用户名: 密码: 验证码:
基于SOM和CCA的柘林湾浮游动物群落结构及其与环境因子关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柘林湾位于粤、闽两省沿海交界处,海域面积68-70 km~2,是广东省的大规模海产增养区之一。由于具有良好的避风条件,自上世纪八十年代末以来,柘林湾海水养殖业发展迅速,养殖规模不断扩大。增养殖业的快速发展以及陆源排污排废的影响,使该湾富营养化达到了较高水平,导致有害赤潮的发生(如1997年底发生的棕囊藻Phaeocystis pouchetii赤潮),给当地渔业生产和生态环境造成严重的危害。为探讨生态退化和有害赤潮发生的原因,自2000年5月至2004年4月对柘林湾生态系统的结构及其功能进行了较长时间尺度(共4个调查年度)的综合性调查。本文是此次综合性调查的研究成果之一,重点研究浮游动物群落结构的划分及其与环境因子之间的相互关系,主要内容有:
     (1)利用Kruskal-Wallis方差分析(Analysis of variance,ANOVA)对柘林湾浮游动物的种类组成、总个体数、生物量、多样性、均匀度以及水温和盐度的年际差异和空间差异进行详细研究。(2)运用自组织神经网络(Self-organizing map,SOM)方法对柘林湾浮游动物的调查结果进行群落划分;确定各群落的种类数、多样性指数和均匀度;采用优势度(Dominance,D)和指示种系数(Indicator value index,IVI)方法分析确定各群落的优势种和指示种,其中,各群落中优势度D>0.02的浮游动物定为优势种,指示种指数IVI>25%的浮游动物定为指示种;利用方差分析方法对各群落的环境特征及差异性进行分析。(3)利用典范对应分析(Canonical correspondence analysis,CCA)方法探讨浮游动物群落及它们与各种环境因素之间的关系,所用理化生物因子均采用表、底平均值。由于2001年5月以前的调查数据的环境参数不全,用于SOM和CCA分析的数据均为2001.5-2004.4的数据。相应地,4个调查年度被划分为:第一调查年度(2000.5-2001.4),第二调查年度(2001.5-2002.4),第三调查年度(2002.5-2003.4),第四调查年度(2003.5-2004.4)。本文的数学处理和数学模型由数学软件MATLAB编程完成,主要结果如下:
     柘林湾浮游动物多样性特征整体上表现为种类较多(共79个种类)、生物多样性(1.62±0.26)和均匀度(0.70±0.09)偏低的特点。调查期间,柘林湾总共79个种类中有65个种类的个体数在浮游动物总个体数中所占百分比均小于1%,并且这些百分比的总和仅为10.22%;而柘林湾3种最重要的优势种强额拟哲水蚤Paracalanus crassirostris(占28.05%)、短角长腹剑水蚤Oithona brevicornis(占20.81%)和鸟喙尖头蚤Penilia avirostris(占5.07%)在浮游动物总个体数中所占比例合计则高达53.93%。根据回归分析结果,这3种优势种与均匀度月均值都成负相关关系(r = -0.78,p<0.01;r = -0.78,p<0.01;r = -0.53,p<0.01),表明柘林湾生物多样性和均匀度相对较低,与柘林湾海区种间分布不均匀、优势种突出、少数种类在整个浮游动物群落中占绝对优势地位有关。
     根据Kruskal-Wallis方差分析结果,调查期间柘林湾浮游动物的种类数年均值、总种类数、总个体数和多样性指数在年际变化方面有显著差异(p<0.01),并且呈逐年下滑趋势。这可能与华南地区气温增暖和气候异常有关。同时,Kruskal-Wallis方差分析也表明,柘林湾浮游动物各数据指标在站位间也有显著差异性(p<0.05)。具体结果:浮游动物总个体数、生物量、种数和多样性指数都表现为湾外高于湾内(p<0.05)、非养殖区高于养殖区(p<0.05)的空间分布格局;东部(S_3-S_4)与西部(S_2)之间的浮游动物总个体数和种数有显著差异(p<0.001),但生物量和多样性指数之间没有显著性差异(p>0.05)。其中,湾顶西部水交换能力最弱和陆源污染压力最大的三百门港S2站和大规模网箱渔排养殖区S6站的生产力最低,说明陆源污染与海水增养殖的二次污染均对浮游动物的数量有重要影响。
     SOM方法将柘林湾浮游动物群落划分为有明显差异的6个群落,即群落I(近岸暖水群落)、群落II(广布群落)、群落III(近岸中营养群落)、群落IV(近岸富营养群落)、群落V(河口低盐群落)和群落VI(外海高盐群落)。其中,生活在湾外水质相对较好的外海高盐群落是调查海域的优势群落,也是种数、多样性最丰富的群落,其优势种包括强额拟哲水蚤、短角长腹剑水蚤、浮游幼体(pelagic larvae)、拟长腹剑水蚤(Oithona similis)、鸟喙尖头蚤、锦丽哲水蚤(Calocalanus pavoninus)、肥胖三角蚤(Evadne tergestina)、被囊类(tunicata)、小拟哲水蚤(Paracalanus parvus)和尖额真猛水蚤(Euterpina acutifrons);分布在湾内富营养海域的近岸富营养群落则是种数及多样性最贫乏的群落,其优势种是蔓虫类幼体(cirriped larvae)和小盘盔头猛水蚤(Clytemnestra scutellata)。指示种分析表明,群落I、V和VI分别有7个、1个和7个指示种,而群落II、III和IV则没有指示种。群落间的这些差异与柘林湾的环境退化关系密切,尤其是陆源排污、养殖区水面上和水体中各类增养殖设施的设置和使用,均对浮游生物的时空分布有重要影响。对6个群落环境特征的方差分析结果表明,调查期间水温(Temp)、盐度(Sal)、硅酸盐(Si)、溶解无机磷(DIP)、铵氮(NH_4)、亚硝氮(NO_2)、硝氮(NO_3)和浮游植物密度(Phy)8个环境因子于群落间的数据变化存在明显差异(p<0.01)。这表明,柘林湾浮游动物的聚集模式和群落特征与这8个环境因子密切相关。其中,群落IV(湾顶西部的三百门港口及养殖区附近)环境因子的数据变异幅度最大,说明该区域人类活动频繁,污染最为严重。
     CCA的分析结果不仅证实了上述结果,而且还区分出上述环境因子对浮游动物群落影响的强弱。按照降序排列,水温、营养盐(DIN和Si)、盐度和浮游植物密度是浮游动物时空分布的主要决定因素。CCA分析还发现,柘林湾调查海区的水温和营养盐(氮、磷)逐年升高,柘林湾海区大多数对外界环境比较敏感的浮游动物种类已逐渐消失(共35个种),广温、广盐性的广布种成为海区的优势种,对富营养化有很强的耐受能力、对频繁的人类活动有很好适应能力的耐污种则成为富营养盐海域的优势种。这也提示全球变暖、当地气候变化、浮游植物的季节性变化、陆源径流以及人类干扰(如来自海水养殖业和港口的污染等)等都可能对柘林湾的浮游动物群落形成有直接或间接的影响。
Zhelin Bay, covering 68-70 km~2, is one of the most important bays for large-scale marine culture in South China. Since 1980s, as a good place for typhoon-sheltering, it has seen its mariculture develop rapidly. Hence, together with traditional nutrient from the waste discharge and agricultural activities, the increasingly intensive aquacultural activities accelerated the eutrophication during the past decade, thus in turn impeded aquacutural production, e.g., the large-scale of harmful algal blooms (Phaeocystis) occurred at the end of 1997. The degenerative and eutrophic environment has made caged fish culture much tougher, bringing huge economic loss, but this problem was paid little attention to and few studies were done about it. From May 2000, our group conducted an ecological investigation around Zhelin Bay, where we monthly sampled the phytoplankton, zooplankton, nutrients, water temperature, salinity, and other environmental variables. In this study, zooplankton communities and their relationships to environmental factors were researched at 9 stations in Zhelin Bay from May 2000 to April 2004.
