用户名: 密码: 验证码:
东海大规模甲藻赤潮种吞噬特性及其在赤潮形成中的作用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江口及邻近海域是我国近海富营养化问题最为突出的海域,近年来连年爆发大规模甲藻赤潮,米氏凯伦藻、东海原甲藻和链状亚历山大藻是三种主要的甲藻赤潮原因种。赤潮区海域具有高氮、低磷的营养盐特征,甲藻类生物的一些特殊适应策略很可能在其赤潮形成中具有重要作用。对此,围绕米氏凯伦藻、东海原甲藻和链状亚历山大藻利用溶解态有机物质的能力、营养盐奢侈吸收的能力等已开展了大量研究工作,但是,对于甲藻吞噬特性及其在东海大规模甲藻赤潮形成中的作用仍缺少科学认识。针对这一问题,本研究针对东海大规模甲藻赤潮三种重要原因种米氏凯伦藻、东海原甲藻和链状亚历山大藻,选择等鞭金藻、隐藻及藻际细菌等作为吞噬对象,通过荧光标记和活体荧光等技术,对三种甲藻的吞噬特性进行了研究;并在不同营养盐条件下,研究了吞噬营养在甲藻生长中的作用;进而通过对比三种甲藻的吞噬特性,探讨了吞噬营养在三种甲藻赤潮形成中的作用。
     研究发现,米氏凯伦藻具有较强吞噬能力,可以吞噬细菌、金藻和隐藻等不同类型的生物。吞噬营养对米氏凯伦藻生长有明显的促进作用,在N-控制、P-控制、N, P-控制和营养充足的条件下,添加藻际细菌后米氏凯伦藻最高生物量比对照组分别提高了约12%、20%、14%和55%;添加金藻后米氏凯伦藻最高生物量分别提高了约36%、35%、16%和40%。在营养限制和营养充足条件下,添加隐藻后米氏凯伦藻最高生物量提高了137%和25%。这表明无论在营养限制还是营养充足的环境中,米氏凯伦藻都可以通过吞噬营养获得比光合自养更高的生长。
     通过研究确认了东海原甲藻具有吞噬能力,但仅吞噬活的大肠杆菌和隐藻,不吞噬荧光标记的细菌、金藻和荧光微球。隐藻和大肠杆菌可以加速东海原甲藻的生长,在营养限制条件下,添加大肠杆菌后东海原甲藻最高生物量比对照组提高了39%;在营养限制条件和营养充足条件下,添加隐藻后东海原甲藻最高生物量分别提高了10%和17%。与东海原甲藻不同,另外两种原甲藻中,海洋原甲藻可以吞噬荧光标记的细菌、金藻和直径为0.5μm的荧光微球;而微小原甲藻可以吞噬直径为0.5μm的荧光微球。在N-控制、P-限制、N, P-控制和营养充足的条件中,添加藻际细菌后的海洋原甲藻最高生物量比对照组分别提高了约6%、14%、26%和3%;添加金藻后分别提高了约34%、18%、11%和4%。实验表明,吞噬营养对东海原甲藻的生长有一定的促进作用,但不如米氏凯伦藻显著。
     分离自东海的链状亚历山大藻可以吞噬荧光标记的细菌、金藻和直径为0.5μm的荧光微球。在营养限制条件下,添加0.2OD和0.4OD浓度的GFP大肠杆菌可以使得链状亚历山大藻的最高生物量比对照组提高63%和77%。但在与活体隐藻和金藻共存时,链状亚历山大藻则通过化感作用杀死隐藻和金藻,并没有表现出吞噬作用。在另外两种亚历山大藻中,塔玛亚历山大藻可以吞噬荧光标记细菌和荧光微球(0.5μm),微小亚历山大藻也可以吞噬荧光标记金藻和荧光微球(0.5μm),说明吞噬能力在亚历山大藻中较为普遍。实验表明,链状亚历山大藻能够通过吞噬细菌获得营养,但在与其他微藻共存时,主要通过化感作用杀死其他微藻从而获得竞争优势。
     综合对比三种甲藻的吞噬实验结果可以看出,米氏凯伦藻的吞噬对象的选择性最广,东海原甲藻和链状亚历山大藻次之。吞噬营养对米氏凯伦藻生长的支持作用最为明显,原甲藻次之,链状亚历山大藻最不明显。相比较而言,米氏凯伦藻更偏向于“自由营养为主”的兼性营养方式;原甲藻偏向于“光合营养为主”的兼性营养方式;链状亚历山大藻较为特殊,可以通过吞噬细菌获得营养,但在与其他微藻共存时,吞噬作用对生长的支持并不显著,主要通过化感作用杀死其他微藻获得竞争优势。综合东海大规模赤潮的特点和三株甲藻的吞噬特性,初步认为吞噬营养在东海长江口大规模赤潮形成过程中具有作用,但因藻种而异。吞噬营养对于米氏凯伦藻赤潮应具有重要作用;东海原甲藻更多进行光合自养或利用溶解态有机物质进行生长,吞噬营养在东海原甲藻赤潮形成和维持过程中的作用可能有限;而亚历山大藻应主要通过吞噬细菌和对微藻的化感抑制作用在竞争中获益,对微藻的吞噬在其赤潮形成中的作用不大。本研究的结果为东海大规模甲藻赤潮的形成机制提供了一个新的科学视角。
Large-scale dinoflagelllate blooms have outbroken in the East Sea sea every year. Karenia mikimotoi, Prorocentrum donghaiense and Alexandrium catenella are three major causative species. The East Sea areas is looked as eutrophication waters with higher nitrogen concentration and lower phosphorus, therefore, it is thought that some special adaptation strategies of dinoflagellate would be the main reason to cause the formation of large-scale HABs in East China Sea. Now many special characteristics of dinoflagelllate including the ability to use the dissolved organic materials, luxury absorption of nutrient and moving ability are researched in details, but we still know nothing about the phagotrophic ability of these dinoflagelllates. In this study, using the marine microalgae such as Isochrysis galbana and Hemiselmis virescens, and bacteria such as Escherichia coli and the bacteria isolated from dinoflagellate as phagotrophic objects, phagotrophic ability of seven dinoflagellates are studied, under different light density and different nutrimental conditions.
