用户名: 密码: 验证码:
水声声图测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声图是一种特殊的被动声成像方式,可以给出噪声源的空间分布。最早应用于空气声学,在对轨道列车噪声分布测量、大型发动机内部噪声测量等方面已取得了良好的效果,并成功的指导了这些大型机器设备的减振降噪。水声中的舰艇目标降噪问题同样备受关注,受空气中的声图测量法启发,论文研究了水声中的声图测量技术,用于分析舰艇等目标的噪声源空间分布情况。
     声图测量采用的核心算法是聚焦波束形成技术,其原理与常规波束形成类似。不同的是由于声图测量的测量范围在近场,采用的是近场球面波补偿,而非平面波补偿,补偿量与空间位置有关。利用空间扫描的方式,来根据不同位置的波束形成输出功率强度来判定噪声源的空间分布情况。由于水声物理环境复杂,使得高精度的大型半波间距阵布放代价很大,声图测量一般都采用稀疏阵的测量形式。文中采用了分频段综合的方法和虚拟阵元法来抗阵列稀疏给测量带来的影响。水声信道是相干多途信道,文中结合了虚拟时间反转镜算法和虚阵算法用来抗多途信道的影响。以上措施取得了良好的效果。
     文中分析了声图测量法的分辨力与其阵长、目标距离、处理信号频率有关,相同距离和阵长条件下方法对低频声源的分辨能力较差,为此研究了近场MVDR聚焦波束形成算法和STMV聚焦波束形成算法来提高声图测量对低频声源的分辨能力。
     声图测量过程中,若测量区内存在多个声源,则它们之间会形成相干干扰,强声源对弱声源的干扰尤为严重,为此研究了基于自适应干扰抵消的近场波束零陷算法和基于Bartlett权的近场波束零陷算法,抗各声源间的相干干扰,进一步提高多声源的声图测量质量。
     此外,在进行水平阵声图测量时,扫描平面深度是否准确同样会影响到声图测量的定位精度。对于水平阵来说,声图测量是在某一深度平面内进行的二维扫描,扫描深度要与声源实际深度一致,否则就会引人测量误差,这使得对声源深度的测量成为了影响水平阵声图测量精度的一个关键问题。因为水平阵在垂直方向是无指向性的,所以关于水平阵的声源深度测量问题文献中一直未有涉及。论文提出对于过阵航行的特殊航行过程,利用某一深度的声图测量的定位结果,根据目标与阵的几何关系是可以解得声源深度的。文中研究了几何法和圆交汇法两种用于水平阵的声源深度测量方法。前一种方法适用于阵水平情况,而后一种方法用于阵有一定角度倾斜的情况。
     在对声源被动定位的基础上,对声图测量在辐射噪声源分离中的应用进行了初步探讨。研究了各噪声源信号的分离提取的方法,并分别从时域和频域的角度分析了方法的分离性能。
     论文基于水平阵、垂直阵以及面阵对声图测量算法进行了仿真研究,并通过4个航次的水平阵海试,验证了声图测量中的各种算法。
Underwater acoustic image is a special passive acoustic imaging technology,which can give the spatial distribution of noise sources Applied in aero acousticsat the very beginning,underwater acoustic image has good results in noise-sourcedistribution measurements of railway trains and internal noise measurements inthe large engines,and is successful to guide the vibration and noise reduction ofthese large engines The vibration and noise reduction of ship also receives muchconcern Enlighten by aero acoustic image measurement,the paper researches onunderwater acoustic image measurement to maalyze the spatial distribution ofnoise sources in ships
     The core algorithm of underwater acoustic image measurement is dynamicsfocus beam forming whose principle is similar to normal beam forming Thedifference between the two methods is that the underwater acoustic imagemeasurement is applied in near field in which spherical wave compensationwhose value is related to spatial position is taken;whereas the normal beamforming takes plane wave compensation By using spatial scan,the spatialdistribution of noise sources is judged by the beam forming power output indifferent pixel points
     Because of the complex underwater environment,it is difficult to lay a largehigh-accuracy half-wavelength array.Thus it is normal to use sparse array inunderwater acoustic image measurement In the paper,~equency-divisionintegrated technology and virtual array technology are applied to overcome theinfluence of sparse array.The underwater acoustic channel is coherent multi-pathchannel The paper combines virtual time reversal mirror algorithm and virtualarray algorithm to overcome multi-path interference,which achieved good effect
