S-RNase-based self-incompatibility[J]. Plant Cell,2004,9:1345-1356.
    [99]Guo H. and Ecker J.R. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor[J]. Cell,2003,115:667-677.
    [100]Hiratsuka S., Hirata N., Tezuka T. Self-incompatibility reaction of Japanese pear in various stages of floral development[J]. J. Japan. Soc. Hort. Sci.,1985,54:9-14.
    [101]Hiratsuka S. Serological study on style proteins of self-incompatible Japanese pear[J].J.Japan. Soc. Hort. Sci.,1990,59:313-317.
    [102]张绍铃,平家伸.梨花柱S糖蛋白对离体花粉萌发及花粉管伸长的影响[[J].园艺学报,2000,27:251-256.
    [103]杨谷良,鸟云塔娜,谭晓风.配子体自交不亲和植物花粉S基因的研究进展[J].生物工程学报,2005,10:56-59.
    [104]Tan Xiao-Feng, Zhang Lin, Wuyun Ta-Na. Molecular identification of two new self-incompatible alleles (S-alleles) in Chinese pear (Pyrus bretschneideri), Journal of Plant Physiology and Molecular Biology [J].2007,33 (1):61-70.
    [105]乌云塔娜,谭晓风,曹玉芬.白梨新S基因的克隆[J].园艺学报,2006,33(2):385-388.
    [106]Nokioka N., Ohnishi Y., Norioka S. et al. Nucleotide sequences of cDNAs encoding S2-and S4-RNases(EMBL D49527 and D49528)from Japanese pear[J].Plant Physiol.1995,108:1343.
    [108]Castillo C., Takasaki T. and Saito T. et al. Reconsideration of S-genotype assignments and discovery of a new allele based on S-RNase PCR-RFLPs in Japanese pear cultivars[J]. Breed. Sci, 2001,51:5-11.
    [109]Kim H.S., Delaney T.P. Arabidopsis SON1 is an F box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance[J]. Plant Cell, 2002,14:1469-1482.
    [110]Li J.H., Nass N., Kusaba M., et al. A genetic map of the nicotiana alata S locus that includes three pollen-expressed genes[J]. Theor. Appl. Genet.2000,100:956-964.
    [111]Tetsuyuki Entani, Megumi Iwano, Hiroshi Shiba et al. Comparative analysis of the self-incompatibility (S-)locus region of Prunus mume:identification of a pollen-expressed F-box gene with allelic diversity [J]. Genes to Cells,2003,8:203-213.
    [112]Gange, J.M., Downes, B.P., Shiu, S.-H. et al. The F-box subunit of the SCF E3 complex is encoded by a diverse-super family of genes in Arabidopsis[J]. Proc. Natl. Acad. Sci. USA,2002, 99:11519-11524.
    [113]Dowd, P.E., Mc Cubbin, A.G., Wang, X., et al. Use of Petunia inflata as a model for the study of solanaceous type self-incompatibility [J].Ann. Bot.2000,85(Suppl. A):87-93.
    [114]McCubbin A.G., Wang X., Kao T.H. Identification of self-incompatibility (S-) locus linked pollen cDNA markers in Petunia inflata [J]. Genome,2000,43:619-627.
    [115]Ushijima K., Sassa H., Dandekar A.M. et al. Structural and transcriptional analysis of the self-incompatibility locus of almond:Identification of a pollen-expressed F-box gene with haplotype-specific polymorphism [J]. Plant Cell 2003,15:771-781.
    [116]Ushijima K., Yamane H., Watari A. et al. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prynus avium and P. mume[J]. Plant J.,2004,39: 573-586.
    [117]Paja Sijacic, Xi Wang, Andrea L. et al. Identification of the pollen determinant of S-RNase-mediated self-incompatibility [J]. Nature,2004,429:302-305.
    [118]Kim D,H, Wang J H, Shin Yu, et al. Development of molecular markers linked to several fruit traits in orental pear[J]. Acta Hort.,2005,671:315-321.
    [119].Kipreos E.T., Pagano M. The F-box protein family[J]. Genome Biol.:reviews, 2000,3002.1-3002.7.