     From our study, it is found that K. mikimotoi have a strong phagotrphic ability, and can engulf bacteria, fluorescent microsphere (FM), I. galbana and H. virescens. Furthermore, when adding bacteria to the medium of K. mikimotoi under the conditions of N-depleted, P-depleted, N, P-depleted and N and P-replete, the max biomass of K. mikimotoi increased 12%, 20%, 14% and 55%, respectively. Under the same nutrimental conditions, it increased 36%, 35%, 16% and 40% when adding I. galbana. Similarly, under nutrition-depleted and nutrition-replete conditions, it increase 137% and 25%,respectively when adding H. virescens. It is indicated that K. mikimotoi has a strong phagotrophic ability to promote its growth obviously, even that phagotrophy help it grow faster than just rely on photosynthesis.
     P. donghaiense also has phagotrophic ability, and can engulf living E. coli and H. virescens, but not ingest actionless fluorescence-labeled I. galbana (FLA), fluorescence-labeled bacteria (FLB) and fluorescent microsphere (FM). Under nutrition-depleted conditions, the max biomass increase 39%, when adding E. coli. At the same time, they increase 10% and 17% respectively when adding H. virescens under nutrition-depleted and nutrition-replete conditions. It is found that Prorocentrum micans can engulf FLA, FLB and FM0.5 with diameter 0.5μm and Prorocentrum minimum can only engulf FM0.5. Under the conditions of N-depleted, P-depleted, N, P-depleted and N and P-replete, the max biomass of P. micans increased 6%, 14%, 26% and 3%, respectively. Under the same nutrimental conditions, it increased 34%、18%, 11% and 4% when adding I. galbana. It is indicated that phagotrophy have a stimulative effect on growth of Prorocentrum sp. under nutrition-depleted conditions, but it has not effect on growth of Prorocentrum sp. in eutrophic environment.
     A. catenella can phagocytose bacteria, I. galbana and FM0.5. The max biomass of A. catenella increase 63% and 77% respectively when adding 0.2OD and 0.4OD E .coli. But it mainly kill them by allelopathy, not by phagotrophy when adding the other microalgae such as I. galbana and H. virescens. Though other studies, it is confirmed that Alexandrium tamatense can ingest FLB and FM0.5, and Alexandrium minutum can ingest FLA and FM0.5. It is declared that A. catenella can acquire its nutrition by ingesting bacteria and kill them by allelopathy, not by phagotrophy when it is symbiosis with other microalgae.
     Through the comprehensive contrast, it is clear that the phagotrophic ability of K. mikimotoi is strongest, and Prorocentrum sp. and Alexandrium sp. are inferior. Similarly, the stimulative effect on growth of K. mikimotoi is most obvious, Prorocentrum sp. is second, and Alexandrium sp. is not obvious, when adding same particulate organic matter. By comparison, K. mikimitoi is belong to“ideal”type mixotrophy and Prorocentrum sp. is belong to“phagotrophic algae”type mixotrophy. But Alexandrium sp. is very special one. It acquires its nutrition by ingesting bacteria and kill them by allelopathy when it is symbiosis with other microalgae.
     Combined with the characteristics of HABs in East China Sea and other ther physiological and ecological characteristics of these three dinoflagellates, it is indicated that phagotrophy of dinoflagellate would impact HABs formation in East China Sea. The phagotrophy play an important role in the formation large-scale K. mikimitoi bloom in East China Sea. The photosynthesis ability of Prorocentrum sp. is stronger than its phagotrophy. So, the phagotrophy effect on the formation of large-scale Prorocentrum bloom in East China Sea, may be limited. But growth of Alexandrium sp. was promoted and maintained thought the combination with engulfing bacteria and killing potential nutrition competitors/predators to getting more niche. Through this study, it is provided a new scientific perspective for formation mechanism of large-scale HABs in East China Sea.
引文
段水旺,章申,陈喜保,张秀梅,王立军,晏维金等, 2000.长江下游氮、磷含量变化与其输送量得估计.环境科学, 21(1): 53-56.
    郭皓,王健国,易晓蕾等.中国近海赤潮生物图谱(第一版).北京:海洋出版社, 2004, pp. 1.
    洪华生,戴民汉,黄邦钦. 1994.厦门港浮游植物对磷酸盐吸收速率的研究.海洋与湖沼, 25 (1): 54-59.
    侯继灵,张传松,石晓勇,陆茸,王修林. 2006.磷酸盐对两种东海典型赤潮藻影响的围隔实验.中国海洋大学学报, 36 (Sup. ) : 163-169.
    胡明辉,杨逸萍,徐春林,哈里森J P., 1989.长江口浮游植物生长的磷酸盐限制. 海洋学报, 11(4): 439-443.
    黄邦钦,洪华生. 1994.几种藻类吸收磷酸盐动力学的初步研究.厦门大学学报(自然科学版), 33:7-11.
    黄邦钦,黄世玉,洪华生等. 1999.溶解态磷在海洋微藻碱性磷酸酶活力变化中的调控作用.海洋学报, 21 (l): 55-60.
    黄凯旋, 2007.米氏凯伦藻的氮营养生理生态研究.硕士学位论文,暨南大学.
    孔凡洲, 2011.长江口赤潮区浮游植物的粒级结构、种类组成和色素分析博士学位论文,中国科学院海洋研究所.
    李锦蓉,吕颂辉,梁松等, 1993.大鹏湾、大亚湾营养盐含量与赤潮生物关系的初探.海洋通报, 12(2): 23-29.
    李瑞香,朱明远,陈尚等, 2001.围隔生态系内浮游植物对富磷的响应.生态学报, 21(4): 603-607.
    李天深, 2007.氮、磷营养盐对链状亚历山大藻(东海株)生长和产毒的影响研究.硕士学位论文,中国科学院海洋研究所.
    李英, 2006.东海原甲藻的磷营养生理生态研究.硕士学位论文,暨南大学.
    李正峰, 2007.米氏凯伦藻的磷营养生理生态研究.硕士学位论文,暨南大学.
    梁瑜, 2010.典型赤潮藻对氮磷营养要素的响应.硕士毕业论文,暨南大学.
    陆斗定,齐雨藻, Jeanette Goebel,邹景忠. 2003.高亚辉东海原甲藻修订及与相关原甲藻的分类学比较.应用生态学学报, 14(7): 1060-1064.
    吕颂辉,陈翰林,何智强, 2006.氮磷等营养盐对尖刺拟菱形藻生长的影响.生态环境, 15(4): 697-701.
    欧林坚, 2006.典型赤潮藻对磷的生态生理响应.博士毕业论文,厦门大学.