     The aim of this work was to (1) study the zooplankton composition, the yearly variation and the spatial differances of species number, abundance, biomass, diversity and evenness throughout the 4-year period, (2) identify the zooplankton community structure and the dominant species and indicator species for each community, and (3) investigate the relationship between zooplankton community and environmental parameters. Communities, however, are difficult to analyze since the data consist of diverse taxa in a non-linear way. Therefore, a self-organizing map (SOM) was utilized to classify the zooplankton communities, and their relationships to environmental factors were analyzed through canonical correspondence analysis (CCA). An average from the water surface and bottom was taken for all environmental factors in the analysis. Since some environmental factors were absent during the course from May 2000 to April 2001, datasets used for SOM and CCA analyses were those from May 2001 to April 2004. Correspondingly, the 4-year study period was divided as follows: the first study period (May 2000-April 2001), the second study period (May 2001-April 2002), the third study period (May 2002-April 2003), and the fourth study period (May 2003-April 2004). Results as following:
     A total of 79 taxa, including 65 species of copepods, 4 species of cladocerans were found throughout the study period, among which calanoid Paracalanus crassirostris, cyclopoid Oithona brevicornis and cladoceran Penilia avirostris were the most abundant species, contributing 28.05%, 20.81% and 5.07% of the total zooplankton abundance, respectively. Besides, in terms of species number and density, copepods were the most abundant group (69.76%).
     Based on results of Kruskal-Wallis ANOVA, samples from the outer bay and stations at the edges of the large-scale caged-fish farm had significantly greater abundance, biomass, species number and diversity than those from the inner bay (p<0.05) and the station in the center of the largest caged-fish farm (p<0.05) with the lowest values observed in S2, which is frequently perturbed by human activities. Samples from eastern boundaries of the bay had significantly greater abundance and species number than those from western boundaries (p<0.001), while biomass and diversity had no significant differences between the eastern and western parts of the bay (p>0.05).
     As for the yearly variation, the Kruskal-Wallis ANOVA results revealed that the abundance, biomass, species number and diversity had significant differences among the investigated years (p<0.01). Moreover, the abundance, biomass, speceis richness and diversity all showed a decreasing tendency through the investigation, which might be attributed to the increasing of mean temperature and the abnormal weather in southern China.
     Six clusters with dominant species compositions and indicator species were distinguished by SOM method, i.e. cluster I (Neritic warm water community), cluster II (Eurytopic community), cluster III (Neritic mesotrophic community), cluster IV (Neritic eutrophic community), cluster V (Estuarine low-saline community) and cluster VI (Pelagic high-saline community). The pelagic high-saline community, which occurred in the outer bay with relative good water quality, was the dominant community in the study area. The dominant species for this community were Paracalanus crassirostris, Oithona brevicornis, pelagic larvae, Oithona similis, Penilia avirostris, Calocalanus pavoninus, Evadne tergestina, tunicata, Paracalanus parvus and Euterpina acutifrons. However, the neritic eutrophic community, which occurred in eutrophic waters, was the poorest community, and dominated by cirriped larvae and Clytemnestra scutellata. Furthermore, seven, one and seven indicator species were identified for cluster I, V and VI, respectively, while no indicator species were observed in cluster II-IV. The differences among clusters could be mainly ascribed to the changes in environmental factors; especially the intensive aquaculture structures suspended on waters and in waters have a great impact on the distribution patterns of organisms in the bay. Differences of environmental variables for each cluster derived from the SOM were analyzed by ANOVA. The ANOVA on environmental variables in the 6 clusters gave significant differences (p<0.05) for temperature (Temp), salinity (Sal), Si, DIP, NH_4, NO_2, NO_3 and phytoplankton (Phy), showed highly significant differences among clusters (p<0.01), suggesting the existence of relationships between these variables and zooplankton communities. Moreover, each variable in cluster IV (aquaculture areas situated at the inner and western parts of the bay) showed larger variation than that in other clusters, which might be attributed to the influence of anthropogenic activities in this area, such as discharge from domestic and mariculture waste from aquaculture effluents.
     The CCA analysis not only confirmed the above findings, but also showed that, with descending importance, water temperature, nutrients (DIN and Si), salinity and phytoplankton were the main determinants of spatial and temporal distributions of zooplankton in Zhelin Bay. Moreover, the CCA analysis revealed that the eurytopic species, with the deterioration of eutrophication, has become the dominant species in Zhelin Bay, while species that are vulnerable to organic pollution decreased or disappeared completely. These results also reflected a shift in zooplankton community structure due to environmental deterioration, which implies that the zooplankton community in Zhelin Bay could be directly or indirectly affected by global warming, local climate fluctuations, seasonal cycles of phytoplankton, river discharge which alters salinity distribution and residence time of plankton, and other environmental variables that affected by the pollution originated from land, mariculture and other human activities.
引文
[1]. Abdel-Aziz, N.E., Ghobashi, A.E., Dorgham, M.M., El-Tohami, W.S., 2007. Qualitative and quantitative study of copepods in Damietta Harbor, Egypt. Egyptian Journal of Aquatic Research 33, 144-162.
    [2]. Acri, F., Aubry, F.B., Berton, A., Bianchi, F., Boldrin, A., Camatti, E., Comaschi, A., Rabitti, S., Socal, G., 2004. Plankton communities and nutrients in the Venice Lagoon: Comparison between current and old data. Journal of marine systems 51, 321-329.
    [3]. Administration of Technical Supervision of People’s Republic of China, 1992. The specification for oceanographic survey–general rules. Standards Press of China, Beijing.
    [4]. Ambler, J.W., Cloern, J.E., Hutchinson, A., 1985. Seasonal cycles of zooplankton from San Francisco Bay. Hydrobiologia 129, 177-197.
    [5]. Ameida Prado-Por, M.S., 1983. The diversity and dynamics of Calanoida (Copepoda) in the northern Gulf of Eilat (Aqaba), Red Sea. Oceanologica 6, 139-145.
    [6]. Ameida Prado-Por, M.S., 1985. Distribution of the calanoid Copepoda along Gulf of Eilat (Aqaba), Red Sea. Rapp. Comm. Int. Mer. Médit. 29(9), 249-252.
    [7]. Ameida Prado-Por, M.S., 1990. A diel cycle of vertical distribution of the Calanoida (Crustacea: Copepoda) in the northern Gulf of Aquba (Eilat). Bulletin Institute Océanographie, Monaco 7, 109-116.
    [8]. Ameida Prado-Por, M.S., Por, F.D., 1981. First data on the Calanoid (Copepoda) of the Northern Gulf of Elat (Red Sea). Rapp. Comm. Int. Mer. Médit. 27(7), 173-174.
    [9]. Anderson, D.M., Glibert, P.M., Burkholder, J.M., 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25, 704-726.
    [10]. Arcifa, M.S., Northcote, T.G., Froehlich, O., 1986. Fish-zooplankton interactions and their effects on water quality of a tropical Brazilian reservoir. Hydrobiologia 139, 49-58.
    [11]. Attayde, J.L., Bozelli, R.L., 1998. Assessing the indicator properties of zooplankton assemblages to disturbance gradients by canonical correspondence analysis. Canadian Journal of Fisheries 55, 1789-1797.
    [12]. Barss, M.A., Fransz, H.G., 1984. Crazing pressure of copepods on the phytoplankton stock of the central North Sea, Netherland. Journal of Sea Research 18, 120-142.
    [13]. Bernardi, R., Giussani, G., Manca, M., 1987. Cladocera: predators and prey. Hydrobiologia145, 225-243.
    [14]. Bezdek, J.C., 1998. Some new indexes of cluster validity. IEEE Trans Syst Man Cybern B Cybern 28(3), 301-315.
    [15]. Blancher, E.C., 1984. Zooplankton-trophic state relationships in some north and central Florida lakes. Hydrobiologia 109, 251-263.
    [16]. Bonnet, D., Frid, C., 2004. Seven copepod species considered as indicators of watermass influence and changes: results from a Northumberland coastal station. Journal of Marine Science 61, 485-491.
    [17]. Breitburg, D.L., Loher, T., Pacey, C.A. et al. 1997. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecological Monographs 67, 489-507.
    [18]. Brooks, J.L., Dodson, S.I., 1965. Predation, body size and composition of plankton. Science 150, 28-35.
    [19]. Brosse, S., Giraudel, J.L., Lek, S., 2001. Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages. Ecological Modelling 146, 159-166.
