用户名: 密码: 验证码:
矿物近红外光谱信息提取及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文对矿物近红外光谱信息提取及应用开发进行了研究,阐明了近红外光谱分析原理及矿物吸收机理,研究了常见矿物近红外光谱特征,以层状硅酸盐矿物为研究对象,建立了蒙脱石、绢云母、绿泥石等矿物配制组合近红外光谱定量标准模型,高岭石、埃洛石红外光谱及X 衍射分析标定标准模型。
    提出了以光谱吸收特征参数为统计变量的多元回归、逐步回归矿物定量分析方法。
    应用相关分析方法计算样品原始曲线与标准定量分析模型曲线组中每条曲线的相关系数,求得的相关系数最大者为匹配输出分析结果的矿物定量分析方法。
    探讨了以蚀变矿物近红外光谱定量研究为基础的金矿化有利度估计模型和废弃物煤矸石资源转化评价模型。
    本研究为近红外光谱信息提取及矿物成分定量化提供了切实可行的方法,为近红外光谱分析技术的发展和实际应用提供了新的方向和途径。
Near-Infrared Spectroscopy (NIRS) would occur when there were absorption
    due to overtone and combination bands originating from fundamental molecules vibrations. The spectrum includes information mainly to C-H、N-H、S-H and O-H groups in compound. Modern NIRS analysis technology are composed of infrared spectrometer, Chemometrics software and applications model. Compared to traditional methods, NIRS technology has a lot of advantages. The advantages includes it need no pretreatment to the sample, no chemistry reagent.It can fulfill measurement in a few seconds, does no harm to the sample, makes no pollution to the sample and environment. The penetrability of the infrared spectrum is very strong, its energy is lower than visible lights, and thus it does no harm to human body. In a word, the NIRS analysis technology has the characteristic of high efficient, low expenditure, and no pollution. The majority of minerals have vibrant absorption in infrared band. Infrared spectrometer allows identification of minerals whose spectrum is alternative. So NIRS analytical instrument can fulfill distinguishment between most minerals in the open field, it is especially efficient for minerals that are rich in water. There is series of puzzles in NIRS analytic Technology. The key of the technology is that the near-Infrared spectrum, as the sources of information, have low effective information and to analyze the complex samples with NIRS is to extract slender information from complicated, overlapping, alternant spectrum. So extracting effective information from NIR spectrum and optimizing the original spectrum data are crucial to develop ideal mathematical model in NIRS. This paper, combined with Chinese geologic investigation item“The study of the field minerals NIRS analysis method and development of instrument”, “The study of applications calcineed kaolin resource in coal measures strata in Jilin”(item number:3J101093401) and Jilin university innovation fund item“The study of the soil environment Near-Infrared detection information analysis system in situ”,
    taking layer silicates minerals as the object of study, uses signals analysis method and data analysis theory to extract characteristic information from NIR spectrum. The aims of the study are to offer methods to solve several questions about mineral analysis and its application. The main methods and results of this paper are: 1.The NIR spectral features of major minerals, which have molecule of H2O, Al-OH and Mg-OH groups in the compound, were systematic summarized after the NIRS analytic principle, absorption principle of electronic processes and vibration processes were briefly addressed. Then drawn the conclusion that distinguishing the peak position of the spectrum absorption is an important method for identifying minerals. 2.Collecting representative spectrum of different content layer silicates samples with high distinguishable scanner. The original spectrum with abundant information is obtained. montronite, sericite, gaolinite and halloysite were used as the analytical samples for the model. NIRS quantitative model was set up by compounds comprise of montronite and sericite which were constituted by different percentages.NIR standard models of gaolinite and halloysite were set up by the results analyzed by IR and XRD methods. 3. Montronite and Sericite compound Samples that are mixed up of different percentages are used in the study. The NIR spectrum information extracted from the compound (include the position, depth, area and symmetrical degree of the peak spectrum) are used to optimize original data. By the characteristic parameter based on the spectrum information, this paper also advanced and established regression analysis,stepwise regression analysis mathematical model. The paper also addressed actual effect of the method. 4. Using correlation analysis technology to calculate forecasted correlation