    欧美珊, 2006.东海原甲藻的氮营养生理.硕士学位论文,暨南大学.
    蒲新明,吴玉霖,张永山. 2001.长江口区浮游植物营养限制因子的研究Ⅱ.春季的营养限制情况.海洋学报, 23 (3): 57-65.
    戚晓红,刘素美,张经等, 2003.东海赤潮高发区沉积物中营养盐再生速率的研究.应用生态学报, 14 (7): 1112-1116.
    苏纪兰, 2001.中国的赤潮研究.中国科学院院刊, 5: 339-342
    王保栋, 2003.黄海和东海营养盐分布及其对浮游植物的限制.应用生态学报, 14(7): 1122-1126.
    王保栋, 2006.长江口及邻近海域富营养化状况及其生态效应.博士毕业论文, 中国海洋大学.
    王云峰,张清春,于仁成等.东海有毒亚历山大藻赤潮的分布特征和毒素研究. 见:何建宗,吕颂辉,王艳等.南中国海红潮的关键研究.南中国海赤潮学会, 2006, 292-295.
    张传松,王江涛,朱德弟,王修林,李京, 2008. 2005年春夏季东海赤潮过程中营养盐作用初探.海洋学报, 30(2): 153-159.
    张清春,于仁诚,周名江等, 2005.不同类型含磷营养物质对微小亚历山大藻生长和毒素产生的影响.海洋与湖沼, 36 (5): 465-474.
    郑重等.海洋浮游生物学.北京.海洋出版社,1984
    周名江,于仁成, 2009.有害赤潮的形成机制、危害效应与防治对策.自然杂志, 29 (2): 72-77.
    周名江,朱明远, 2006.我国近海有害赤潮发生的生态学、海洋学机制及预测防治研究进展.地球科学进展, 21(7): 673-679.
    朱明远,叶属峰,李瑞香等, 2002年东海区的赤潮发生.见:何建宗,吕颂辉,俞子修,等.南中国海红潮预防和管理的前沿发展, 2003, 35-40.
    Aksnes D L, Egge J K. 1991. A Theoretical-Model for Nutrient-Uptake in Phytoplankton. Marine Ecology-Progress Series, 70(1): 65-72.
    Andersen O K, Goldman J C, Caron D A, Dennett M R. 1986. Nutrient Cycling in a Microflagellate Food-Chain .3. Phosphorus Dynamics. Marine Ecology Progress Series, 31(1): 47-55.
    Anderson D M. 1989. Toxic Algal Blooms and Red Tides: A Global Perspective. Red Tides, Biology, Environmental Science, and Toxicology. p 11-16.
    Anderson D M, Glibert P M, Burkholder J M. 2002. Harmful Algal Blooms and Eutrophication: Nutrient Sources, Composition, and Consequences. Estuaries, 25(4B): 704-726.
    Arzul G, Seguel M, Guzman L, Erard-Le Denn E. 1999. Comparison of Allelopathic Properties in Three Toxic Alexandrium Species. Journal of Experimental Marine Biology and Ecology, 232(2): 285-295.
    Banse K. 1982. Cell Volumes, Maximal Growth-Rates of Unicellular Algae and Ciliates, and the Role of Ciliates in the Marine Pelagial. Limnology and Oceanography, 27(6): 1059-1071.
    Benitez-Nelson C R. 2000. The Biogeochemical Cycling of Phosphorus in Marine Systems. Earth-Science Reviews, 51(1-4): 109-135. Berg G M, Glibert P M, Lomas M W, Burford M A. 1997. Organic Nitrogen Uptake
    and Growth by the Chrysophyte Aureococcus anophagefferens During a Brown Tide Event. Marine Biology, 129(2): 377-387. Berman T, Chava S. 1999. Algal Growth on Organic Compounds as Nitrogen Sources.
    Journal of Plankton Research, 21(8): 1423-1437. Biecheler B. 1936. Observation De La Capture Et De La Digestion Des Protes Chez
    Un Peridinén Vert. de la Soc. de biol, 121: 1173-1175. Biecheler B. 1952. Recherches Sur Les Peridiniéns. Bull. Biol. Fr. Belg., Suppl., 36: 1-149.
    Bird D F, Kalff J. 1986. Bacterial Grazing by Planktonic Lake Algae. Science, 231(4737): 493-495.
    Bockstahler K R, Coats D W. 1993a. Grazing of the Mixotrophic Dinoflagellate Gymnodinium sanguineum on Ciliate Populations of Chesapeake Bay. Marine Biology, 116(3): 477-487.
    Bockstahler K R, Coats D W. 1993b. Spatial and Temporal Aspects of Mixotrophy in Chesapeake Bay Dinoflagellates. Journal of Eukaryotic Microbiology, 40(1): 49-60.
    Bruckmeier B, Eisenmann H, Beisker W. 2005. Exogenous Alkaline PhosphataseActivity of Algal Cells Determined by Fluorometric and Flow Cytometic Detection of Soluble Enzyme Product (4-Methyl-Umbelliferone, Fluoreseein). Jomal of Phycology, 41: 993-999.
    Brusle J. 1995. The Impact of Harmful Algal Blooms on Finfish. Harmful Marine Algal Blooms. p 419-420.
    Burkholder J M, Glibert P M, Skelton H M. 2008. Mixotrophy, a Major Mode of Nutrition for Harmful Algal Species in Eutrophic Waters. Harmful Algae, 8(1): 77-93.
    Buskey E J. 1995. Growth and Bioluminescence of Noctiluca scintillans on Varying Algal Diets. Journal of Plankton Research, 17(1): 29-40.
    Buskey E J. 1997. Behavioral Components of Feeding Selectivity of the Heterotrophic Dinoflagellate Protoperidinium pellucidum. Marine Ecology-Progress Series, 153: 77-89.
    Buskey E J, Coulter C J, Brown S L. 1994. Feeding, Growth and Bioluminescence of the Heterotrophic Dinoflagellate Protoperidinium huberi. Marine Biology, 121(2): 373-380.
    Cachon J, Cachon M. 1971. Proroodinium Chattoni Hovasse Manifestations Ultrastructurales Des Rapports Entre Le Péridhien Et Al Méduse-Hǒte: Fication, Phagocytose. Arch. Protistenk.,, 113: 293-305.
    Cachon J, Cachon M. 1987. Parasitic Dinoflagellates. In: Taylor F, editor. The Biology of Dinoflagellates. Oxford: Blackwell Scientific Publications. p 571-610.