    [20]. Burd, B.J., Nemec, A., Brinkhurst, R.O., 1990. The development and application of analytical methods in benthic marine infaunal studies. Advances in Marine Biology 26, 169-247.
    [21]. Buschmann, A.H., Riquelme, V.A., Hernández-González, M.C., Varela, D., Jiménez, J.E., Henríquez, L.A., Vergara, P.A., Guí?ez, R., Filún, L., 2006. A review of the impacts of salmonid farming on marine coastal ecosystems in the southeast Pacific. Journal of Marine Science 63, 1338-1345.
    [22]. Cajo, J.F., Ter Braak., 1986. Canonical correspondence analysis: a new eigenvector method for multivariate direct gradient analysis. Ecology 67(5), 1167-1179.
    [23]. Céréghino, R., Park, Y.S., 2009. Review of the Self-Organizing Map (SOM) approach in water resources: Commentary. Environmental Modelling & Software 24, 945-947.
    [24]. Chang K.H., Nagata, T., Hanazato, T., 2004. Direct and indirect impacts of predation by fish on the zooplankton community: an experimental analysis using tanks. Limnology 5, 121-124.
    [25]. Chon, T.S., Park, Y.S., Moon, K.H., Cha, E.Y., 1996. Patternizing communities by using an artificial neural network. Ecological Modelling 90, 69-78.
    [26]. Chon, T.S., Park, Y.S., Park, J.H., 2000. Determining temporal pattern of community dynamics by using unsupervised learning algorithms. Ecological Modelling 132, 151-166.
    [27]. Christou, E.D., 1998. Interannual variability of copepods in a Mediterranean coastal areaSaronikos Gulf, Aegean Sea. Journal of Marine Systems 15, 523-532.
    [28]. Christou, E.D., Stergiou, K.I., 1998. Modelling and forecasting the fortnightly cladoceran abundance in the Saronikos Gulf (Aegean Sea). Journal of Plankton Research 20(7), 1313-1320.
    [29]. Conover, R.J., 1956. Oceanography of Long Island Sound 1952-1954.Ⅵ. Biology of Acartia clause and A.tonsa. Bull Bingham Oceanic Coll 15, 156-233.
    [30]. Cornel, G.E., Whoriskey, F.G., 1993. The effects of rainbow trout (Oncorhynchus mykiss) cage culture on the water quality, zooplankton, benthos and sediments of Lac du Passage. Q?uebec. Aquaculture 109, 101-117.
    [31]. Dagg, M.J., 1995. Ingestion of phytoplankton by the micro-and meso-zooplankton communities in a productive subtropical estuary. Journal of Plankton Research 17(4), 845-857.
    [32]. Devreker, D., Souissi, S., Seuront, L., 2005. Effects of chlorophyll concentration and temperature variation on the reproduction and survival of Temora longicornis (Copepoda, Calanoida) in the Eastern English Channel. Journal of Experimental Marine Biology and Ecology 318(2), 145- 162.
    [33]. Dippner, J.W., Kornilovs, G., Sidrevics, L., 2000. Long-term variability of zooplankton in the Central Baltic Sea. Journal of Marine System 25, 23-31.
    [34]. Dong, Q., Lin, X., He, X., Kelso, W., Huang, C., 2006. Taxonomic composition, abundance and biomass of mesozooplankton in the Zhenlin Bay—an estuary with intensive aquaculture. Acta Oceanologica Sinica 25, 92-111.
    [35]. Duda, R.O., Hart, P.E., Stork, D.G., 2001. Pattern Classification, second ed. Wiley Interscience.
    [36]. Dufrêne, M., Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345-366.
    [37]. Elliott, J.A., 1995. A comparison of thermal polygons for British freshwater teleosts. Freshwater Forum 5, 178-184.
    [38]. El-Serehy, H., Abdel-Rahman, N., 2004. Distribution patterns of planktonic Copepod crustaceans in the coral reef and sandy areas along the Gulf of Aqaba, Red Sea, Egypt. Egyptian Journal Biology 6, 126-135.
    [39]. El-Serehy, H., Aboul-Ezz, S., Samaan, A., Saber, N., 2001. On the ecological role of Copepoda in the Suez Canal marine ecosystem. Egyptian Journal of Biology 3(2), 116-123.
    [40]. El-Shabrawy, G.M., 2006. Ecological study on zooplankton community in Bardawil Lagoon, Egypt. Thalassia Salentina 29, 3-17.
    [41]. Enell, M., 1995. Environmental impact of nutrients from Nordic fish farming. Water Science and Technology 31, 61-71.
    [42]. Escribano, R., Hidalgo, P., 2000. Spatial distribution of copepods in the north of the Humboldt Current region off Chile during coastal upwelling. Journal of the Marine Biological Association of the United Kingdom 80, 283-290.
    [43]. Ferdous Z., Muktadir, A.K.M., 2009. A review: potentiality of zooplankton as bioindicator. American Journal of Applied Sciences 6, 1815-1819.
    [44]. Field, J.G., Clarke, K.R., Warwick, R.M., 1982. A practical strategy for analysis multispecies distribution patterns. Marine Ecology Progress Series 8(1), 37-52.
    [45]. Flindt, M.R., Lillebo, A.I., Martins, I., Marques, J.C., Pardal, J.A., 1999. Nutrient cycling and plant dynamics in estuaries: A brief review. Acta Oecologica 20(4), 237-248.
    [46]. Fransz, H.G., Colebrook, J.M., Gamble, J.C., Krause, M., 1991. The zooplankton of the North Sea. Netherlands Journal of Sea Research 28, 1-52.
    [47]. Froneman, P.W., 2001. Seasonal changes in zooplankton biomass and grazing in a temperate estuary, South Africa. Estuarine, Coastal and Shelf Science 52(5), 543-553.
    [48]. Froneman, P.W., 2002. Seasonal variations in selected physico-chemical and biological variables in the temporarily open/closed Kasouga estuary (South Africa). African Journal of Aquatic Science 27, 117-123.
    [49]. Froneman, P.W., 2004. Zooplankton community structure and biomass in a southern African temporarily open/closed estuary. Estuarine, Coastal and Shelf Science 60, 125-132.
    [50]. Frost, B.W., 1987. Grazing control of phytoplankton stock in the open subarctic Paific Ocean: A model assessing the role of mesozooplankton particularly the large Calanoid copepods Neocalanus spp.. Marine Ecology Progress Series 39(1), 49-68.
    [51]. Fryer, D., Smyly, J.P., 1954. Some remarks on the resting stages of some freshwater cyclopoida and harparcticoid copepods. Annals and Magazine of Natural History 127(73), 65-72.
    [52]. Gallienne, C.P., Robins, D.B., 2001. Is Oithona the most important copepod in the world's oceans? Journal of Plankton Research 23(12), 1421-1432.
    [53]. Gannon, J.E., Stemberger, R., 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Transactions of the American Microscopical Society 97, 16-35.
    [54]. Gao, Q., Xu, Z.L., Zhang, P., 2008. The relation between distribution of zooplankton and salinity in the Changjiang Estuary. Chinese Journal of Oceanology and Limnology 26, 178-185.
    [55]. Gaughan, D.J., Potter, I., 1995. Composition, distribution and seasonal abundance ofzooplankton in a shallow, seasonally closed estuary in a temperate Australia. Estuarine, Coastal and Shelf Science 41, 117-135.
    [56]. Gevrey, M., Rimet, F., Park, Y.S., Giraudel, J.L., Ector, L., Lek, S. 2004. Water quality assessment using diatom assemblages and advanced modelling techniques. Freshwater Biology 49, 208-220.
    [57]. Gillooly, J.F., Dodson, S.I., 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnology and Oceanography 45(1), 22-30.
    [58]. Giraudel, J.L., Lek, S., 2001. A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecological Modelling 146, 329-339.
    [59]. Gliwicz, Z.M., Pijanowska, J., 1989. The role of predation in zooplankton succession. In Sommer U. (ed.): Plankton Ecology. Springer-Verlag, Berlin, pp.253-296.
    [60]. Godeaux, J., 1960. Tuniciers Pélagiques du Golfe d'Israel-Contrib. To the knowledge of the Red Sea, 18. Bulletin Sea Fisheries, Research Station, Haifa 29, 9-14.
