用户名: 密码: 验证码:
TRM声聚焦波束形成的噪声源定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波束形成技术是水下噪声源定位的重要技术之一。经过人们几十年的研究已取得相对成熟的技术。现有的波束形成噪声源定位技术大多是建立在自由空间内远场信号模型之上的,而无论是在潜艇,舰船,舱室及汽车等有限空间内噪声源识别定位问题上,噪声源多位于基阵的近场范围内。假设的远场模型并不成立,并且受到传播介质的多途干扰。因此,研究有限空间内噪声源定位问题具有非常重要的实际意义。本文对在有限空间内实施近场噪声源定位的方法进行研究,为实际应用提供借鉴与指导作用。
     本文首先对近场声聚焦波束形成的原理进行分析,建立起开阔空间下的声聚焦定位模型。在有限空间内,考虑到周边界面影响,运用声波在平面层中的传播理论,建立声波在波导中的传播模型。从声信道的角度说明传播介质的多途干扰对有限空间内声场的影响。之后,从简正波理论和射线理论分析时间反转镜法抗多途干扰的原理。在此基础上,结合自由空间内的近场声聚焦定位模型,建立起有限空间中基于时间反转镜(TRM)声聚焦定位模型。
     本文利用MATLAB工程仿真软件对所建立的各种模型进行了仿真研究,利用数值分析仿真方法,研究周边界面特性,分析频率,测量距离,声源间距,声源类型,噪声以及接收基阵的形状对聚焦测量的影响。对可能引起定位误差的各种因素做了分析讨论,绘制误差曲线,为实际应用提供参考
     通过水池实验研究分析了在有限空间内影响近场声聚焦定位精度的各种因素,并验证的原理的正确性,方法的可行性。为实际在有限空间内的声源定位系统建立提供工程设计的理论依据和指导。
Beamforing is one of the most important methods of noise source localization, which has become more and more profound after decades of research. Most of the beamforing noise source localization approaches are based on far-field models in the free field. But in the limited space, such as submarine, ship, cabin, car, etc, source is often within the near-field of the receiving array. The far-field may not be hold in practical application. In addition, there is multi-path effect in limited space. So it is important and meaningful to do the research of noise source localization in the limited space. In the paper, investigate the noise source localization in the limited space to provide the guidance in the practical application.
     At first, the theory of the sound focusing beamforing in the near-field is analyzed. Then, sound focusing localization model in free field is presented. Considering the effect of the interface around in the limited space, the model of sound field is built based on the theory of sound propagation in parallel layer. Use the acoustic channel theory to explain the multi-path interference on the sound in the limited space. After that, analysis the principle of the time reversal mirror from the normal wave theory and ray theory. With the above analysis, the model of sound focusing sound localization is built based on the theory of time reversal mirror.
     In this paper, each model is simulated with MATLAB software. The properties of the interface around, sound frequency, measuring distance, noise, distance between sources,different sound and type of the receiving array which will take effects on the sound focusing are calculated respectively. Analysis the various factors which may cause the localization errors and give the errors curves that will provide consultation in the practical application.
     Finally, the effect factors of the acoustic focusing noise source localization in the multi-path acoustic channel are analyzed by water-tank experimental researches, which also validate the technology’s correctness, feasibility and practicability. With the result, a fundamental scheme of sound localization in the limited space is put forward.