     The resolution of underwater acoustic image measurement is related to array length,the distance to the target and the band of signal The resolution is not SOgood to low frequency sources w-hen the same target distance and array length aJ'efixed Thus researches on MVDR focus beam forming and STMV focus beamforming are applied to improve the resolution of low frequency sound sources
     There will be coherent interference for each other when there are multi soundsources The influence of the strong sources to weak ones is severe Therefore,two anti-interference technologies are researched One is null beam forming innear field based on adaptive interference cancellation,and the other is based onBartlett weight The methods can overcome coherent interference and enhance thequality of underwater acoustic image in multi sound sources
     Moreover,the scanning depth will afl'ect the accuracy of the underwateracoustic image w-hen the measurement array is horizontal For the horizontal arraysince the acoustic image measurement is a two-dimensional image in certainscanning depth,scanning depth and actual depth of sources must be the Sa2rle,otherwise there will be measurement error,which 1eads the fact that the hemeasurement of the sound source depth is a key issue which afl'ects the accuracyof measuring for horizontal array.Because a horizontal array is non-directional inthe vertical direction,the measurement of source depth of horizontal array isseldom discussed in literatures The paper proposes the viewpoint that for thespecial navigation across the array using the location result of underwater acousticimage measurement to certain depth the source dcepth can be achieved fromgeometrical relationship of the sources and array Two depth measuring methodsare discussed in the paper One is geometric method and the other is circleintersection method The former is suitable for the horizontal array and the latteris for the array with a certain angle oftilt
     Based on the passive location,a preliminary study is done on the radiationnoise sources separation by underwater acoustic image measurement The paperresearches on the extraction methods of noise source signal,and the performance of signal separation is examined in the time domain and~equency domain,respectively
     The paper does simulation research on underwater acoustic imagemeasurement Ngorithms based on the horizontal array,ve~ical array and planararray,and the various underwater acoustic image measurement algorithms areverified through four horizontal array voyage tests
引文
[1]张德俊.声成像的研究进展及应用前景.科技导报.1994,(9):15-18页
    [2]何培忠,夏荣民,段世梅等.一种新的超声成像方法—振动声成像.声学技术.2005,24(1):34-38页
    [3]钱梦騄.声成像技术及其在医学超声中的应用.声学技术.2009,28(6):710-713页
    [4]乔东海,汪承灏,周育英.声束在固体中的聚焦及其在声成像中的应用.声学学报.1993,18(2):91-98页
    [5]杨绪海,张晓春.利用声成像测井数据实现岩石裂缝特征的自动识别.中国海上油气(地质).2000,14(6):429-431页
    [6]张建军,潘恒超,李浩.超声成像测井工作原理与影响因素.声学与电子工程.2001,28(2):32-36页
    [7]桑恩方,张小平,苏龙滨.三维成像声呐的设计与实现.哈尔滨工程大学学报.2003,24(3):241-244页
    [8] E.G.Williams. Sound source constructions using a microphone array. J.Acoust. Soc. Am., 1980, 68(1): 340-344P