    [61]. Godeaux, J., 1986. The Gulf of Aqaba, a zone of great biological interest. UNESCO Technical Papers in Marine Science 49, 104-106.
    [62]. Greve, W., 1994. The 1989 German Bight Invasion of Muggiaea atlantica. ICES Journal of Marine Science 51(4), 355-358.
    [63]. Günter, S., Bunke, H., 2003. Validation indices for graph clustering. Pattern Recognition Letters 24, 1107-1113.
    [64]. Guo, L., Li, Z., 2003. Effects of nitrogen and phosphorus from fish cage-culture on the communities of a shallow lake in middle Yangtze River basin of China. Aquaculture 226, 201-212.
    [65]. Halim, Y., 1990. On the potential migration of Indo-Pacific plankton through the Sueze Canal. Bulletin Institute Océanographie, Monaco 7. 11-27.
    [66]. Hallegraeff, G.M., Anderson, Cembella, A.D., 1995. Manual on Harmful Marine Microalgae. IOC Manuals and Guides No.33, Paris: UNESCO.
    [67]. Hanazato, T., 2001. Impacts of climatic warming on zooplankton community structure and ecosystem function in lakes. Bulletin of Plankton Society of Japan 48, 62-65 (in Japanese).
    [68]. Hansen, F.C,, M?llmann, C., Schütz, U., Hinrichsen, H., 2004. Spatio-temporal distribution of Oithona similis in the Bornholm Basin (Central Baltic Sea). Journal of Plankton Research 26(6), 659-668.
    [69]. Hawkins, S.J., Southward, A.J., Genner, M.J., 2003. Detection of environmental change ina marine ecosystem-evidence from the western English Channel. The Science of the Total Environment 310, 245-256.
    [70]. Hill, M.O., 1974. Correspondence analysis: a neglected multivariate method. Applied Statistics 23, 340-354.
    [71]. Holst, H., Zimmermann, H., Kausch, H., Koste, W., 1998. Temporal and spatial dynamics of planktonic rotifers in the Elbe Estuary during spring. Marine, Coastal and Shelf Science 47, 261-273.
    [72]. Horsted, S.J., et al, 1988. Regulation of zooplankton by suspension-feeding bivalves and fish in estuarine enclosures. Marine Ecology Progress Series 48, 217-224.
    [73]. Hutchinson, A., 1981. Plankton studies in San Francisco Bay: III, zooplankton species composition and abundance in the South Bay, 1978– 1979. U.S. Geological Survey, Open-file report 81-132.
    [74]. Hutchinson, A., 1982. Plankton studies in San Francisco Bay: VI, Zooplankton species composition and abundance in the North Bay, 1979– 1980. U.S. Geological Survey, Open-file report 82-1003.
    [75]. Islam, M.S., 2005. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Marine Pollution Bulletin 50, 48-61.
    [76]. Jan Lep?, Petr ?miluer, 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press.
    [77]. Jarl Eivind L?vik and G?sta Kjellberg, 2003. Long-term changes of the crustacean zooplankton community in Lake Mj?sa, the largest Lake in Norway. Journal of Limnology 62(2), 143-150.
    [78]. Jongman, R.H.G., ter Braak, C.J.F., van Tongeren O.F.R., 1995. Data analysis in community and landscape ecology. Cambridge University Press, Cambridge.
    [79]. Kangur, K., Park, Y.S., Kangur, A., Kangur, P., Lek, S., 2007. Patterning long-term changes of fish community in large shallow Lake Peipsi. Ecological Modelling 203, 34-44.
    [80]. Karakassis, I., Tsapakis, M., Hatziyanni, E., Papadopoulou, K.N., Plaiti, W., 2000. Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. Journal of Marine Science 57, 1462-1471.
    [81]. Kenkel, N.C., Orlóci, L., 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecological Society of America 67, 919-928.
    [82]. Khalil, M.T., Abd El-Rahman, N., 1997. Abundance and diversity of surface zooplankton in the Gulf of Aqaba, Red Sea, Egypt. Journal of Plankton Research 19, 927-936.
    [83]. Kibirige, I., Perissinotto, R., Thwala, X., 2006. A comparative study of zooplankton dynamics in two subtropical temporarily open/closed estuaries, South Africa. Marine Biology 148, 1307-1324.
    [84]. Kideys, A.E., Kovalev, A.V., Shulman, G., et al. 2000. A review of zooplankton investigations of the Black Sea over the last decade. Journal of Marine Systems 22(3-2), 355-371.
    [85]. Kimor, B., 1990. Microplankton of the Red Sea, the Gulf of Suez and the Levantine Basin of the Mediterranean. Bulletin Institute Océanographie, Monaco 7, 29-38.
    [86]. Kimor, B., Golandsky, B. 1977. The microplankton of the Gulf of Eilat: aspects of seasonal and bathymetric distribution. Marine Biology 42, 55-76.
    [87]. Kiorboe, T., Nielsen, T.G., 1994. Regulation of zooplankton biomass and production in a temperate, coastal Ecosystem. I. Copepods. Limnology and Oceanography 39(3), 493-507.
    [88]. Kobayashi, T., 1997. Associations between environmental variables and zooplankton body masses in a regulated Australian river. Marine and Freshwater Research 48, 523-529.
    [89]. Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59-69.
    [90]. Kohonen, T., 2001. Self-Organizing Maps, third ed. Springer, Berlin.
    [91]. Koroleff, F., Grasshoff, K., 1982. Determination of nutrients, in: Grasshoff, K., Ehrhardt, M., Kremling, K. (Eds.), Method of Sea Water Analysis. Science Publishing Company, Beijing, pp.86-139.
    [92]. Kumlu, M., Eroldogan, O.T., Aktas, M., 2000. Effects of temperture and salinity on larval growth, survival and development of Penaeus semisulcatus. Aquaculture 188, 167-173.
    [93]. Lam-Hoai, T., Guiral, D., Rougier, C., 2006. Seasonal change of community structure and size spectra of zooplankton in the Kaw River estuary (French Guiana). Estuarine, Coastal and Shelf Science 68, 47-61.
    [94]. Laprise, R., Dodson, J.J., 1994. Environmental variability as a factor controlling spatial patterns in distribution and species diversity of zooplankton in the St. Lawrence Estuary. Marine Ecology Progress Series 107, 67-81.
    [95]. Lawson, T.J., Grice, G.D., 1973. The developmental stages of Paracalanus crassirostris Dahl, 1894 (Copepoda, Calanoida). Crustaceana 24, 43-56.
    [96]. Lazzaro, X., Carlos, S., 1987. A renew of planktivorous fishes: Their evolution, feeding behaviours selectivities and impacts. Hydrobiologia 146, 97-167.
    [97]. Legendre, P.L., Legendre, L., 1998. Numerical Ecology, second ed. Elsevier Science, B.V., Amsterdam.
    [98]. Lek, S., Guégan, J.F., 1999. Artificial neural networks as a tool in ecological modelling, an introduction. Ecological Modelling 120, 65-73.
    [99]. Lenz, P.H., Hower, A.E., Hartline, D.K., 2005. Temperature compensation in the escape response of a marine copepod, Calanus finm archicus (Crustacea). The Biological Bulletin 209(1), 75- 85.
    [100]. Li, K.Z., Yin, J.Q., Huang, L.M., Tan, Y.H., 2006. Spatial and temporal variations of mesozooplankton in the Pearl River estuary, China. Estuarine, Coastal and Shelf Science 67, 543-552.
    [101]. Lisa, M.K., Karen, W., 1995. Spatial and temporal patterns of zooplankton on baleen whale feeding grounds in the southern Gulf of Maine. Journal of Plankton Research 17(2), 235-262.
    [102]. Liu, L., Zou, T., Chen, R., Wang, J., 2007. Community structure and diversity of phytoplankton in the estuary of Yangtse River in autumn. Marine Fisheries Research 28, 112-119.
    [103]. Lo, W., Purcell, J.E., Hung, J., Su, H., Hsu, P., 2008. Enhancement of jellyfish (Aurelia aurita) populations by extensive aquaculture rafts in a coastal lagoon in Taiwan. Journal of Marine Science 65, 453-461.
    [104]. Mallin, M.A., 1991. Zooplankton abundance and community structure in a mesohaline North Carolina Estuary. Estuaries 14, 481-488.