引文
[1] Stark E., Luchter K. Near-Infrared Analysis:A Technology for Qantitative and Qanlititive Analysis, Applied Spectroscopy Review, 1986, 22 (4): 335-339
    [2] 吴瑾光.近代博里叶变换红外光谱技术及应用(上卷),北京:科学技术文献出版社,1994, 251-281
    [3] Herschel W. Investigation of the Powers of the smatic Colours to heat and illuminate Objects;with Remarks that prove the diferent Refrangibility of radiant Heat. To which is added an Inquiry into the Method of viewing the Sun advantageously with Telescopes of large Apertures and high magnifying Powers,Phil-osophical Transactions, 1800, 90:255-326
    [4] Abney W, Festing, E. R. On the Influence of the Atomic Grouping in the Molec-ules of Organic Bodies on their Absorption in the hrfia-Red Region of the Spectrum, Philosophical Transactions, 1881, 172: 887
    [5] F.S.Brackett. Proc. Nafl. Acad. Sci. 1928,14:857
    [6] W Kaye. Theory and principles of near infrared spectroscopy, Spectrochim Acta, 1955, 7:181
    [7] Ben-Gera I., K.H. Norris. Direct spectrophotometric determination of fat and moisture in meat products, Journal Food Science, 1968, 33:64
    [8] 梁逸曾,俞汝勤.分析化学手册第十分册一化学计量学,北京:化学工业出版社,2000, 207-211
    [9] Bitmer A., Marbach R., Heise H. M. Multivariate Calibration for Protein, Cholesterol and Triglycerides in Human Plasma Using Short-Wave Near Infrared Spectrometry,Journal of Molecular Structure, 1995, 349: 341-344
    [10] Mark R. Robinson, Noninvasive glucose monitoring in diabetic patient: a preliminary evaluation, Clinical Chemistry, 1992, 38 (9): 1618-1622
    [11] Shengtian Pan, Hoeil Chung, Mark A.Amold. Near-Infrared spectroscopic measurement of physiological glucose level in variable matrics of protein and triglycerides, Anal.Chem., 1996,68(7):1124-1135
    [12] 袁洪福,陆婉珍.近红外光谱分析技术正在快速进入石油化工领域,石油炼制与化工, 1998, 29(9):47-50
    [13] Kim Minjin, Lee Young-Hak, Han Chonghun. Real-time classification of petroleum products using near-infrared spectra, Computers and
    Chemical Engineering, 2000, 24 (2):513-517
    [14] Aske Narve, Kallevik Harald, Sjoblom Johan. Water-in-crude oil emulsion stability studied by critical electric field measurements. Correlation to physico-chemical parameters and near-infrared spectroscopy, Journal of Petroleum Science and Engineering, 2002, 36 (1):1-17
    [15] Mc Caig, T.N. Extending the use of visible/near-infrared reflectance spectrophotometers to measure color of food and agricultural products, Food Research International, 2002,35(g):731-736
    [16] De Boever J. L,Cotyn B.Q, De Brabander D. L,et al. Prediction of the feeding value of grass silages by chemical parameters, in vitro digestibility and near-infrared reflectance spectroscopy, Animal Feed Science and Technology, 1996, 60 (1): 103-115
    [17] Woo, Young-Ah, Kim. Hyo-Jin, Cho. Jung Hwan. Identification of Herbal Medicines Using Patern Recognition Techniques with Near-Infrared Reflectance Spectra, MicrochemicalJournal, 1999, 63(1): 61-70
    [18] Woo, Young-Ah, Kim. Hyo-Jin, Cho. Jung Hwan. Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques, Journal of Pharmaceutical and Biomedical Analysis, 1999, 21 (2): 407-413
    [19] Fearn T, Hindle H. Practical NIR spectroscopy with application in food and beverage analysis, NewYork: Longman Scientific & Technical, 1993.99-141.
    [20] 陈斌,方如明.食醋主要成分近红外光谱快速测定法,食品科学,2000, 21(5): 55-57
    [21] Marie-France Laporte, Paul Paquin. Near-Infrared Analysis of Fat, Protein, and Casein in Cow's Milk, Journal of Agricultural Food Chem., 1999,47:2600-2605.