    Calado A J, Craveiro S C, Moestrup O. 1998. Taxonomy and Ultrastructure of a Freshwater, Heterotrophic Amphidinium (Dinophyceae) That Feeds on Unicellular Protists. Journal of Phycology, 34(3): 536-554.
    Calado A J, Moestrup O. 1997. Feeding in Peridiniopsis Berolinensis (Dinophyceae): New Observations on Tube Feeding by an Omnivorous, Heterotrophic Dinoflagellate. Phycologia, 36(1): 47-59.
    Chan A. 1978. Comparative Physiological Study of Marine Diatoms and Dinoflagellates in Relation to Irradiance and Cell Size: I. Growth under Continuous Light. Journal of Phycology, 14: 396-402. Chang J, Carpenter E. 1994. Inclusion Bodies in Several Species of Cerarium schrank (Dinophyceae) from the Caribbean Sea Examined with DNA-Specific Staining. J. Plankton Res, 16: 197-202.
    Dai C J, He J F, Wang G Z, Li S Q. 2005. A Review of Ecological Research on Mixotrophic Plankton. Acta Ecologica Sinica, 25(9): 2399-2405.
    Deeds J, Terlizzi D, Adolf J, Stoecker D, Place A. 2002. Toxic Activity from Cultures of Karlodinium micrum (=Gyrodinium galatheanum) (Dinophyceae) - a Dinoflagellate Associated with Fish Mortalities in an Estuarine Aquaculture Facility. Harmful Algae, 1: 169-189.
    Drebes G. 1969 Dissodiniurn Pseudocalani sp. Nov., Ein Parasitischer Dinoflagellat Auf Copepodeneiern. Helgol?nder Wiss. Meerrsunters., 19: 58-67. Drebes G. 1978. Dissodinium pseudolunula (Dinophyta), a Parasite on Copepod Eggs.
    Br. Phycol. J., 13: 319-327. Drebes G. 1984. Life-Cycle and Host Specificity of Marine Parasitic Dinophytes.
    Helgolander Meeresuntersuchungen, 37(1-4): 603-622. Drebes G. 1988. Syltodinium Listii Gen. Et Spec. Nov., a Marine Ectoparasitic
    Dinoflagellate on Eggs of Copepods and Rotifers. Helgol?nder Meeresunters, 42: 583-591.
    Drebes G, Schnepf E. 1998. Gyrodinium undulans Hulburt, a Marine Dinoflagellate Feeding on the Bloom-Forming Diatom Odontella aurita, and on Copepod and Rotifer Eggs. Helgolundrr Meeresunters, 52: 1-14.
    Dyhrman S T, Chappell P D, Haley S T, Moffett J W, Orchard E D, Waterbury J B, Webb E A. 2006. Phosphonate Utilization by the Globally Important Marine Diazotroph Trichodesmium. Nature, 439(7072): 68-71.
    Egge J K, Aksnes D L. 1992. Silicate as Regulating Nutrient in Phytoplankton Competition. Marine Ecology-Progress Series, 83(2-3): 281-289.
    Elbrachter M. 1991. Faeces Production by Dinoflagellates and Other Small Flagellates. Mar. Microh. Fd. Webs, 5: 189-204.
    Escaravage V, Prins T C, Smaal A C, Peeters J C H. 1996. The Response of Phytoplankton Communities to Phosphorus Input Reduction in Mesocosm
    Experiments. Journal of Experimental Marine Biology and Ecology, 198(1): 55-79.
    Estep K W, Macintyre F. 1989. Taxonomy, Life-Cycle, Distribution and Dasmotrophy of Chrysochromulina - a Theory Accounting for Scales, Haptonema muciferous Bodies and Toxicity. Marine Ecology-Progress Series, 57(1): 11-21.
    Faust M. 1998. Mixotrophy in Tropical Benthic Dinoflagellates. In: Reguera B,Blanco J, Fernandez M, Wyatt T, editors. Harmful Algae. Paris: Xunta de Galicia and IOC-UNESCO. p 390-393.
    Fields S D, Rhodes R G. 1991. Ingestion and Retention of Chroomonas Spp (Cryptophyceae) by Gymnodinium acidotum (Dinophyceae). Journal of Phycology, 27(4): 525-529.
    Fistarol G O, Legrand C, Rengefors K, Graneli E. 2004. Temporary Cyst Formation in Phytoplankton: A Response to Allelopathic Competitors? Environmental Microbiology, 6(8): 791-798.
    Furnas M J. 1990. Insitu Growth-Rates of Marine-Phytoplankton - Approaches to Measurement, Community and Species Growth-Rates. Journal of Plankton Research, 12(6): 1117-1151.
    Gaines G, Elbrachter M. 1987. Heterotrophic Nutrition. In: Taylor E, editor. The Biology of Dinoflagellates. Oxford: Blackwell Scientific Publ. p 224-268.
    Glasgow H B, Burkholder J M, Morton S L, Springer J. 2001. A Second Species of Ichthyotoxic Pfiesteria (Dinamoebales, Dinophyceae). Phycologia, 40(3): 234-245.
    Glibert P, Pitcherg G. 2001. Geohab, Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan. Baltimore and Paris: SCOR and IOC. p 86.
    Glibert P M, Burkholder J M, Kana T M, Alexander J, Skelton H, Shilling C. 2009. Grazing by Karenia brevis on Synechococcus Enhances Its Growth Rate and
    May Help to Sustain Blooms. Aquatic Microbial Ecology, 55(1): 17-30. Glibert P M, Legrand C. 2006. The Diverse Nutrient Strategies of Harmful Algae: Focus on Osmotrophy. In: Granéli E, Turner J T, editors. Ecology of Harmful Algae: Springer Berlin Heidelberg.
    Granéli E, Carlsson P. 1998. The Ecological Significance of Phagotrophy in Photosynthetic Flagellates. In: Anderson D, Cembella A, Hallegraeff G, editors. Physiological Ecology of Harmful Algal Blooms. Nato Asi Series 41. . Berlin Heidelberg New York: Springer. p 539-557.
    Granéli E, Carlsson P, Legrand C. 1999. The Role of C, N and P in Dissolved and Particulate Organic Matter as a Nutrient Source for Phytoplankton Growth, Including Toxic Species. Aquatic Ecology 33(1): 17-27.