    [120]Kuroda H., Takahashi N., Shimada, H. et al. Classification and expression analysis of Arabidopsis F-box-containing protein genes[J]. Plant Cell Physiol.,2002,43:1073-1085.
    [121]Wang H., Huang J., Lai Z. et al. F-box proteins in flowering plants[J]. Chin. Sci. Bull.,2002,47: 1497-1501.
    [122]Liu Y., Mitsukawa N., Oosumi T. et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR[J]. Plant J.,1995,8:457-463.
    [123]Mansfield S.G. and Briarty L.G. Early embryogenesis in Arabidopsis thaliana:1. The developing embryo[J]. Can. J. Bot.,1991,69:461-476.
    [124]Mas P., Kim W.Y., Somers D.E. et al. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana[J]. Nature,2003,26:567-570.
    [125]Junli Zhou, Fei Wang, Wenshi Ma. Structural and transcriptional analysis of S-locus F-box genes in Antirrhinum[J].Sex Plant Report,2003,16:165-177.
    [126]Hong qiao, Fei wang, Lan Zhao et al. The F-Box protein AhSLF-S2 control the pollen function of S-RNase-Based Self-incompatibility [J]. The Plant Cell.2004,16:2307-2322.
    [127]Kipreos E. T., Pagano M., Sa D. et al. The F-box protein family [J]. Genome Biol,2000,10: 3002.1-3002.7.
    [128]Lai Z., Ma W., Han B., et al. An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum [J]. Plant Mol. Biol.2002,50:29-42.
    [129]McGinhis K.M., Thomas S.G., Soule J.D. et al. The arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase[J]. Plant Cell,2003,15:1120-1130.
    [130]Patton E.E., Willems A.R. and Tyers M. Combinatorial control ubiquitin-dependent proteolysis: don't Skip the F-box hypothesis[J]. Trends Genet.,1998,14:236-243.
    [131]Potuschak T., Lechner E., Parmentier Y. et al. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F-box proteins:EBF1 and EBF2[J]. Cell, 2003,115:679-689.
    [132]Printen J.A. and Sprague G.F. Jr. Protein interactions in yeast pheromone response pathway:Step interacts with all members of the MAP kinase cascade[J]. Genetics,1994,138:609-619.
    [133]Qiao H., Wang F., Zhao L. et al. The F-Box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility[J]. Plant Cell,2004,16:2307-2332.
    [134]Risseeuw E.P., Daskalchuk T.E., Banks T.W. et al. Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis[J]. Plant J.,2003,34:753-767.
    [135]Sakata K., Nagamura Y., Numa H. et al. Rice GAAS:an automated annotation system and database for rice genome sequence[J]. Nucleic Acids Res.,2002,30:98-102.
    [136]Sato K., Nishio T., Kimura R. et al. Coevolution of the S-locus genes SRK, SLG and SP11/SCR in Brassica oleracea and B. rapa[J]. Genetics,2002,162:931-940.
    [137]Serino G., Tsuge T., Kwok S. et al. Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome[J]. Plant Cell,1999,11:1967-1980.
    [138]Sijacic P., Wang X., Skirpan A.L. et al. Identification of the pollen determinant of S-RNase-mediated self-incompatibility[J]. Nature,2004,429:302-305.
    [139]Smalle J. and Vierstra R.D. The ubiquitin 26S proteasome proteolytic pathway[J]. Annu. Rev. Plant Biol.,2004,55:555-590.
    [140]Somers D.E., Schultz T.F., Milnamow, M. et al. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis[J]. Cell,2000,101:319-329.
    [141]Sullivan J.A., Shirasu K. and Deng X.W. The diverse roles of ubiquitin and the 26s proteasome in the life of plants[J]. Nat. Rev. Genet.,2003,4:948-958.
    [142]Takahashi N., Kuroda H., Kuromori T. et al. Expression and interaction analysis of Arabidopsis Skpl-related genes[J]. Plant Cell Physiol.,2004,45:83-91.
    [143]Taylor C.B., Bariola P.A., del Cardayre S.B. et al. RNS2:a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation[J]. Proc. Natl. Acad. Sci. USA, 1993,90:5118-5112.
    [144]Wang Y., Tsukamoto T., Yi K.W. et al. Chromosome walking in the Putunia inflate self-incompatibility (S-) locus and gene identification in a 881-kb contig containing S2-RNase[J]. Plant Mol. Biol.,2004,54:727-742.