引文
[1] Wang H,Chu P.Voice source localization for acoustic camera pointing system in video-conferencing. IEEE International Conference on Acoustic,Speech and Signal Processing,Munich,Germany,1997,187-190
    [2] Strobel N,Spors S,Rabenstein R.Joint audio-video object localization and tracking.IEEE Signal Processing Magazine,2001,18(1):22-31
    [3] Widrow B.A microphone for hearing aids.IEEE Circuits and Systems Magazine,2001,1(2):26-32
    [4] Knapp C H,Carter G C.The generalized correlation method for estimation of time delay.IEEE Transactions on Acoustics,Speech and Signal Processing,1976,24(4):320-327
    [5] Youn D H,Ahmed N,Carter G C. On using the LMS algorithm for time delay estimation.IEEE Transactions on Acoustics,Speech and Signal Processing,1982,30(5):798-801
    [6]潘汉怀,吕明.混响环境下时延估计方法.第五界信号与信息处理会议.2006:15-17
    [7] Brooks T.F,Marcolini M.A and Pope D.S.A Directional Array Approach for The Measurement of Rotor Noise Source Distributions with Controlled Spatial Resolution. Journal of Sound and Vibration, 1987, 112(1): 192-197
    [8] Mosher M. Phased Array for Aeroacoustics Testing: Theoretical Development. AIAA paper 96-1713. 2nd AIAA/LEAS Aeroacoustics Conference, State College, Pa. 1996
    [9] Watts M.E, Mosher M and Barnes M.J. The Microphone Array Phased Processing System (MAPPS). AIAA paper 96-1714. 2nd AIAA/LEAS Aeroacoustics Conference, State College, Pa. 1996
    [10] B. Barsikow. Experiment with various configurations of microphone arrays used to locate sound sources on railway trains operated by the db ag. Journal of Sound and Vibration, (1996) 193(1) 283-293.
    [11] H. Kook,G. B. Moebs,P. Davies And J. S. Bolton, An Efficient Procedure For Visualizing The Sound Field Radiated By Vehicles During Standardized Pass by Tests. Journal of Sound and vibration,2000, 233(1): 137-156
    [12] Jonathan M. Rigelsford, Alan Tennant. A 64 element acoustic volumetric array. Applied Acoustics, 61 (2000) 469-475
    [13] Bv0056 BK Tech Review-Beam forming. B&K Sound&Vibration Measurement A/5, 2004
    [14] Nishiura, Takanobu; Yamashita, Yoichi. Omnidirectional audio-visual talker localizer with dynamic feature fusion based on validity and reliability criteria. International Speech Communication Association - 8th Annual Conference of the International Speech Communication Association, Interspeech 2007, v4, p2320-2323, 2007
    [15]孙长瑜,潘学宝.二维频域波束形成方法.应用声学,1997; 16 (2): 28-31
    [16]邵怀宗,林静然,彭启琼,居太亮,徐异凌.基于麦克风阵列的声源定位研究.云南民族大学学报(自然科学版).2004 ; 13 (4 ) ; 25 6-25 8
    [17]李兵,杨殿阁,邵林,连小珉.基于波束形成和双目视觉的行驶汽车噪声源识别.汽车工程.2008 (Vol. 30)No. 10
    [18]时洁,杨德森,刘伯胜,宋海岩.基于MVDR聚焦波束形成的辐射噪声源近场定位方法.大连海事大学学报.Vol. 34 No.3 Aug. 2008
    [19] Khalil F, Jullien J P, Gilloire A. Microphone array for sound pickup in teleconference systems.J.Audio Engineering Society,1994,42(9):691-700
    [20] Kennedy R A, Abhayapala T D, Ward D B. Broadband nearfield beamforming using a radial beampattem transformation. IEEE Transactions on Signal Processing,1998,46(8):2147-2156
    [21] Ryan J G,Goubran R A.Array optimization applied in the near field of a microphone array.IEEE Transactions on Speech and Audio Processing,2000,8(2):174-176
    [22] Ryan J G, Goubran R A. Application of near-field optimum microphone arrays to hands-free mobile telephony. IEEE Transactions on Vehicular Technology, 2003,52(2):390-400.