    Graneli E, Johansson N. 2003. Effects of the Toxic Haptophyte Prymnesium parvum on the Survival and Feeding of a Ciliate: The Influence of Different Nutrient Conditions. Marine Ecology-Progress Series, 254: 49-56.
    Grice G D, Harris R P, Reeve M R, Heinbokel J F, Davis C O. 1980. Large-Scale Enclosed Water-Column Ecosystems - an Overview of Foodweb-I, the Final Cepex Experiment. Journal of the Marine Biological Association of the United Kingdom, 60(2): 401-414.
    Hallegraeff G M. 1993. A Review of Harmful Algal Blooms and Their Apparent Global Increase. Phycologia, 32(2): 79-99.
    Hansen B, WernbergMoller T, Wittrup L. 1997a. Particle Grazing Efficiency and Specific Growth Efficiency of the Rotifer Brachionus plicatilis (Muller). Journal of Experimental Marine Biology and Ecology, 215(2): 217-233.
    Hansen G, Moestrup G, Roberts K. 1996. Fine Structural Observation on Gonyaulax spinifira (Dinophyceae), with Special Emphasis on the Flagellar Apparatus. Phycologica, 35: 354-366.
    Hansen P J. 1991. Dinophysis - a Planktonic Dinoflagellate Genus Which Can Act Both as a Prey and a Predator of a Ciliate. Marine Ecology-Progress Series, 69(1-2): 201-204.
    Hansen P J. 1992. Prey Size Selection, Feeding Rates and Growth Dynamics of Heterotrophic Dinoflagellates with Special Emphasis on Gyrodinium spirale. Marine Biology, 114(2): 327-334.
    Hansen P J, Calado A J. 1999. Phagotrophic Mechanisms and Prey Selection in Free-Living Dinoflagellates. Journal of Eukaryotic Microbiology, 46(4): 382-389.
    Hansen P J, Nielsen T G. 1997b. Mixotrophic Feeding of Fragilidium subglobosum (Dinophyceae) on Three Species of Ceratium: Effects of Prey Concentration, Prey Species and Light Intensity. Marine Ecology-Progress Series, 147(1-3): 187-196.
    Harrison P G, Zuckerma.Jj. 1973. Structural Studies in Main Group Chemistry .3. Tin-119m Mossbauer Investigation of Some Tin-Nitrogen Bonded Compounds. Journal of Organometallic Chemistry, 55(2): 261-266.
    Healey F P, Hendzel L L. 1980. Physiological Indicators of Nutrient Deficiency in Lake Phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences, 37(3): 442-453.
    Hecky R E, Kilham P. 1988. Nutrient Limitation of Phytoplankton in Fresh-Water and Marine Environments -a Review of Recent-Evidence on the Effects of Enrichment. Limnology and Oceanography, 33(4): 796-822.
    Hodgkiss I J, Ho K C. 1997. Are Changes in N:P Ratios in Coastal Waters the Key to Increased Red Tide Blooms? Hydrobiologia, 352: 141-147.
    Horiguchi T, Pienaar R. 1992. Amphidinium larum Lebour (Dinophyceae), a Sand-Dwelling Dinoflagellate Feeding on Cryptonionads. Jpn. J. Phycol, 40: 353-363.
    Huang B Q, Ou L J, Wang X L, Huo W Y, Li R X, Hong H S, Zhu M Y, Qi Y Z. 2007. Alkaline Phosphatase Activity of Phytoplankton in East China Sea Coastal Waters with Frequent Harmful Algal Bloom Occurrences. Aquatic Microbial Ecology, 49(2): 195-206.
    Jacobson D M. 1999. A Brief History of Dinoflagellate Feeding Research. Journal of Eukaryotic Microbiology, 46(4): 376-381.
    Jacobson D M, Andersen R A. 1994. The Discovery of Mixotrophy in Photosynthetic Species of Dinophysis (Dinophyceae) - Light and Electron-Microscopic Observations of Food Vacuoles in Dinophysis acuminata, D-Norvegica and 2
    Heterotrophic Dinophysoid Dinoflagellates. Phycologia, 33(2): 97-110. Jacobson D M, Anderson D M. 1986. Thecate Heterotrophic Dinoflagellates -
    Feeding-Behavior and Mechanisms. Journal of Phycology, 22(3): 249-258. Jacobson D M, Anderson D M. 1996. Widespread Phagocytosis of Ciliates and Other Protists by Marine Mixotrophic and Heterotrophic Thecate Dinoflagellates. Journal of Phycology, 32(2): 279-285.
    Jakobsen H H, Hansen P J. 1997. Prey Size Selection, Grazing and Growth Response of the Small Heterotrophic Dinoflagellate Gymnodinium sp. And the Ciliate Balanion Comatum - a Comparative Study. Marine Ecology-Progress Series, 158: 75-86.
    Jeong H J. 1994a. Predation by the Heterotrophic Dinoflagellate Protoperidinium cf divergens on Copepod Eggs and Early Naupliar Stages. Marine Ecology-Progress Series, 114(1-2): 203-208.
    Jeong H J. 1994b. Predation Effects of the Calanoid Copepod Acartia-Tonsa on a Population of the Heterotrophic Dinoflagellate Protoperidinium cf divergens in the Presence of Cooccurring Red-Tide Dinoflagellate Prey. Marine Ecology-Progress Series, 111(1-2): 87-97.
    Jeong H J, Du Yoo Y, Park J Y, Song J Y, Kim S T, Lee S H, Kim K Y, Yih W H. 2005a. Feeding by Phototrophic Red-Tide Dinoflagellates: Five Species Newly Revealed and Six Species Previously Known to Be Mixotrophic.Aquatic Microbial Ecology, 40(2): 133-150.
    Jeong H J, Lee C W, Yih W H, Kim J S. 1997. Fragilidium cf mexicanum, a Thecate Mixotrophic Dinoflagellate Which Is Prey for and a Predator on Co-Occurring Thecate Heterotrophic Dinoflagellate Protoperidinium cf divergens. Marine Ecology-Progress Series, 151(1-3): 299-305.
    Jeong H J, Park J Y, Nho J H, Park M O, Ha J H, Seong K A, Jeng C, Seong C N, Lee K Y, Yih W H. 2005b. Feeding by Red-Tide Dinoflagellates on the Cyanobacterium Synechococcus. Aquatic Microbial Ecology, 41(2): 131-143.