    [145]Wang Y., Wang X., McCubbin A.G. et al. Genetic mapping and molecular characterization of the self-incompatibility (S) locus in Petunia inflate[J]. Plant Mol. Biol.,2003,53:565-580.
    [146]Weigel D. and Galzebrook J. Arabidopsis:A Laboratory Manual. Cold Spring Harbor Laboratory Press[J], Cold Spring Harbor, NY, pp.,2002,243-248.
    [147]Winston J.T., Koepp D.M., Zhu C. et al. A family of mammalian F-box proteins[J]. Curr. Biol., 1999,9:1180-1182.
    [148]Yamane H., Ikeda K., Ushijima K. et al. A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium[J]. Plant Cell Physiol.,2003,44:764-769.
    [149]Zhou J., Wang F., Ma W. et al. Structural and transcriptional analysis of S-Locus F-box genes in Antirrhinum[J]. Sex. Plant Reprod.,2003,16:165-177.
    [150]Tomimoto Y., Nakazaki T. Analysis of self-incompatibility related ribonucleases(S-RNases) in two species of pears, Pyrus communis and Pyres ussuriensis[J]. Sei Hortie.,1996,66:159-167.
    [151]菊富慎,王宇霖编著.中国果树志第三卷(梨).上海:上海科学技术出版社,1963:62-63,339-345.
    [152]Bailey L H. Standard cyclopedia of horticulture[M]. New York:Macmilan,1917.2865-2878.
    [153]俞德浚编著.中国果树分类学[M].北京:农业出版社,1979.122-146.
    [154]许方,姚宜宣,黄礼森,李树玲.中国梨属植物花粉壁结构的比较观察[J].莱阳农学院学报.1992,9(3):163-169.
    [155]俞德浚编著.中国果树分类学[M].北京:农业出版社,1979.122-143.
    [156]蒲富慎,林盛华,陈瑞阳等.中国梨属植物核型研究Ⅱ[J].园艺学报,1986,13(2):87-90.
    [157]蒲富慎,林盛华,宋文芹等.我国梨属植物染色体核型研究(一)(J).武汉植物学研究,1985,3(4):381-387.
    [158]李树玲,曹玉芬,黄礼森等.三倍体梨品种F1代染色体数目鉴定[J].天津农学院学报,2002,9(3):1-4.
    [159]李树玲,穆瑞维,魏新等.6个西洋梨品种染色体数目鉴定[J].天津农学院学报,2005,12(4):1-4.
    [160]许方.中国梨属植物花粉电镜图谱[M].北京:科学出版社,1993.97-99.
    [161]杨槐俊,孢粉学在部分梨属植物分类研究中的应用[J].果树科学,1985,3:2-9.
    [162]许方主编.梨树生物学[M].北京:科学出版社,1992.9-35.
    [163]林伯年,沈德绪.利用过氧化物同工酶分析梨属种质特性及亲缘关系[J].浙江农业大学学报,1983,9(3):235-242.
    [164]曲柏宏,严花淑,陈艳秋,等.同工酶分析在梨品种分类中的应用[J].延边大学农学学报,2003,25(1):96-91.
    [165]马兵钥,牛建新,潘立忠,等。应用同工酶对梨属下种、品种及芽变的鉴定[J].新疆农业科学,2003,40(5):262-264.
    [166]范义荣,王白坡,詹晓云,等.梨杂种过氧化物酶同工酶分析[J].浙江林学院学报,1988,5(1):43-47.
    [167]Staub JK, Serquen FC, Gupta M. Genetic markers map construction and their application in plant breeding[J].Hortscience,1996,31(5):729-740.
    [168]Vos P, Hogers R, Bleeder M. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Res,1995,23(21):4407-4414.
    [169]Botstei D, White RL, Skolnick M, et al. Construction of a genetic map in man using restriction fragment polymorphisms[J].Am J Hum Genet,1980,32:314-331.
    [170]Hemmat M, Weeden N F, cheng F.S. et al. An apple linkage map with SSR and other sequence-tagged sites suitable for comparative mapping[J]. Hort Science,1999,2:450.