    [9] W.F. King and D. Bechert. On the sources of wayside noise generated by high-speed trains, Journal of Sound and Vibration, 1979, 66(3): 311-332P
    [10] B.Barsikow. Experiences with various configurations of microphone arrays used to locate sound sources on railway trains operated by the DB AG, Journal of Sound and Vibration, 1996, 193(1): 172-182P
    [11]杨德森,谢长生,朴胜春,王金堂.水下声图像研究.声学学报.1996,21(4):752-758页
    [12] Y.D.Huang and M. Barkat, Near-field multiple source localization by passive sensor array, IEEE Trans. Antennas Propag. Jul. 1991, 39(7): 968-975P
    [13] R.J.尤立克著.洪申译.水声原理.第三版.哈尔滨船舶工程学院出版社,1990:258-276页
    [14]毛卫宁.水下被动定位方法回顾和展望.东南大学学报.2001,31(6):129-132页
    [15]宋新见.数字式噪声目标被动测距声纳研究.哈尔滨:哈尔滨工程大学博士论文.2003
    [16]李艳梅.声纳脉冲侦察与被动测距研究.哈尔滨工程大学硕士论文.2003
    [17]周伟,惠俊英,梅继丹.三元阵被动测距浅海试验及后置处理.声学学报.2009,34(3):217-222页
    [18] S.C.Nardone, A.G.Lindgren, K.F.Gong. Fundamental properties and performance of conventional bearings-only tracking. IEEE Trans AC, 1984, 29: 775-787P
    [19] K.Becker. A general approach to TMA observability from angle and frequentcy measurements. IEEE Transactions on Acoustics, Speech and Signal Processing, 1996, 32(1): 487-496P
    [20] J.M.Passerienux,D.Pillon. Etal. Target motion analysis with bearings and frequentcies measurements. Proceedings of the 22nd Asilomar Conference, 1988: 458-462P
    [21] H.Brian. Detection and localization of weak targets by space-time integration. IEEE J OCE, 1991, 16(2): 189-194P
    [22] B.H.Marandda, J.A.Fawcett. Detection and localization of weak targets by space-time integration. IEEE Journal of Oceanic Engineering, 1991, 16(2): 189-194P
    [23] J.A.Fawcett, B.H.Maranda. Ahybrid target motion analysis/matched-field processing localization method. JASA, 1993, 94(3): 1363-1371P
    [24]王静等.水声信号处理中匹配场处理技术研究的现状和展望.声学技术.2000,19(1)
    [25]马远良.匹配场处理——水声物理学与信号处理的结合.电子科技导报.1996(4)
    [26] A.B.Baggeroer, W.A.Kuperma, at a1. An overview of matched field methods in ocean acoustics. IEEE Journal of Oceanic Engineering. 1993, 18(4): 425-427P
    [27]黄益旺.基于射线理论的匹配场声源定位研究.哈尔滨工程大学工学硕士论文.2002,1
    [28] F.B.Jensen, W.A.Kuperman, M.B.Porter, et al. Computational ocean acoustics. NewYork: AIP Press, 1994
    [29] N.Booth, P.Schey. Broadband matched-field processing of low level signals in shallowwater. JASA, 1995, 97: 3291P
    [30] G.B.Smith, C.Feuillade, D.R.Delbalzo. Matched-field processing enhancement in a shallow-water environment by incoherent broad-band averaging. JASA, 1992, 91:1447-1455P
    [31] R.Doolittle, E.Sullivan, A.Tolstory. Special issue on matched field processing. IEEE J OCE, 1993, 18(3)
    [32] R. A. Fisher(Ed), Optical Phase Conjugation, Academic Press, N, Y, 1983
    [33] R.J.Darrell, R.D.David. Phase conjugation in underwater acoustics. J. Acoust. Soc. Am., 1991, 89(1): 171-181P
    [34] D.R.Dowling. Acoustic pulse compression using passive phase-conjugate processing. J. Acoust. Soc. Am., 1994, 95(3): 1450-1458P