    Jeong H J, Shim J H, Kim J S, Park J Y, Lee C W, Lee Y. 1999. Feeding by the Mixotrophic Thecate Dinoflagellate Fragilidium cf mexicanum on Red-Tide and Toxic Dinoflagellates. Marine Ecology-Progress Series, 176: 263-277.
    Jeong H J, Yeong D Y, Seong K A, Kim J H, Park J Y, Kim S, Lee S H, Ha J H, Yih W H. 2005c. Feeding by the Mixotrophic Red-Tide Dinoilagellate Gonyaulax polygramma: Mechanisms, Prey Species, Effects of Prey Concentration, and Grazing Impact. Aquatic Microbial Ecology, 38(3): 249-257.
    Jeong H J, Yoo Y D, Kim J S, Kim T H, Kim J H, Kang N S, Yih W. 2004. Mixotrophy in the Phototrophic Harmful Alga Cochlodinium polykrikoides (Dinophycean): Prey Species, the Effects of Prey Concentration, and Grazing Impact. Journal of Eukaryotic Microbiology, 51(5): 563-569.
    Jones H L J, Durjun P, Leadbeater B S C, Green J C. 1995. The Relationship between Photoacclimation and Phagotrophy with Respect to Chlorophyll-a, Carbon and Nitrogen-Content, and Cell-Size of Chrysochromulina brevifilum (Prymnesiophyceae). Phycologia, 34(2): 128-134.
    Juhl A R, Martins C A, Anderson D M. 2008. Toxicity of Alexandrium lusitanicum to Gastropod larvae Is Not Caused by Paralytic-Shellfish-Poisoning Toxins. Harmful Algae, 7(5): 567-573.
    Kodama M. 1990. Possible Links between Bacteria and Toxin Production in Algal Blooms. In: Granéli E P, Sundstr?m B, Edler L, Anderson D M, editors. Toxic Marine Phytoplanton. New York: Elsever. p 52-60.
    Koizumi Y, Uchida T, Honjo T. 1996. Diurnal Vertical Migration of Gymnodinium mikimotoi During a Red Tide in Hoketsu Bay, Japan. Journal of Plankton Research, 18(2): 289-294.
    Lane D J, Pace B, Olsen G J, Stahl D A, Sogin M L, Pace N R. 1985. Rapid-Determination of 16s Ribosomal-RNA Sequences for PhylogeneticAnalyses. Proceedings of the National Academy of Sciences of the United States of America, 82(20): 6955-6959.
    Larsen A, Eikrem W, Paasche E. 1993. Growth and Toxicity in Prymnesium patelliferum (Prymnesiophyceae) Isolated from Norwegian Waters. Can J Bot, 71: 1357-1362.
    Larsen J. 1988. An Ultrastructural-Study of Amphidinium poecilochroum (Dinophyceae), a Phagotrophic Dinoflagellate Feeding on Small Species of Cryptophytes. Phycologia, 27(3): 366-377.
    Legrand C, Carlsson P. 1998a. Uptake of High Molecular Weight Dextran by the Dinoflagellate Alexandrium catenella. Aquatic Microbial Ecology, 16(1): 81-86.
    Legrand C, Graneli E, Carlsson P. 1998b. Induced Phagotrophy in the Photosynthetic Dinoflagellate Heterocapsa triquetra. Aquatic Microbial Ecology, 15(1): 65-75.
    Legrand C, Johansson N, Johnsen G, Borsheim K Y, Graneli E. 2001. Phagotrophy and Toxicity Variation in the Mixotrophic Prymnesium patelliferum (Haptophyceae). Limnology and Oceanography, 46(5): 1208-1214.
    
    Li A S, Stoecker D K, Adolf J E. 1999. Feeding, Pigmentation, Photosynthesis and rowth of the Mixotrophic Dinoflagellate Gyrodinium galatheanum. Aquatic Microbial Ecology, 19(2): 163-176.
    Li A S, Stoecker D K, Coats D W. 2000a. Mixotrophy in Gyrodinium galatheanum (Dinophyceae): Grazing Responses to Light Intensity and Inorganic Nutrients. Journal of Phycology, 36(1): 33-45.
    Li A S, Stoecker D K, Coats D W. 2000b. Spatial and Temporal Aspects of Gyrodinium galatheanum in Chesapeake Bay: Distribution and Mixotrophy. Journal of Plankton Research, 22(11): 2105-2124.
    Li A S, Stoecker D K, Coats D W, Adam E J. 1996. Ingestion of Fluorescently Labeled and Phycoerythrin-Containing Prey by Mixotrophic Dinoflagellates. Aquatic Microbial Ecology, 10(2): 139-147.
    Lu S H, Hodgkiss I J. 2004. Harmful Algal Bloom Causative Collected from Hong Kong Waters. Hydrobiologia, 512(1-3): 231-238.
    Ma H Y, Krock B, Tillmann U, Cembella A. 2009. Preliminary Characterization of Extracellular Allelochemicals of the Toxic Marine Dinoflagellate Alexandrium tamarense Using a Rhodomonas salina Bioassay. Marine Drugs, 7(4):497-522.
    Mallin M A. 2000. Impacts of Industrial Animal Production on Rivers and Estuaries. American Scientist, 88(1): 26-37.
    Marchetti R, Gaggino G, A. P. 1988. Red Tides in the Northwest Adriatic. Eutrophication in the Mediterranean Sea:Receiving Capacity and Monitoring of Longterm Effects. Paris: UNESCO. p 133-142.
    Margalef R. 1963. Succession in Marine Populations. Advancing frontiers of plant sciences, 2: 137-188
    Martin-Cereceda M, Novarino G, Young J R. 2003. Grazing by Prymnesium parvum on Small Planktonic Diatoms. Aquatic Microbial Ecology, 33(2): 191-199. Moore S K, Trainer V L, Mantua N J, Parker M S, Laws E A, Backer L C, Fleming L
    E. 2008. Impacts of Climate Variability and Future Climate Change on Harmful Algal Blooms and Human Health. Environmental Health, 7: (Suppl 2):S4.
    Mulholland M R, Glibert P M, Berg G M, Van Heukelem L, Pantoja S, Lee C. 1998. Extracellular Amino Acid Oxidation by Microplankton: A Cross-Ecosystem Comparison. Aquatic Microbial Ecology, 15(2): 141-152.
    Norris D R. 1969. Possible Phagotrophic Feeding in Ceratium Lunula schimper. Limnology and Oceanography, 14(3): 448-&.