    [105]. Mangiameli, P., Chen, S.K., West, D., 1996. A comparison of SOM neural network and hierarchical clustering methods. European Journal of Operational Research 93, 402-417.
    [106]. Masson, S., Tremblay, A., 2003. Effects of intensive fishing on the structure of zooplankton communities and mercury levels. The Science of the Total Environment 304(1-3), 377-390.
    [107]. Metz, C., 1996. Life strategies of dominant Antarctic Oithonidae (Copepoda: Cyclopoida) and Oncaeidae (Poecilostomatoida: Copepoda) in the Bellingshausen Sea. Ber Polarforsch 207, 1-123..
    [108]. Moncheva, S., Gotsis-Skretas, O., Pagou, K., Krastev, A., 2001. Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: Similarities and differences. Estuarine, Coastal and Shelf Science 53, 281-295.
    [109]. Moore, M.V., Folt, C.L., Stemberger, R.S, 1996. Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Hydrobiologia 135, 289-319.
    [110]. Mouny, P. Dauvin, J.C., 2002. Environmental control of mesozooplankton communitystructure in the Seine estuary (English Channel). Oceanologica Acta 25(1), 13-22.
    [111]. Nancy, M., 2004. An overview of the impacts of Eutrophication and Chemical Pollutants on Copepods of the Coastal Zone. Zoological Studies 43(2), 211-217.
    [112]. Nour El-Din, N.M., Al-Khayat, J.A., 2005. Phytoplankton-zooplankton relations in three inland seas along the Qatari coast (Arabian Gulf). International Journal of Environmental Studies 62, 375-390.
    [113]. O'Brien, C.J., 1994. The effects of temperature and salinity on growth and survival of juvenile tiger prawns Penaeus esculentus (Haswell). Journal of experimental marine biology and ecology 183(1), 133-145.
    [114]. Omori, M., Ikeda, T., 1984. Methods in marine zooplankton ecology. John Wiley and Sons, New York.
    [115]. Osore, M.K.W., Tackx, M.L.M., Daro, M.H., 1997. The effect of rainfall and tidal rhythm on the community structure and abundance of the zooplankton of Gazi Bay, Kenya. Hydrobiologia 356, 117-126.
    [116]. Palmer, M.W., 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74, 2215-2230.
    [117]. Pan, Y., Rao, D.V.S., 1997. Impacts of domestic sewage effluent on phytoplankton from Bedford Basin, eastern Canada. Marine Pollution Bulletin 34, 1001-1005.
    [118]. Parado-Estepa, F.D., 1998. Survival of Penaeus monodon postlarvae and juveniles at different salinity and temperture levels. Israeli Journal of Aquaculture 50(4), 174-183.
    [119]. Park, Y.S., Chon, T.S., Kwak, I.S., Lek, S., 2004. Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks. Science of the Total Environment 327, 105-122.
    [120]. Park, G.S., Marshall, H.G., 2000. Estuarine relationships between zooplankton community structure and trophic gradients. Journal of Plankton Research 22, 121-136.
    [121]. Park, Y.S., Verdonschot, P., Chon, T.S., Lek, S., 2003. Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network. Water Research 37, 1749-1758.
    [122]. Paturej, E., 2006. Assessment of the trophic state of the coastal lake Gardno based on community structure and zooplankton-related indices. Electronic Journal of Polish Agricultural Universities 9, 1-12.
    [123]. Pielou, E.C., 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13, 131-144.
    [124]. Pinto-Coelho, R.M., 1998. Effects of eutrophication on seasonal patterns ofmesozooplankton in a tropical reservoir: a 4-year study in Pampulha Lake, Brazil. Freshwater Biology 40, 159-173.
    [125]. Post, J.R., McQueen, D.J., 2006. The impact of planktivorous fish on the structure of a plankton community. Freshwater Biology 17, 79-89.
    [126]. Primavera, J.H., 2006. Overcoming the impacts of aquaculture on the coastal zone. Ocean and Coastal Management 49, 531-545.
    [127]. Radi, T., Pospelova, V., de Vernal, A., Vaughn Barrie, J., 2004. Dinoflagellate cysts as indicators of water quality and productivity in British Columbia estuarine environments. Marine Micropaleontology 62, 269-297.
    [128]. Rakhesh, M., Raman, A.V., Kalavati, C., Subramanian, B.R., Sharma, V.S., Sunitha Babu, E., Nanduri Sateesh, 2008. Zooplankton community structure across an eddy-generated upwelling band close to a tropical bay-mangrove ecosystem. Marine Biology 154(6), 953–972.
    [129]. Ramaiah, N., Nair, V.R., 1997. Distribution and abundance of copepods in the pollution gradient zones of Bombay Harbour-Thana creek-Bassein creek, west coast of India. Indian Journal of Marine Sciences 26(3), 20-25.
    [130]. Ramfos, A., Somarakis, S., Koutsikopoulos, C., Fragopoulu, N., 2005. Summer mesozooplankton distribution in coastal waters of central Greece (eastern Mediterranean). II. Species assemblages. Journal of the Marine Biological Association of the United Kingdom 85(4), 765-774.
    [131]. Rettig, J.E., 2003. Zooplanlcton responses to predation by larval bluegill: an enclosure experiment. Freshwater Biology 48(4), 636-648.
    [132]. Riegman, R., 1995. Nutrient related selection mechanisms in marine phytoplankton communities and the impact of eutrophication on the planktonic foodweb. Water Science and Technology 32, 63-75.
    [133]. Rios-Jara, E., 1998. Spatial and temporal variations in the zooplankton community of Phosphorescent Bay, Puerto Rico. Estuarine, Coastal and Shelf Science 46, 797-809.
    [134]. Robert, W.S., Brock B.B., Robert, L.C., 1987. Community-environmental relationships in the benthos: applications of multivariate analytical techniques. Hkust library.
    [135]. Roemmich, D., McGowan, J., 1995. Climatic warming and the decline of zooplankton in the California Current. Science 267, 1324-1326.
    [136]. Roman, M., Gauzens, A.L., Rhinehart, W.K., et al. 1993. Effects of low oxygen water on Chesapeake Bay zooplankton. Limnology and Oceanography 38, 1603-1614.
    [137]. Roserberg, R., 1985. Eutriphication--the future marine coastal nuisance? MarinePollution Bulletin 16(6), 227-231.
    [138]. Rubens, M.L., 1994. Zooplankton distribution in the GuaraúRiver Estuary (South-eastern Brazil). Estuarine, Coastal and Shelf Science 39, 287-302.
    [139]. San Diego-McGlone, M.L., Azanza, R.V., Villanoy, C.L., Jacinto, G.S., 2008. Eutrophic waters, algal bloom and fish kill in fish farming areas in Bolinao, Pangasinan, Philippines. Marine Pollution Bulletin 57, 295-301.
    [140]. Sei, S., Rossetti, G., Villa, F., Ferrari, I., 1996. Zooplankton variability related to environmental changes in a eutrophic coastal lagoon in the Po Delta. Hydrobiologia 329, 45-55.
    [141]. Selong, J.H., Helfrich, L.A., 1998. Impacts of trout culture effluent on water quality and biotic communities in Virginia headwater streams. The Progressive Fish-Culturist 60, 247-262.
    [142]. Shannon, C.E., Weaver, W., 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, pp.125.
    [143]. Silva, A.M.A., Barbosa, J.E.L., Medeiros, P.R., Rocha, R.M., Lucena-Filho, M.A., Silva, D.F., 2009. Zooplankton (Cladocera and Rotifera) variations along a horizontal salinity gradient and during two seasons (dry and rainy) in a tropical inverse estuary (Northeast Brazil). Pan-American Journal of Aquatic Sciences 4, 226-238.
    [144]. Siokou-Frangou, I., 1996. Zooplankton annual cycle in a Mediterranean coastal area. Journal of Plankton Research 18, 203-223.
    [145]. Siokou-Frangou, I., Papathanassiou, E., 1991. Differentiation of zooplankton populations in a polluted area. Marine Ecology Progress Series 76, 41-51.
    [146]. Siokou-Frangou, I., Papathanassiou, E., Lepretre, A., Frontier, S., 1998. Zooplankton assemblages and influence of environmental parameters on them in a Mediterranean coastal area. Journal of Plankton Research 20, 847-870.