    [22] Elena Albanell, Paloma Caceres, Gerardo Caja et al. Determination of Fat, Protein, and Total Solids in Ovine Milk Near-Infrared Spectroscopy, Journal of AOAC International, 1999, 82(3):753-757
    [23] Slobodan Sasic, Yukihiro Ozaki. Short-Wave Near-Infrared Spectroscopy of Biological Fluids. 1. Quantitative Analysis of Fat, Protein, and Lactose in Raw Milk Partial Least-Squares Regression and Band Assignment, Analytical Chemistry, 2001, 73(1):1-6
    [24] 赵锁劳,彭玉魁.我国黄土区土壤水分、有机质和总氮的近红外光谱分析,分析化学,2002, 30(8): 978-980
    [25] Price, J., Long, J. Method and apparatus for biological fluid analyte concentration measurement using generalized distance outlier detection, Environment International, 1997, 23 (5):5-6
    [26] Malley Diane F. Near-infrared spectroscopy as a potential method for routine sediment analysis to improve rapidity and eficiency, Water Science and Technology, 1998,37 (6):181-188
    [27] 李庆波,汪喻,徐可欣等.牛奶主要成分含量近红外光谱快速测量法,食品科学,2002, 23 (6): 121-124
    [28] G Abraham, P Gabor, A. C. Sidney.Near Infrared Spectroscopy: The Future Waves, NIR Publications, 1996, 323-327
    [29] M Kathlen.Near Infrared Spectroscopy: The Future Waves, NIR Publications, 1996,328-333
    [30] J.Tong, M. Meurens, and H. Noel. Near Infrared Spectroscopy: The Future Waves, NIR Publications, 1996,334
    [31] Watanabe Eiju, Yamashita Yuichi, Maki Atsushi, et al. Cerebral blood flow measurement during epilepsy using multi-channel near infra-red spectroscopic topography, Neuroscience Research, 1997, 28(Supplement 1):300
    [32] Yoxall C. W.,Weindling A. M. Measurement of peripheral venous oxyhaemoglobin saturation by near infra red spectroscopy and venous occlusion, Early Human Development, 1995, 41(3): 231
    [33] Valyi-Nagy Istv Kaflka Karoly J,Jake Janos M, et al., Application of near infrared spectroscopy to the determination of haemoglobin, Clinica Chimica Acta, 1997, 264 (1): 117-125
    [34] 李庆波,徐可欣.血糖无创伤光学检测的进展,世界医疗器械,2002, 8(7): 56-59
    [35] 彭玉魁,张建新,何绪生,等.土壤水分、有机质和总氮含量的近红外光谱分析研究.土壤学报,1998,35(4):553-559
    [36] 于飞健,闵顺耕,巨晓棠等.近红外光谱法分析土壤中的有机质和氮素.分析实验室,2002,21(3):49-51
    [37] 郭立鹤,林兴源,聂风军等.土壤中水、有机碳及矿物组成的近红外光谱分析,傅立叶红外光谱仪技术及应用论文集.南京:布鲁克光谱仪器公司,2001.27-30
    [38] 龙梅, 裴世桥.近红外反射光谱学在岩石矿物研究中的应用Ⅰ.快速测定地质样品中化合水.岩矿测试. 2003,22 (3):169-173
    [39] 龙梅, 裴世桥.近红外反射光谱学在岩石矿物研究中的应用Ⅱ.快速测定地质样品中有机质.岩矿测试.2004,23(1):6-10
    [40] 燕守勋,张兵等.矿物与岩石的可见—近红外光谱特性综述. 遥感技术与应用.2003.18(4):191-201
    [41] 须藤俊男.粘土矿物学, 北京:地质出版社北京:1981,34-40
    [42] 浦瑞良,宫鹏.高光谱遥感及其应用[M].高等教育出版社,2000
    [43] 刘树深,易忠胜.基础化学计量学,北京:科学出版社,1999,100-107
    [44] 许禄.化学计量学方法,北京:科学出版社,143-149