    [171]Dirle wanger E. pronier U., parvery C., et al.Genetic linkage map of peach using morphological and molecular marker[J].Theor Appl Genet,1998,(97):888-895.
    [172]Stockinger E J,Mulinlx C A,Long C M., et al. A linkage map of sweet cherry based on RAPD analysis of microspore-derived callus culture population[J].J of Herediity,1996,87:214-218.
    [173]YamamotoT.KimuraT, Shoda M, et al. Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears[J]. Theor Appl Genet,2002,106:9-18.
    [174]孙文英,利用AFLP标记构建早美酥×八月红分子遗传图谱[D].保定:河北农业大学,2005:34-56.
    [175]石胜友,成明昊,梁国鲁,等.变叶海棠遗传多样性的AFLP分析[J].园艺学报.2006,33(2):381-384.
    [176]Chunjiang Zhou,Hongzhu Song, Jinhua Li, et al. Evaluation of genetic diversity and germplasm identification of 44 species, clones, and cultivars from 5 sections of the genus populus based on amplified fragment length polymorphism analysis[J]. Plant Molecular Biology Reporter,2005,23:39-51.
    [177]Pan Z, Kawabata S, Sugiyama N,et al. Genetic diversity of cultivated resources of pear in north China[J]. Acta Hort.,2002,587)187-194.
    [178]Lulsa Monte-Corvo, Luis Cabrita, Cristina Oliveira, et al. Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers[J]. Genetic Resources and Crop Evolution,2000(47):257-265.
    [179]Lin Shenghua, Fang Chengquan, Song Wenqin et al. AFLP molecular markers of 10 species of pyrus in China[J]. Acta Hort,2002,587:233-241.
    [180]TengY W, Kenji T, Fumio T, et al. Assessment of Genetic Relatedness among Large-Fruited Pear Cultivars Native to East Asia Using RAPD Markers[J]. Acta Hort,2002,587:139-145.
    [181]Aranzana M J, Carbo J, Arus F. Using amplified fragment length polymorphisms (AFLPs) to identify peach cultivars[J]. J Amer Soc Hort Sci,2003,128(5):672-677.
    [182]鹿金颖,毛永民,中莲英,等.用AFLP分子标记鉴定冬枣自然授粉实生后代杂种的研究[J].园艺学报,2005,32(4):680-683.
    [183]Lee GP, Lee CH, Kim CS. Molecular markers derived from RAPD, SCAR and the conserved 18S rDNA sequences for classification and identification in P pyrifolia and P communis[J].Theor Appl Genet,2004,108:1487-1491.
    [184]Kimura T, Yong Z S, Shoda M et al. Identification of Asian Pear Varieties by SSR Analysis[J].Breed Sci,2002,52:115-121.
    [185]Luo-Lan. Identification of Molecular Genetic Markers Tightly Linked to Sowny Mildew resistant Genes in Grape[J].遗传学报,2001,28(1):76-82;
    [186]王跃进,杨英军,周鹅,等.用DNA探针检测我国栽培的无核葡萄及辅助育种初探[J].园艺学报,2002,29(2):105-108.
    [187]Kim H T, Hirata Y, Shin YU, et al. A molecular technique for selection of self-compatible varieties of Japanese pear(Pyrus Pyrilolia Nakai)[J]. Euphytica,2004,138:73-80.
    [188]Eiichi Inoue, Masakazu Kasumi, Fumio Sakuma, et al. Identification of RAPD marker linked to fruit skin color in Japanese pear(Pyrus Pyrifolia Nakai)[J]. Scientia Horticulturae,2006,107:254-258.
    [189]Rudd jj., Franklin D., Tong VE. Unravelling response-specificity in Ca2+ signaling pathways in plant cells[J]. New Phytologist,2001,151:7-34.]
    [190]吴俊,束怀瑞,张开春等.桃分子连锁图的构建与分析[J].园艺学报,2004,31(5):593-597.
    [191]萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南(第二版)[M].北京:科学出版社,1998.467-578.
    [193]菊池秋雄,果樹園藝學(上卷)果樹種類各論[M].東京:養賢堂,1948:98-108.
    [194]张鹏.我国梨属植物种和品种分类的进展[J].山西果树,1995,3:2-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700