    [147]. Smetacek, V., et al. 1991. Coastal eutrophication: Causes and consequences. in: Ocean Margin Processes in Global Change (ed. Mantoura, R.F.C., Martin, J-M, Wollast, R.). John Wiley Sons Ltd, pp.251-279.
    [148]. Soetaert, K., Van Rijswijk, P., 1993. Spatial and temporal patterns of the zooplankton in the Westerschelde estuary. Marine Ecology Progress Series 97, 47-59.
    [149]. Sommer, U.E., 1989. Plankton Ecology, succession in plankton communities. Berlin: Spring-Verlag, pp.253-296.
    [150]. Tackx, M.L.M., de Pauw, N., van Mieghem, R., Azémar, F., Hannouti, A., van Damme, S., Fiers, F., Daro, N., Meire, P., 2004. Zooplankton in the Schelde Estuary, Belgium andThe Netherlands. Spatial and temporal patterns. Journal of Plankton Research 26, 133-141.
    [151]. Tan, Y., Huang, L., Chen, Q., Huang, X., 2004. Seasonal variation in zooplankton composition and grazing impact on phytoplankton standingstock in the Pearl River Estuary, China. Continental Shelf Research 24, 1949-1968.
    [152]. Telesh, I.V., Alimov, A.F., Golubkov, S.M., Nikulina, V.N., Panov, V. E., 1999. Response of aquatic communities to anthropogenic stress: a comparative study of Neva Bay and the eastern Gulf of Finland. Hydrobiologia 393, 95-105.
    [153]. Ter Braak, C.J.F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167-1179.
    [154]. Ter Braak, C.J.F., 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Plant Ecology 69, 69-77.
    [155]. Ter Braak, C.J.F., Prentice, I.C., 1988. A theory of gradient analysis. Advances in Ecological Research 18, 271-313.
    [156]. Ter Braak, C.J.F., ?milauer, P., 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New York, USA.
    [157]. Turner, J.T., 1984. The feeding ecology of some zooplankters that are important prey items of larval fish. NOAA technical report NMFS 7, 1-28.
    [158]. Turner, J.T., Anderson, D.M., 1983. Zooplankton grazing during dinoflagellate blooms in a Cape Cod embayment with observations of predation upon tintinnids by copepods. Marine Ecology 4(4), 359-374.
    [159]. Urban, R.J., Dagg, M., Peterson, J., 2001. Copepod grazing on phytoplankton in the Pacific sector of the Antartic Polar Front. Deep Sea Research Part II: Topical Studies in Oceanography 48(19-20), 4224-4246.
    [160]. Uye, S.I., 1988. Temperature-dependent development and growth of Calanus sinicus (Copepoda: Calanoida) in the laboratory. Hydrobiologia 167/168, 285-293.
    [161]. Uye, S.I., 1994. Replacement of large copepods by small ones with eutrophication of embayments: cause and consequence. Hydrobiologia 292/293, 513-519.
    [162]. Uye, S.I., Iwamoto, N., Ueda, T., Tamaki, H., Nakahira, K., 1999. Geographical variations in the trophic structure of the plankton community along a eutrophic-mesotrophic-oligotrophic transect. Fisheries Oceanography 8, 227-237.
    [163]. Verheye, H.M., Richardson, A.J., 1998. Long-term increase in crustacean zooplankton abundance in the southern Benguela upwelling region (1951-1996): bottom-up or top-down control? Journal of Marine Science 55, 803-807.
    [164]. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J., 1999. Self-organizing map in Matlab: the SOM Toolbox. Proceedings of the Matlab DSP conference, Espoo Finland 35-40.
    [165]. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J., 2000. SOM Toolbox for Matlab 5, Tech. Rep. A57, Helsinki University of Technology.
    [166]. Vieira L., Azeiteiro U., Pastorinho R., Marques J.C., Morgado F., 2003. Zooplankton distribution in a temperate estuary (Mondego estuary southern arm: western Portugal). Acta Oecologica 24, S163-S173.
    [167]. Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G., 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7, 737-750.
    [168]. Wang, S., Xie, P., Geng, H., 2009a. The relative importance of physicochemical factors and crustacean zooplankton as determinants of rotifer density and species distribution in lakes adjacent to the Yangtze River, China. Limnologica-Ecology and Management of Inland Waters 40, 1-7.
    [169]. Wang, Z., Zhao, J., Zhang, Y., Cao, Y., 2009b. Phytoplankton community structure and environmental parameters in aquaculture areas of Daya Bay, South China Sea. Journal of Environmental Sciences 21, 1268-1275.
    [170]. Wiens, J.A.,1989. Spatial scaling in ecology. Functional Ecology 3, 385-397.
    [171]. Williamson, C.E., 1980. The predatory behavior of Mesocyclops edax: Predator Preferences, prey defense and starvation-induced changes. Limnology and Oceanography 25(5), 903-909.
    [172]. Wooldridge, T., 1999. Estuarine zooplankton community structure and dynamics. In: Allanson, B.R., Baird, D., eds. Estuaries of South Africa. Cambridge University Press, Cambridge, U.K, 141-166.
    [173]. Wu, R.S.S., 1995. The environmental impact of marine fish culture: towards a sustainable future. Marine Pollution Bulletin 31, 159-166.
    [174]. Yagi, H., Ishida, H., Takahashi, A., Nadaoka, K., Tamura, H., 2009. Influence of laver aquaculture facilities on tidal currents and suspended particulate matter transport at the head of Ariake Bay. Coastal Engineering Journal 51, 275-295.
    [175]. Yamamuro, M., Koike, I., 1993. Nitrogen metabolism of the filter feeding bivalve Corbicula japonica and its significance in primary production of a brackish lake in Japan. Limnology and Oceanography 38, 997-1007.
    [176]. Young, K., Morse, G.K., Scrimshaw, M.D., 1999. The relation between phosphorus andeutrophication in the Thames catchment, UK. The science of Total Enviroment 228, 157-183.
    [177]. Zafiropoulos, D., Grimanis, A.P., 1997. Trace elements in Acartia clausi from Elefsis bay of the Upper Saronikos Gulf, Greece. Marine Pollution Bulletin 8(4), 79-81.
    [178]. Zar, J.H., 1999. Biostatistical analysis, fourth ed. Prentice-Hall, New Jersey.
    [179]. Zarfdjian, M.H., Evangelia, M., Dimitra, C.B., Spiros, M., 2000. Zooplankton abundance in the Aliakmon River, Greece. Belgian Journal of Zoology, 130 (sup1), 29-33.
    [180]. Zhou, S., Jin, B., Guo, L., Qing, H., Chu, T., Wu, J., 2009. Spatial distribution of zooplankton in the intertidal marsh creeks of the Yangtze River Estuary, China. Estuarine, Coastal and Shelf Science 85, 1-8.
    [181].毕洪生,孙松,高尚武,2000.渤海浮游动物群落生态特点Ⅰ.种类组成与群落结构.生态学报20(5),715-721.
    [182].毕洪生,孙松,高尚武,2001a.渤海浮游动物群落生态特点Ⅱ.桡足类数量分布及变动.生态学报21(2),177 - 185.
    [183].毕洪生,孙松,高尚武,张光涛,张芳. 2001b.渤海浮游动物群落生态特点Ⅲ.部分浮游动物数量分布和季节变动.生态学报21(4),513 - 521.
    [184].蔡爱智,1994.粤东柘林湾的泥沙来源与沉积环境.厦门大学学报(自然科学版)33(4),515-520.
    [185].陈国斌,戴红,夏永健,2007.三都湾生态监控区(近海部分)浮游动物的分布特征.海洋环境科学26(5),475-478.
    [186].陈洪举,刘光兴,2009. 2006年夏季长江口及其邻近水域浮游动物的群落结构.北京师范大学学报45(4),393-398.
    [187].陈善文,高亚辉,杜虹等,2004.双环海链(Thalassiosira diporocy Hasle)赤潮.海洋与湖沼,39(2),130-137.
    [188].陈峪,王凌,祝昌汉,张强,2004. 2003年我国十大极端天气气候事件.灾害学19(3),76-80.
    [189].陈则实等,1998.中国海湾志(第九分册),北京:海洋出版社.