    [23] Zheng Y R,Goubran R A,Tanany M E.Robust near-field adaptive beamforming with distance discrimination.IEEE Transactions on Speech and Audio Processing, 2004,12(9):478-488
    [24] Zheng Y R,Goubran R A,Tanany M E,et al.A microphone array system for multimedia applications with near-field signal targets . IEEE Sensors Journa1,2005,5(6):1395-1406
    [25] Kennedy R A,Abhayapala T D, Ward D B.Broadband nearfield beamforming using a radial beampattern transformation[J].IEEE Trans on Signal Processing, 1998, 46( 8) : 2147-2156
    [26] Wee S, Chen H W, Zhu L Y. Self-calibration-based robust near-field adaptive beamforming for microphone arrays. IEEE Transactions on Circuits and Systems,2007:1-4
    [27] R. J.尤立克.海洋中的声传播.海洋出版社.1990:297-298
    [28] M Fink. Time reversal of ultrasonic fields-Part I: Basic principles [J] IEEE Trans. Ultrason,Ferroelec, Freq. Contr. (50885-3010), 1992, 39(5): 555-566
    [29] F Wu, J L Thomas, Mink. Time reversal of ultrasonic fields-Part II: Experimental results [J]. IEEE Trans. Ultrason,Ferroelec, Freq. Contr. (S00885-3010), 39(5): 567-578
    [30]李峰.时间反转镜的空间滤波技术研究.哈尔滨工程大学硕士论文. 2006: 2-3
    [31] O. S. Burdo, M. M. Dargeiko, Cybernet. Wave-field in an acoustically inhomogeneous medium, Compu. Technol, 1984, No.l:171-176P
    [32] David R. bowling, Darrell R. Jackson.Narrow-band performance of phase-conjugate arrays in dynamic random media. [J]. Acoust. Soc. Am. June,1992:3257-3277P
    [33] H.C. Song, W.A. Kuperman, W.S. Hodgkiss, T. Akal, C. Ferla, D.R. Jackson, Iterative time reversal in the ocean. [J]. Acoust. Soc. Am. 1999(105):
    [34] David R. bowling, Phase-conjugate array focusing in a moving medium. [J]Acoust. Soc. Am. Vol. 94, No.3, Pt.l, Sept.1993:1716-1718P
    [35] David R. Dowling, Acoustic pulse compression using passive phase-conjugate processing. J. Acoust. Soc. Am. 95(3), March 1994: 1450-1458P
    [36] W.A. Kuperman, W.S. Hodgkiss, H.C. Song, T. Akal, C. Ferla, D.R. Jackson Phase conjugation in the ocean: Experimental demonstration of a time reversal mirror. [J]. Acoust. Soc. Am. 1998(103):25-40
    [37] Seongi. Kim, G F. Edelmann, W. A. Kuperman, W. S. Hodgkiss, H. C. Song. Spatial resolution of time-reversal arrays in shallow water. [J].Acoust.Soc.Am,2001,110(2):820-829P
    [38] Kevin B.Smith,Antonio A.M.Abrantes,Andres Larraza.Examination of time-reversal acoustics in shallow water and applications to noncoherent underwater communications.[J].Acoust.Soc.Am,2003,113(6) 3095-3110P
    [39]汪承灏,魏炜.改进的时间反转法用于有界时超声目标探测的鉴别.声学学报,2002,27(3):193-197
    [40]生雪莉,惠俊英,梁国龙.矢量反转镜时空滤波技术研究.声学学报.2005,30(4):349-354
    [41]赵航芳,宫先仪.时反处理抑制混响提高信混比实验室波导实验研究.声学技术.2005 24(z1): 57-58
    [42]殷敬伟,惠俊英.时间反转镜分类研究及其在水声通信中的应用.系统仿真学报. Vol.20 No,9 May,2008
    [43]赵芳芳.波束形成方法在噪声源识别应用中的仿真和实验研究.上海交通大学硕士论文.2007:21-22
    [44]惠俊英,生雪莉.水下声信道.第2版.国防工业出版社.2007:67-69
    [45]于赟.浅海多途信道中声聚焦与声屏蔽技术研究. 2009:5-7
    [46] J.M.布列霍夫斯赫.第二版.科学出版社.1985:195-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700