    [45] 苏金明,傅荣华,周建斌等.统计软件SPSS系列应用实战篇,北京:电子工业出版社,288-290
    [46] 郑咏梅.基于逐步回归法的近红外光谱信息提取及模型的研究, 光谱学与光谱分析,2004,24卷(4),75-78
    [47] 王学民.应用多元分析,上海:上海财经大学出版社,1999,218-220
    [48] Hunt G R,Salisbury JW.Visible and near-infrared spectra of mineral and rock.Modern Geology,1979,2:23-30
    [49] Marsh S E,Mckeon J B. Integrated analysis of high resolution field and airborne spectroradiometer data for alteration mapping.Economic Geology,1983,78:681-692
    [50] 张华安,朱永豪.土壤中粘土矿物的反射光谱定量分析,国土资源遥感,1994,2:52-54
    [51] 张宗贵.用近红外及短波红外反射波谱编码方法识别蚀变粘土矿物,国土资源遥感,1995,3:40-46
    [52] 张佩民,王光伟,吕永昌.浙东南地区与金银矿床有关的几种热液蚀变矿物反射光谱特征及其信息提取,国土资源遥感,1994(1): 37-44
    [53] 施立达,李存有.成矿溶液电导度找金试验研究[J].地质科技情报,1998,17(增刊):121-124
    [54] 武子玉,李书法,刘斌.刺猬沟金矿石英找矿矿物学研究,吉林大学学报[地球科学版],2004,34 卷(3):356-359
    [55] 武子玉,吴国学,刘斌.刺猬沟金矿石英包裹体成矿溶液电导度和红外光谱找矿标型,物探与化探,2004,28 卷(6):546-548
    [56] 武子玉,王洪波,周永昶.黑龙江三道湾子金矿床地质特征及成因,地质论评,2005,51 卷(3) :289-293
    [57] 武子玉,周永昶.成矿溶液电导度和红外光谱在金矿找矿评价中的应用,地质与勘探,2005,41 卷(2):60-62
    [58] Clayton R N and O’Neil J R.Oxygen isotope exchange between quartz and water[J].J.Geophys.Res., 1972,77:3057-3067
    [59] Taylor H P. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits [A].New York:Wiley Intersci. 1979,236-277
    [60] Taylor H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal altreation and deposition [J].Econ. Geol., 1974,69:843-880
    [61] Bodnar R J.Revised equation and stable for determining the freeing point depression of H2O –Nacl solutions [J].Geochimica et Cosmochimic Acta ,1993,57(3):683-684
    [62] 张理刚.稳定同位素在地质科学中的应用[M],西安:山西科学技术出版社. 1985.267
    [63] 芮宗瑶,李荫清,王龙生等.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质,2003,22(1):13-23
    [64] 姜开君,周永昶,王海金,万玉胜.延边地区刺猬沟低温热液金矿床地球化学研究.长春地质学院学报, 1993.23(2):167-168
    [65] 孟庆丽,周永昶,柴社立.中国延边东部斑岩-热液脉型铜金矿床.长春:吉林科学技术出版社.2001,118
    [66] 康震野.砟子煤矿区硬质高岭(土)岩生产高白度煅烧高岭土工艺研究,吉林地质,2000,(4):63-69
    [67] 曹明礼,袁继祖,荣葵一.硬质高岭土煅烧及添加剂增白的研究,金属矿山,1999,(4):41-43
    [68] 武子玉,周永昶.吉南地区不同沉积环境原煤微量元素地球化学特征,岩石矿物学杂志,2004,23 卷(4):361-364
    [69] 国家建筑材料工业局地质公司.中国高岭土矿床地质学[M].上海:上海科学技术文献出版社,1984
    [70] 易发成,陈廷芳,钱光人等.利用埃洛石制备4A沸石分子筛,矿产综合利用,1997,(4):25-28
    [71] 任玉林,丙春亭,途家辉.近红外漫反射光谱的主成分分析,光谱学与光谱分析,1996,16(5):31-35
    [72] 任玉林,张滨,郭哗等.近红外光谱法对液态样品的非破坏分析,光谱学与光谱分析,1997,17(1):50-54
    [73] 袁洪福,陆婉珍.现代光谱分析中常用的化学计量学方法,现代科学仪器,1998,5:6-9
    [74] 褚小立,袁洪福,陆婉珍.光谱多元校正中的模型传递,光谱学与光谱分析,2001,21(6):881-885
    [75] 徐广通,袁洪福,陆婉珍.近红外光谱定量校正模型适用性研究,光谱学与光谱分析,2001,21(4):459-463
    [76] 褚小立,袁洪福,陆婉珍.普鲁克分析用于近红外光谱仪的分析模型传递, 分析化学,2002,30(1):114-119
    [77] 张军,郑咏梅,王芳荣,陈星旦.谷物近红外光谱分析中常用数据处理方法

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700