    [190].程家骅,李圣法,丁峰元等,2004.东、黄海大型水母暴发现象及其可能成因浅析.现代渔业信息19(5),10-12.
    [191].大森信池田勉著,陈青松,曹秀珍译,1990.海洋浮游动物生态学的研究方法.农业出版社26-103.
    [192].丁峰元,李圣法,董倩,等,2005.春季东海区近海浮游动物群落结构及其影响因子.海洋渔业27(1),26-32.
    [193].董金海,焦念志,1995.胶州湾生态学研究.北京:科学出版社.
    [194].杜虹,黄长江,陈善文等,2003a.粤东柘林湾海域富营养化评价与分析.生态科学22(1),013-017.
    [195].杜虹,黄长江,陈善文等,2003b. 2001-2002年粤东柘林湾浮游植物的生态学研究.海洋与湖沼34(6),604-617.
    [196].范凯,李清雪,2007.渤海湾浮游动物群落结构及水质生物学评价.安徽农业科学35(6),1697-1699.
    [197].飞思科技,2005.神经网络理论与MATLAB7实现.北京:电子工业出版社.
    [198].甘居利,林钦,李纯厚,2001a.柘林湾网箱养殖海域溶解氧分布及其影响因素.海洋水产研究22(1),69-74.
    [199].甘居利,林钦,李纯厚,贾晓平,林燕棠,杨美兰,2001b.柘林湾网箱养殖场不同区域环境因子的强度变化.浙江海洋学院学报20(1),18-22.
    [200].高尚武,王克,1995.胶州湾的浮游动物数量和分布.董金海,焦念志,主编.胶州湾生态学研究.北京:科学出版社151-158.
    [201].广东省海洋与渔业管理局,2009.饶平县柘林湾清理整治行动取得阶段性成效. http://www.gdofa.gov.cn/News/2009/3/16/20093161606001BVNT.htm.
    [202].广东省汕头海区海岛环境,自然资源和开发利用,1992.北京:科学出版社.
    [203].郭皓,闫启仑,曹丽,1999.大连常江澳浮筏养殖贝类的饵料结构与浮游植物的关系.上海水产大学学报8(2),112-118.
    [204].国家海洋局,2005. 2004年中国海洋环境质量公报. http://www.soa.gov.cn/hyjww/hygb/hyhjzlgb/2007/02/1190166471620460.htm.
    [205].国家海洋局,2010.《2009年中国海洋环境质量公报》发布. http://paper.sciencenet.cn/htmlnews/2010/3/229397.shtm.
    [206].国家技术监督局,1992.海洋调查规范,北京:中国标准出版社.
    [207].郭沛涌,2003.长江河口浮游动物的种类组成、群落结构及多样性.生态学报23(5),892-900.
    [208].郭岩,黄长江,2006. 2000~2003年汕头近岸海域无机氮含量的变化及与环境因子的关系.台湾海峡25(2),194-201.
    [209].何家箢,施之新,张银华,1999.一种棕囊藻的形态特征与毒素分析.海洋与湖沼30(2),172-179.
    [210].洪一川,陈栩,朱长寿,2009.湄洲湾中、小型浮游动物的分布.台湾海峡28(2),238-243.
    [211].黄长江,董巧香,郑磊,1999. 1997年底中国东南沿海大规模赤潮原因生物的形态分类与生态学特征.海洋与湖沼30(6),581-590.
    [212].黄长江,杜虹,陈善文,何歆,董巧香,黄文魁,2004. 2001~2002年柘林湾大量营养盐的时空分布.海洋与湖沼35(1),21-29.
    [213].黄凤鹏,黄景洲,杨玉玲,李艳,王宗灵,2009.胶州湾浮游桡足类时空分布.生态学报29(8),4045-4052.
    [214].黄加祺,郑重,1982.九龙江口桡足类和盐度关系的初步研究.厦门大学学报(自然科学版)23(2),297-505.
    [215].黄文魁,1998.汕头海洋资源开发与利用:从日本资源型管理渔业探讨我市近海渔业资源可持续发展的对策.见:刘锦庭主编.汕头海洋资源的开发与利用.广东汕头:方志图文技术服务部183-190.
    [216].纪旭霞,吕丽慧,2008.粤东沿海地区2004年干旱成因分析.西部探矿工程1, 89-90.
    [217].姜胜,黄长江,陈善文等,2002. 2000-2001年柘林湾浮游动物的群落结构及时空分布.生态学报22(6),828-840.
    [218].金琼贝,盛连喜,张然,1991.温度对浮游动物群落的影响.东北师范大学学报(自然科学版)4,103-111.
    [219].李纯厚,黄祥飞,1992.略论武汉东湖枝角类种类演替及其与生态因子的关系.水生生物学报16(2),101-112.
    [220].李开枝,尹健强,黄良民,谭烨辉,许战洲,2005.珠江口浮游动物的群落动态及数量变化.热带海洋学报22(5),60-68.
    [221].李平,苗振清,水柏年,1995.夏秋汛浙江渔场浮游动物的种类组成及数量分布.浙江海洋学院学报14(l),20-28.
    [222].李秋华,韩博平,2007.基于CCA的典型调水水库浮游植物群落动态特征分析.生态学报27(6),2355-2364.
    [223].李宗品,于占国,2007.变态的海洋—赤潮.北京:海洋出版社.
    [224].林景宏,陈瑞祥,戴燕玉等,1991.东山湾浮游动物的生态.台湾海峡10(3),205-211.
    [225].林景宏,陈瑞样,林茂,戴燕玉,1998.三沙湾浮游动物的分布及其与兴化湾、东山湾的比较.台湾海峡17(4),426-432.
    [226].林君卓,2008.福清湾及附近海域浮游动物的数量和分布,台湾海峡27(1),58-63.
    [227].林妙灵,林茂,林景宏,戴燕玉,陈瑞祥,1999.旧镇湾浮游动物的分布及其与东山湾的比较.台湾海峡18(4),360-364.
    [228].林坤明,赵剑,2008.水环境质量评价指数法在黄冈河水质评价中的应用.水利科技与经济14(3),203-205.
    [229].林荣根,邹景忠. 1997.近海富营养化的结果与对策.海洋环境科学16 (3),71-75.
    [230].林小苹,黄长江,陈旭明,2005.粤东柘林湾浮游植物与生态因子的灰关联-回归分析.数学的实践与认识35(1),77-82.
    [231].林小苹,黄长江,杜虹,2004a.粤东柘林湾中肋骨条藻与环境因子的灰关联分析及其计算机实现.海洋技术23(4),58-62.
    [232].林小苹,黄长江,杜虹,陈旭明,2004b.基于改进BP神经网络的柘林湾水质综合评价模型.数学的实践与认识34(11),76-83.
    [233].林小苹,黄长江,林福荣,陈旭明,2004c.海水富营养化评价的主成分-聚类分析方法.数学的实践与认识34(12),69-74.
    [234].林昱等,1992.围隔生态系内富营养化引起赤潮的初步研究.海洋与湖沼23(3),312-316.
    [235].林元烧,李松,1984.厦门港中华哲水蚤生活周期的初步研究.厦门大学学报自然科学版23(1),111-117.
    [236].刘光兴,李松,1998.厦门港瘦尾形刺水蚤体长、体重与摄氏率的季节变化.海洋学报20(3),104-109.
    [237].刘亚林,姚炜民,张树刚,陈雷,2008. 2004年夏季飞云江口浮游植物分布特征及与环境因子的相关性.海洋环境科学28(S1),31-41.
    [238].刘镇盛,王春生,张志南,蔡昱明,张东声,2005.乐清湾浮游动物的季节变动及摄食率.生态学报25(8),1853-1862.
    [239].刘镇盛,王春生,张志南,刘诚刚,杨关铭,2006.三门湾浮游动物的季节变动及微型浮游动物摄食影响.生态学报26(12),3931-3941.
    [240].刘正文,1997.水生态系统种的捕食与生物多样性.海洋湖沼通报2,19-24.
    [241].栾青杉,孙军,宋书群,沈志良,俞志明,2007.长江口夏季浮游植物群落与环境因子的典范对应分析.植物生态学报31(3),445-450.
    [242].罗冬莲,2004.同安湾浮游动物数量的平面分布和季节变动.福建水产2,14-20.