    Nygaard K. 1993. Bacteriovory in Algae: A Survival Strategy During Nutrient Limitation. Limnology and Oceanography, 38(2): 273-279.
    Ogata T, Koike K, Nomura S, Kodama M. 1996. Utilization of Organic Substances for Growth and Toxin Production by Alexandrium tamarense. In: Yasumoto T, Oshima T, Fukuyo Y, editors. Harmful and Toxic Algal Blooms. Sendai, Japan: Intergovernmental Oceanographic Commission of UNESCO. p 343-346.
    Paasche E, Bryceson I, Tangen K. 1984. Interspecific Variation in Dark Nitrogen Uptake by Dinoflagellates. Journal of Phycology, 20(3): 394-401.
    Palenik B, Morel F M M. 1990. Comparison of Cell-Surface L-Amino-Acid Oxidases from Several Marine-Phytoplankton. Marine Ecology-Progress Series, 59(1-2): 195-201.
    Park M G, Lee H, Kim K Y, Kim S. 2011. Feeding Behavior, Spatial Distribution and Phylogenetic Affinities of the Heterotrophic Dinoflagellate Oxyphysis oxytoxoides. Aquatic Microbial Ecology, 62(3): 279-287.
    Peperzak L. 2003. Climate Change and Harmful Algal Blooms in the North Sea. Acta Oecologica-International Journal of Ecology, 24: S139-S144.
    Pintner I, Provasoli L. 1968. Heterotrophy in Subdued Light of 3 Chrysochromulina Species. Bull Misaki Mar Biol Inst,Kyoto Univ, 12:: 25-31.
    Raven J A. 1997. Phagotrophy in Phototrophs. Limnology and Oceanography, 42(1): 198-205.
    Sanders R W. 1991. Mixotrophic Protists in Marine and Fresh-Water Ecosystems. Journal of Protozoology, 38(1): 76-81.
    Satake M, Shoji M, Oshima Y, Naoki H, Fujita T, Yasumoto T. 2002. Gymnocin-A, a Cytotoxic Polyether from the Notorious Red Tide Dinoflagellate, Gymnodinium mikimotoi. Tetrahedron Letters, 43(33): 5829-5832.
    Satake M, Tanaka Y, Ishikura Y, Oshima Y, Naoki H, Yasumoto T. 2005. Gymnocin-B with the Largest Contiguous Polyether Rings from the Red Tide Dinotlagellate, Karenia (Formerly Gymnodinium) mikimotoi. Tetrahedron Letters, 46(20): 3537-3540.
    Schluter L. 1998. The Influence of Nutrient Addition on Growth Rates of Phytoplankton Groups, and Mierozooplankton Grazing Rates in a Mesocosm Experiment. Journal of Experimental Marine Biology and Ecology, 228: 53-71.
    Schnepf E, Winter S. 1990. A Microbular Basket in the Armoured Dinoflagellate Prorocentrum micans (Dinophyceae). Arch. ProtistenKd, 138: 89-91.
    Schnepf E, Winter S, Mollenhauer D. 1989. Gymnodinium aeruginosum (Dinophyta) - a Blue-Green Dinoflagellate with a Vestigial, Anucleate, Cryptophycean Endosymbiont. Plant Systematics and Evolution, 164(1-4): 75-91.
    Seong K A, Jeong H J, Kim S, Kim G H, Kang J H. 2006. Bacterivory by Co-Occurring Red-Tide Algae, Heterotrophic Nanoflagellates, and Ciliates. Marine Ecology-Progress Series, 322: 85-97.
    Skovgaard A. 1996. Mixotrophy in Fragilidium subglobosum (Dinophyceae): Growth and Grazing Responses as Functions of Light Intensity. Marine Ecology-Progress Series, 143(1-3): 247-253.
    Skovgaard A. 1998. Role of Chloroplast Retention in a Marine Dinoflagellate. Aquatic Microbial Ecology, 15(3): 293-301.
    Skovgaard A. 2000. A Phagotrophically Derivable Growth Factor in the Plastidic Dinoflagellate Gyrodinium resplendens (Dinophyceae). Journal of Phycology,36(6): 1069-1078.
    Skovgaard A, Hansen P J, Stoecker D K. 2000. Physiology of the Mixotrophic Dinoflagellate Fragilidium subglobosum. I. Effects of Phagotrophy and Irradiance on Photosynthesis and Carbon Content. Marine Ecology-Progress Series, 201: 129-136.
    Skovgaard A, Legrand C, Hansen P J, Graneli E. 2003. Effects of Nutrient Limitation on Food Uptake in the Toxic Haptophyte Prymnesium parvum. Aquatic Microbial Ecology, 31(3): 259-265.
    Smalley G W, Coats D W, Adam E J. 1999. A New Method Using Fluorescent Microspheres to Determine Grazing on Ciliates by the Mixotrophic Dinoflagellate Ceratium furca. Aquatic Microbial Ecology, 17(2): 167-179.
    Smalley G W, Coats D W, Stoecker D K. 2003. Feeding in the Mixotrophic Dinoflagellate Ceratium furca Is Influenced by Intracellular Nutrient Concentrations. Marine Ecology-Progress Series, 262: 137-151.
    Smayda T. 1989. Primary Production and the Global Epidemic of Phytoplankton Blooms in the Sea: A Linkage? . In: Cosper E, Bricelj V, Carpenter E, editors. Novel Phytoplanktonblooms. Berlin, Heidelberg, New York: Springer Verlag. p 449-483.
    Smayda T. 1990. Novel and Nuisance Phytoplankton Blooms in the Sea: Evidence for a Global Epidemic. In: Granéli E, Sundstr?m B, Edler L, Anderson D, editors. Toxic Marine Phytoplankton. New York: Elsevier. p 271-274.
    Smayda T J. 1997. Harmful Algal Blooms: Their Ecophysiology and General Relevance to Phytoplankton Blooms in the Sea. Limnology and Oceanography, 42(5): 1137-1153.
    Smayda T J, Reynolds C S. 2001. Community Assembly in Marine Phytoplankton: Application of Recent Models to Harmful Dinoflagellate Blooms. Journal of Plankton Research, 23(5): 447-461.
    Sommer U. 1989. The Role of Competition for Resources in Phytoplankton Succession. In: Sommer U, editor. Plankton Ecology. Orlando, Florida: Springer-Verlag. p 57-106.