    [35] W.A.Kuperman, W.S. Hodgkiss, H.C. Song, T. Akal, C. Ferla, D.R. Jackson, Phase conjugation in the ocean: Experimental demonstration of a time reversal mirror, J. Acoust. Soc. Am. 1998, 103(1):25-40P
    [36]生雪莉.矢量反转镜时空滤波技术及其在水声中的应用.哈尔滨工程大学博士论文.2005
    [37]马敬广.时间反转镜被动定位技术研究.哈尔滨工程大学博士论文.2007
    [38]殷敬伟,惠娟,惠俊英,生雪莉,姚直象.无源时间反转镜在水声通信中的应用.声学学报.2007,32(4):362-366页
    [39] J.D.Maynard, E.G.Willarms, Y.Lee. Nearfield acoustic holography:ⅠTheory of generalized holography and the development of NAH. J.Acoust. Soc.Am, 1985, 78 (4):1395-1413P
    [40] A.Sarkisslan. Extension of measurement surface in near-field acoustical holography. J Acoust Soc Am, 2004, 115(4):1593-1596P
    [41] Y.H.Kim, S.M.Kim. An analysis of the sound radiation characteristics of the king Song-Dok bell using cylinder acoustic holography. J Acoust Soc Korea, 1997, 16(4):94-100P
    [42] R.L.Ruhala, D.C.Swanson. Planar near-field acoustical holography in a moving medium [J]. J Acoust Soc Am, 2002, 112(2):420-429P
    [43]蒋伟康,万泉.近场声全息理论与应用的研究现状与展望.机械强度.2005(4)
    [44]程广福,夏春艳,刘文帅,蒋行海,刘雨东.潜艇噪声源识别和分离方法研究综述.第十届船舶水下噪声学术讨论会论文集.2005:56-60页
    [45]胡丹.聚焦波束形成声图测量技术研究.哈尔滨工程大学硕士学位论文.2008:25-26页
    [46] A.Trucco. A least-squares approximation for the delays used in focused beamforming. J. Acoust. Soc. Amer, 1998, 104(1): 171–175P
    [47]惠娟,胡丹,惠俊英等.聚焦波束形成声图测量原理研究.声学学报.2007,32(4):356-361页
    [48]田坦,刘国枝,孙大军.声呐技术.哈尔滨工程大学出版社,1999:1-7页,63页
    [49]惠俊英.水下声信道.第1版.国防工业出版社.1992:79-98P
    [50] W.F.King, D.Bechert. On the sources of wayside noise generated by high-speed trains, Journal of Sound and Vibration, 1979, 66(3): 311-332P
    [51] B.Barsikow. Experiment with various configurations of microphone arrays used to locate sound sources on railway trains operated by the DB AG, Journal of Sound and Vibration, 1996, 193(1): 172-182P
    [52] H.Kook, G.B. Moebs, P.Davies, J.S.Bolton. An efficient procedure for visualizing the sound field radiated by vehicles during standardized passby tests, Journal of Sound and Vibration, 2000, 233(1): 137-156P
    [53] J.J.Christensen, J.Hald Beamforming. B&K Technical Review, 2004, 26(5): 48-51P
    [54] J.Hald. Combined NAH and beamforming using the same array. B&K Technical Review, 2005, (1): 11-39P
    [55] T.F.Brooks. M.A. Marcolini and Pope D. S. A directional array approach for the measurement of rotor noise source distributions with controlled spatial resolution. Journal of Sound and Vibration. 1987, 112(1): 192-197P
    [56] J.G.Ryan, R.A.Goubran. Array optimization applied in the near field of a microphone array. IEEE Transactions on Speech and Audio Processing, 2000, 8(2): 174-176
    [57] J.G.Ryan, R.A.Goubran. Application of near-field optimum microphone arrays to hands-free mobile telephony. IEEE Transactions on Vehicular Technology, 2003, 52(2): 390-400P
    [58]乔渭阳.基于麦克风阵列测量的飞机机翼噪声源研究.西北工业大学.博士学位论文.1999
    [59]贾智骏,蒋伟康.基于传声器阵列的电泵噪声源识别研究.噪声与振动控制.2004,24(6):49-51页
    [60]邓可教,储昭坦,吕伟国.有限焦距波束形成在汽车噪声源识别中的应用.中国声学学会2006年全国声学学术会议论文集:447-448页
    [61]林志斌,徐柏龄.基于传声器阵列的声源定位,电声技术.2004,(5):19-23页
    [62]雷凌,单颖春,刘献栋.行驶车辆噪声辐射研究进展及展望.噪声与振动控制.2006,26(4):1-6页