    [243].马喜平,高尚武,2000.渤海水母类生态的初步研究——种类组成、数量分布与季节变化.生态学报20(4),533-540.
    [244].马喜平,孙松,高尚武,2000a.胶州湾水母类生态的初步研究I.群落结构及其年季变化.海洋科学集刊42,91-99.
    [245].马喜平,孙松,高尚武,2000b.胶州湾水母类生态的初步研究II.数量时空变化及同环境因子的关系海洋科学集刊42,101-107.
    [246].南方网,2003.潮州港. http://www.southcn.com/NEWS/dishi/chaozhou/zs/200303130908.htm.
    [247].焦念志等,2001.海湾生态过程于持续发展.北京:科学出版社. pp.3.
    [248].齐衍萍,陈洪举,朱延忠,刘光兴,2010.福建罗源湾浮游动物群落特征.中国海洋大学学报40(1),039-046.
    [249].饶平县人民政府公众网,2010.风土人情——彩瓷. http://www.raoping.gov.cn/rpgk/ys4.asp.
    [250].史为良,1989.放养鲢、鳙对水体富营养化的影响.大连水产学院学报4(3-4),11-24.
    [251].时翔,王汉奎,谭烨辉,黄良民,2007.三亚湾浮游动物数量分布及群落特征的季节变化.海洋通报26(4),42-49.
    [252].沈国英,施并章,2002.海洋生态学(第二版).北京:科学出版社pp.159.
    [253].苏纪兰,唐启升,2002.中国海洋生态系统动力学研究:Ⅱ渤海生态系统动力学过程.北京:科学出版社pp.71-72.
    [254].孙军,Dawson, J.,刘东艳,2004.夏季胶州湾微型浮游动物摄食初步研究.应用生态学报15(7),1245-1252.
    [255].孙松,周克,杨波,张永山,吉鹏,2008.胶州湾浮游动物生态学研究Ⅰ.种类组成.海洋与湖沼39(1),1-7.
    [256].孙儒泳,1992.动物生态学原理.北京:北京师范大学出版社.
    [257].田慧娟,马培明,刘吉堂,吕海滨,2009.连云港近海浮游动物生态特征及其与环境的关系.海洋环境科学28(S1),35-38.
    [258].王春生,刘镇胜,何德华,2003.象山港浮游动物生物量和丰度的季节变动.水产学报27(6),595-599.
    [259].王春生,杨天铭,朱根海等,1998.南鹿列岛附近海域浮游动物的分布及其与浮游藻类和营养盐的关系.东海海洋16(2),41-48.
    [260].王亚伟,翟盘茂,田华,2006.近40年南方高温变化特征与2003年的高温事件.气象32(10),27-33.
    [261].王岩,张鸿雁,1999.不同单养和混养海水实验围隔浮游生物的研究.中国水产科学6(3),49-54.
    [262].王晓波,魏永杰,秦铭俐,杨元利,任敏,2008.杭州湾生态监控区浮游动物多样性变化趋势研究.海洋环境科学27(S1),67-71.
    [263].闻新,周露,王丹力,熊晓英,2001. MATLAB神经网络应用设计.北京:科学出版社. pp.274.
    [264].项福亭,曲维功,张益额,徐保义,1996.庙岛海峡以东浅海养殖结构调整的研究.齐鲁渔业13(2),1-4.
    [265].肖贻昌,高尚武,张河清,1992.胶州湾生态学和生物资源.北京:科学出版社.
    [266].徐家铸,1981.浮游动物群落和数量变化与水质污染的关系.南京师范学院学报(自然科学版)3,272-300.
    [267].徐兆礼,2005.长江口邻近水域浮游动物群落特征及变动趋势.生态学杂志4(7),780-784.
    [268].徐兆礼,2006.中国海洋浮游动物研究的新进展.厦门大学学报(自然科学版)45(sup.2),16-23.
    [269].徐兆礼,陈亚瞿,1989.东黄海秋季浮游动物优势种聚集强度与鲐鲹渔场的关系.生态学杂志8(4),13-15.
    [270].徐兆礼,洪波,朱明远,陈亚瞿,2003a.东海赤潮高发区春季浮游动物生态特征的研究.应用生态学报14(7),1081-1085.
    [271].徐兆礼,蒋玫,陈亚瞿,赵文武,2003b.东海赤潮高发区春季浮游桡足类与环境关系的研究.水产学报27sup,49-54.
    [272].闫启仑,郭皓,王真良,沈亮夫,1999.浮游动物在贝类筏式养殖区内、外生态特征研究.黄渤海海洋17(1),46-50.
    [273].衣丽霞,曹春晖,2007.渤海湾天津附近海域的浮游动物研究.盐业与化工36(3),39-41.
    [274].岳舜琳,1995.水的浊度问题.中国给水排水11(4),33-35.
    [275].尹健强,张谷贤,谭烨辉,2004.三亚湾浮游动物的种类组成与数量分布.热带海洋学报23(5),1-9.
    [276].张芳,孙松,李超伦,2009.海洋水母类生态学研究进展.自然科学进展19(2),121-130.
    [277].张芳,孙松,杨波,2005a.胶州湾水母类生态研究I.种类组成与群落特征.海洋与湖沼36(6), 507-517.
    [278].张芳,杨波,张光涛,2005b.胶州湾水母类生态研究II.优势种丰度的时空分布.海洋与湖沼36(6),518 -526.
    [279].张国华,曹文宣,陈宜瑜,1997.湖泊放养渔业对我国湖泊生态系统的影响.水生物学报21(3),271-280.
    [280].张金屯,2004.数量生态学.北京:科学出版社pp.171-178.
    [281].张强,肖风劲,2004. 2004年全国干旱灾害及其影响.中国减灾4,38-40.
    [282].张武昌,王荣,2000.渤海微型浮游动物及其对浮游植物的摄食压力.海洋与湖沼31(3),252 - 258.
    [283].张武昌,王克,高尚武,王荣,2002.渤海春季和秋季的浮游动物.海洋与湖沼33(6), 630- 639.
    [284].张武昌,王荣,王克,2000.温度对中华哲水蚤代谢率的影响.海洋科学24(2),42-44.
    [285].张永利,2009.广东黄冈河流域的水质分析与污染防治.环境保护414,49-50.
    [286].张志涌,2003.精通MATLAB 6.5版.北京:北京航空航天大学出版社.
    [287].赵宝玉,1993.鲤鱼种和鲢、鳙对池塘浮游生物的影响.生态学报13(4),348-355.
    [288].中国环境状况公报,2003.气候与自然灾害. http://www.china.com.cn/zhuanti2005/txt/2006-01/18/content_6097656.htm.
    [289].郑惠东,2009.福建东山湾浮游动物的种类组成与数量分布特点.福建水产2,11-17.
    [290].郑茂,李棠,1989.广东省海域地名志.广东省地图出版社.
    [291].郑执中,1965.黄海和东海西部浮游动物群落的结构及其季节变化.海洋与湖沼7(3),199-204.
    [292].郑重,李少菁,许振祖,1984.海洋浮游生物学.北京:海洋出版社,139-599.
    [293].郑重等,1965.中国海洋浮游桡足类(上卷).上海:上海科学技术出版社pp.210.
    [294].郑重等,1982.中国海洋浮游桡足类(中卷).上海:上海科学技术出版社pp.162
    [295].周凯,黄长江,姜胜等,2002a. 2000-2001年柘林湾浮游植物群落结构及数量变动的周年调查.生态学报22(5),688-698.
    [296].周凯,黄长江,姜胜等,2002b. 2000-2001年粤东柘林湾营养盐分布.生态学报22(12), 2116-2124.
    [297].祝昌汉,张强,陈峪,2003. 2002年我国十大极端气候事件.灾害学16(2),74-78.
    [298].朱长寿,万伟龙,陈栩等,1993.福建东山湾浮游动物的种类组成和分布特点.热带海洋12(3),10-16.
    [299].朱丽岩,徐培培,张天文,陈志鑫,寇建山,2009.胶州湾拟长腹剑水蚤时空分布变化的研究.中国海洋大学学报39(Sup.),83-88.
    [300].左涛,王荣,陈亚瞿,等,2005.春季和秋季东、黄海陆架区大型网采浮游动物群落划分.生态学报25(7),1531-1541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700