    Soumia A. 1995. Red Tid E and Toxi C Marine Ph Ytoplankton of the World Ocean: An in Quiry into Biodiversity. In: Lassus P, Arzul G, Erard E, editors. Harmful Marine Algal Blooms. Paris: Lavoisier Intercept. p 1032-1112.
    Spero H J. 1982. Phagotrophy in Gymnodinium fungiforme (Pyrrhophyta) - thePeduncle as an Organelle of Ingestion. Journal of Phycology, 18(3): 356-360.
    Steidinger K A, Tangen K. 1996. Dinoflagellates. In: Tomas C R, editor. Identifying Marine Diatoms and Dinoflagellates: San Diego: Academic Press. p 387-584.
    Stickney H L, Hood R R, Stoecker D K. 2000. The Impact of Mixotrophy on Planktonic Marine Ecosystems. Ecological Modelling, 125(2-3): 203-230.
    Stoecker D, Tillmann U, Granéli E. 2006. Phagotrophy in Harmful Algae. In: Granéli E, Turner J T, editors. Ecology of Harmful Algae: Springer Berlin Heidelberg. p 177-187.
    Stoecker D K. 1998a. Conceptual Models of Mixotrophy in Planktonic Protists and Some Ecological and Evolutionary Implications. European Journal of Protistology 34(3): 281-290.
    Stoecker D K. 1998b. Conceptual Models of Mixotrophy in Planktonic Protists and Some Ecological and Evolutionary Implications. European Journal of Protistology, 34(3): 281-290.
    Stoecker D K. 1999. Mixotrophy among Dinoflagellates. Journal of Eukaryotic Microbiology, 46(4): 397-401.
    Stoecker D K, Li A S, Coats D W, Gustafson D E, Nannen M K. 1997. Mixotrophy in the Dinoflagellate Prorocentrum minimum. Marine Ecology-Progress Series, 152(1-3): 1-12.
    Stoecker D K, Parrow M W, Burkholder J M, Glasgow H B. 2002. Grazing by Microzooplankton on Pfiesteria piscicida Cultures with Different Histories of Toxicity. Aquatic Microbial Ecology, 28(1): 79-85.
    Strom S L, Buskey E J. 1993. Feeding, Growth, and Behavior of the Thecate Heterotrophic Dinoflagellate Oblea-rotunda. Limnology and Oceanography, 38(5): 965-977.
    Takahashi M, Fukazawa N. 1982. A Mechanism of "Red-Tide" Formation. Marine Biology, 70: 267-273.
    Tester P A, Steidinger K A. 1997. Gymnodinium Breve Red Tide Blooms: Initiation, Transport, and Consequences of Surface Circulation. Limnology and Oceanography, 42(5): 1039-1051.
    Tillmann U. 2003. Kill and Eat Your Predator: A Winning Strategy of the Planktonic Flagellate Prymnesium Parvum. Aquatic Microbial Ecology, 32(1): 73-84.
    Tillmann U, Hansen P J. 2009. Allelopathic Effects of Alexandrium tamarense on Other Algae: Evidence from Mixed Growth Experiments. Aquatic MicrobialEcology, 57(1): 101-112.
    Tillmann U, John U, Cembella A. 2007. On the Allelochemical Potency of the Marine Dinoflagellate Alexandrium ostenfeldii against Heterotrophic and Autotrophic Protists. Journal of Plankton Research, 29(6): 527-543.
    Tilman D. 1977. Resource Competition between Plankton Algae: An Experimental and Theoretical Approach. Ecology, 58: 338-348.
    Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, Kamjunke N. 2003. Mixotrophs Combine Resource Use to Outcompete Specialists: Implications for Aquatic Food Webs. Proceedings of the National Academy of Sciences of the United States of America, 100(22): 12776-12781.
    Tyler M A, Seliger H H. 1978. Annual Subsurface Transport of a Red Tide Dinoflagellate to Its Bloom Area - Water Circulation Patterns and Organism Distributions in Chesapeake Bay. Limnology and Oceanography, 23(2): 227-246.
    Uchida T, Kamiyama T, Matsuyama Y. 1997. Predation by a Photosynthetic Dinoflagellate Gyrodinium instriatum on Loricated Ciliates. Journal of Plankton Research, 19(5): 603-608.
    Ucko M, Elbrachter M, Schnepf E. 1997. A Crypthecodinium Cohnii-Like Dinoflagellate Feeding Myzocytotically on the Unicellular Red Alga Porphyridium sp. European Journal of Phycology, 32(2): 133-140.
    Vargo G, Heil C, Fanning K, Dixon L, Neely M, Lester K, Ault D, Musasko S, Havens J, Walsh J and others. 2006. Nutrient Availability in Support of Karenia Brevis on the Central West Florida Shelf: What Keeps Karenia Blooming? Continental Shelf Research, 28(1): 73-98.
    Wang Y, Yu Z M, Song X X, Zhang S D. 2006. Interactions between the Bloom-Forming Dinoflagellates Prorocentrum donghaiense and Alexandrium tmarense in Laboratory Cultures. Journal of Sea Research, 56(1): 17-26.
    Wilcox L W, Wedemayer G J. 1991. Phagotrophy in the Fresh-Water, Photosynthetic Dinoflagellate Amphidinium cryophilum. Journal of Phycology, 27(5): 600-609.
    Yamaguchi M. 1994. Physiological Ecology of the Red Tide Flagellate Gymnodinium nagasakiense (Dinophyceae). Mechanism of the Red Tide Occurrence and Its Prediction. Bulletin of the Nansei National Fisheries Research Institute 27: 251-394.
    Yang W D, Xie J, van Rijssel M, Li H Y, Liu J S. 2010. Allelopathic Effects of Alexandrium spp. On Prorocentrum Donghaiense. Harmful Algae, 10(1): 116-120.
    Yin J, Xie J, Yang W D, Li H Y, Liu J S. 2010. Effect of Alexandrium tamarense on Three Bloom-Forming Algae. Chinese Journal of Oceanology and Limnology, 28(4): 940-944. Yoo Y D, Jeong H J, Kim M S, Kang N S, Song J Y, Shin W, Kim K Y, Lee K. 2009.
    Feeding by Phototrophic Red-Tide Dinoflagellates on the Ubiquitous Marine Diatom Skeletonema costatum. Journal of Eukaryotic Microbiology, 56(5): 413-420.
    Zhu M, Li R. 1997. Harmful Algal Blooms in China Seas. Ocean Research, 19(2): 173-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700