    [63]林静然.基于麦克风阵列的语音增强算法研究.电子科技大学博士学位论文.2004
    [64]王冬霞,殷福亮.基于近场波束形成的麦克风阵列语音增强方法.电子与信息学报.2007,29(1):67-70页
    [65] J.Capon. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 1969, 57(8):1408-1418P
    [66]张贤达,保铮,通信信号处理,北京,国防工业出版社,2000
    [67] G. Su, M.Morf. Signal subspace approach for multiple wideband emitter location. IEEE Trans. ASSP, 1983, 31: 1502-1522P
    [68] B.C.Kim, I.T.Lu. High resolution broadband beamforming based on the MVDR method. Proc. M TS/ I EEE Oceans, 2000: 1025-1028P
    [69] H.Wang, M.Kaven. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources. IEEE Trans. ASSP, 1985, 33(4):823-831P
    [70] J.Krolik, D.Swingler. The performance of minimax spatial resampling filters for focusing wide-band arrays. IEEE Trans On SP, 1991, 39(8):1899-1903P
    [71]陈华伟,赵俊渭.声矢量传感器阵宽带相干信号子空间最优波束形成.声学学报.2005,30(1):76-82页
    [72] Simon Haykin,“Adaptive Filter Theory”. Prentice Hall, Inc., 1998
    [73] G.WvElko, A.N.Pong. A simple adaptive first-order differential microphone. IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, 1995: 169-172P
    [74] F.Luo. J.Yang, C.Pavlovic, et al. Adaptive null-forming scheme in digital hearing aids. IEEE Trans. On Signal Processing, 2002, 50(7): 129-139P
    [75]武思军,张锦中,张曙.存在指向误差时的稳健自适应波束形成算法.哈尔滨工程大学学报.2005,26(4):531-535页
    [76]楼厦厦,郑成诗,李晓东.自适应零限波束形成语音增强算法鲁棒性分析.声学学报.2007,32(5):468-476页
    [77]郑成诗,陈佳路,楼厦厦,李晓东.MVDR与自适应零限波束形成语音增强算法性能对比.声学技术,2007,26(5):1030-1031页
    [78]楼厦厦,郑成诗,李晓东.滤波器权值约束对自适应零限波束形成语音增强算法鲁棒性影响分析.声学技术.2007,26(5):1066-1067页
    [79] C.S.Macinnes. Source localization using subspace estimation and spatial filtering. IEEE J Ocean Eng, 2004, 29(2):488-497P
    [80] S.A.Stotts. A robust spatial filtering technique for multisource localizationand geoacoustic inversion [J]. J Acoust Soc Am, 2005, 118(1): 139-162P
    [81]苏帅,冯杰,孙超.空域预滤波的稳健自适应波束形成方法.声学技术.2008,27(1):9-13P
    [82] K.M Man, I.S.Yang, S.Y.CHun, et al. Passive range estimation using dual focused beamformers. IEEE Journal of Oceanic Engineering, 2002, 27(3): 638-641P
    [83] A.Trucco, A least-squares approximation for the delays used in focused beamforming. J. Acoust. Soc. Amer, July 1998, 104(1): 171–175P
    [84]谌颖,叶青华,黄海宁.采用分级聚焦波束形成的快速声成像算法.应用声学.2008,27(3):207-210页
    [85]李萌.矢量阵近场聚焦波束形成技术研究.哈尔滨工程大学硕士学位论文.2008:12-22页
    [86]郭祺丽,孙超.近场波束形成的约束最小平方和法.声学技术.2006,25(2):140-144页
    [87] J.G.Ryan. R.A.Goubran., Nearfield beamforming for microphone arrays. IEEE Intemational Conference on Acoustics, Speech, and Signal Processing, 1997: 364-366P
    [88]王秀波,夏春艳,吴琳,舰船噪声源近场聚焦波束形成定位方法.舰船科学技术.2009,31(10):50-51页
    [89] De-sen YANG, Sheng-chun PIAO. The image reconstruction of underwater noise sources by using the fresnelIntegral, 20th International Symposium on Acoustical Image, 140P
    [90] V.Murino, C.S.Regazzoni, A.Trucco, and G..Vernazza, "A non-coherent correlation technique and focused beamforming for ultrasonic underwater imaging: a comparative Analysis", IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 1994. 41, 621-630P
    [91]徐复,惠俊英等.多途条件下聚焦波束近程定位.声学技术.2007,26(6):1101-1107页
    [92] H.C.Song, W.A.Kuperman, W S Hodgkiss. A time reversal mirror withvariable range focusing. J. Acoust. Soc. Am, 1998(103):3234-3240P
    [93]时洁,杨德森,刘伯胜.基于虚拟时间反转镜的噪声源近场定位方法研究.兵工学报,2008,29(10):139-162页
    [94]徐海东.基于矢量阵的高分辨方位估计技术研究.哈尔滨工程大学博士学位论文.2005:15-33页
    [95]李春旭.声压、振速联合信号处理.哈尔滨工程大学博士论文.2000
    [96]陈新华.矢量阵信号处理技术研究.哈尔滨工程大学博士论文.2004
    [97]孙贵青,杨德森,张揽月,时胜国.基于声矢量水听器的最大似然比检测和最大似然方位估计.声学学报.2003,28(1):66-72页
    [98]陈新华,蔡平,惠俊英等.声矢量阵指向性.声学学报.2003,28(2):141-144页
    [99]姚直象,惠俊英,殷敬伟.基于单矢量水听器四种方位估计方法.海洋工程.2006,24(1):122-131页
    [100]姚直象,惠俊英,蔡平,殷敬伟.单矢量水听器方位估计的柱状图方法.应用声学.2006,25(3):161-167页
    [101]姚直象,惠俊英等.基于DEMON线谱的单矢量水听器双目标分辨.应用声学,2005,24(3):171-176页
    [102] V.Murino and A.Trucco, Three-dimensional image generation and processing in underwater acoustic vision, Proceedings of the IEEE, 2000, 88: 1903-1946P
    [103] I.Kaiho, A dream for realization of high-speed 3D volume image by lens-focused method, Proc. 7th Cong. Asian Fed. Ultrasound Med. Biol., International Congress Series Elsevier, 2004, 1274: 38-46P
    [104] N.M.Daher and J.T.Yen, 2-D array for 3-D ultrasound imaging using aperture techniques, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53: 912-924P
    [105] J.A.Johnson, M.Karaman, B.T. Khuri-Yakub,“Phased Subarray Processing for underwater 3D acoustic imaging,”MTS/IEEE Oceans 2002, Biloxi, Mississippi, 2002, 2145-2151P
    [106] M.Palmese, A.Trucco, 3-D acoustic imaging by chirp zeta transform digital beamforming, IEEE Trans. Instrument and Measurement, 2009: 57P
    [107]翟春萍,刘雨东.聚焦波束形成声图法误差分析.声学技术.2008,27(1):18-24页
    [108]胡鹏,杨益新,杨士莪.基于线性预测的虚拟阵元波束形成.声学技术.2007,26(4):714-717页
    [109]陈欢,杨德森,时胜国.最小二乘估计的矢量阵近场虚拟聚焦算法.声学技术.2008,27(5):438-439页
    [110]陈欢,杨德森,张揽月,郭小霞.基于遗传算法的声矢量阵虚拟阵元波束形成.信号处理.2009,25(10):1498-1501页
    [111] B.C.Kim, I.T.Lu. High resolution broadband beamforming based on the MVDR method. Proc. M TS/ I EEE Oceans, 2000: 1025-1028P
    [112]何心怡,蒋兴舟,李启虎.基于子带分解的宽带波束域最小方差无畸变响应高分辨方位估计方法研究.声学学报.2004,29 (3):533- 538页
    [113]杨益新,孙超.任意结构阵列宽带恒定束宽波束形成新方法.声学学报.2001,26(1):55-58页
    [114]薛山花,叶青华,黄海宁,黄勇.利用近场MVDR双聚焦波束形成方法实现被动聚焦.应用声学.2005,24(3):177-181页
    [115]时洁,杨德森,时胜国.子带分解MVDR高分辨宽带聚焦波束形成算法研究,声学技术.2008,27(5):416-417页
    [116]时洁,杨德森,刘伯胜,宋海岩.基于MVDR聚焦波束形成的辐射噪声源近场定位方法.大连海事大学学报.2008,34(3):55-58页
    [117]杨德森,陈欢,时胜国等.基于MVDR算法的声矢量阵噪声源近场定位方法研究,中国电子学会第十六届信息论学术年会论文集.473-478页
    [118]陈欢,杨德森,胡鹏涛,肖笛.近场高分辨定位技术仿真研究.声学技术.2009,28(2):87-88页
    [119] Yun-xiang YUAN, C.Carter. Near-optimal range and depth estimation using vertical array in a correlated multipath envioroment. IEEE Trans.on SignalProcessing, 2000, 48(2):317-326P
    [120]王常健,毛卫宁.多径环境下距离与深度估计性能研究.电声技术.2006,11(2):11-12.16页
    [121]杨德森.水下航行器噪声分析及主要噪声源识别.哈尔滨工程大学博士学位论文.1996: 61-64页
    [122] P.K.Chakravorty. Identification of Self Noise Sources in a ship. Naval Engineers Journal. 1990, 18(9): 67-69P
    [123]张宝成,徐雪仙.舰艇水下噪声源贡献的分析.舰船力学情报.1994,(10):40-46页
    [124]张宝成,赵峰,王莉萍,刘希武.相干法用于某艇柱翼交接部填角模型的噪声分析.船舶力学.1998,2(2):63-69页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700