用户名: 密码: 验证码:
铁浴碳—氢复吹终还原反应器动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炼铁工序是钢铁生产中为炼钢提供原料的关键工序。21世纪钢铁企业的发展面临着地球资源与环境形势的严峻挑战。这就要求钢铁企业不仅在现有流程的基础上开发各种能源资源节约、污染排放治理过程控制等技术,而且还要研究开发新型钢铁生产流程技术,其中熔融还原可直接使用非焦煤和铁矿粉,与高炉相比具有更大的原料适应性。但是单纯煤基的熔融还原炼铁工艺仍然具有较高的单位能耗及二氧化碳排放。上海大学现代冶金与材料制备重点实验室在已有研发成果的基础上提出铁浴碳—氢复吹熔融还原工艺路线,其基本思想是在铁浴熔融还原反应中以氢为主要还原剂、以碳为主要发热剂,从而达到降低总能耗和CO2气体排放的目标。
     针对自主创新的铁浴碳—氢复吹熔融还原金属氧化物工艺,本文首先研究开发建立在物料—能量衡算基础上的衡算模型。该模型可根据不同的工况输入原料、产品铁水、冶炼用煤等成分参数和矿/渣比、富氧率、二次燃烧率等操作参数进行衡算,既可作为冶炼工艺参数优化的依据,同时也为氢—碳复合熔融还原反应器的动力学模拟提供基础。
     根据铁浴碳—氢还原反应器的动力学特性,首次提出并采用分区多流的建模思路,将整个反应区域分为五区二流,即:二次燃烧区、多相乳化液滴区、侧吹燃烧区、底吹氢气区、金属熔池区、顶部矿料流和侧吹矿/煤流,然后采用分区建模和综合集成的方法研究该新型反应器的冶金动力学特性。其中各个区域分别结合了氢气气泡分布与还原、金属液滴含碳变化与还原以及碳粒缩核还原与燃烧等模型,将发生在固、液、气多项共存混合物中的温度场和物质浓度场变化与化学反应相耦合。各个区域间的边界和初始条件主要体现在各反应区与相邻区交界处物质与能量梯度及变化的相容性。区域模型经耦合叠加后构成整体模型,再经过控制容积法离散化处理后编制软件用于数值模拟计算。
     本文重点结合800kg级扩大的实验室热态模拟试验用于检验模型计算结果。结果表明,模型计算验证点浓度和温度均与实测值基本吻合,其分布和变化趋势与实际情况基本相符,从而验证了模型基本可靠,为日后更大规模的工业化试验打下了坚实的理论基础。
     本文还采用衡算模型及动力学模型分别对设想中的万吨级试验炉进行计算分析。衡算模型计算为动力学模型计算提供了设定产能下所需加入原料量、造渣剂量、还原剂量等基本的数据参数,动力学模型可计算出二燃率、碳氢比等参数对瞬时产能、金属收得率和单位能耗等影响,同时还可对冶炼过程中的温度和浓度分布进行预测和评估,为万吨级工业化试验提供理论指导和数据支持。
Ironmaking is one of the most important operation in steel industry and provides the moderate materials for steel-making. In 21st century, the development of iron and steel industry is restricted with the challenge of environmental protection. It is a requirement for steel enterprises to research not only new control technology of all kinds of emissions and new manage technology of harmful waste on the basis of available process,but also innovating process of iron and steel production. Compared with the blast furnace, in smelting reduction non-coking coal and fine iron ore can be directly used, but the emission rate of carbon dioxide and unit energy consumption are still high in this technology which purely relied on coal. Based on achievement of Shanghai Enhanced Laboratory of Modern Metallurgy & Materials Processing, one research direction focused on reduction of metal oxides with H2-C mixture in a smelt bath has been carrying on. The basic idea of H2-C mixture reduction reflexes using hydrogen as main reductant and carbon as main heat generator in iron bath smelt reduction reactors on purpose to cut down total energy consumption and CO2 emission protect the environment.
     Aimed at independently innovated reduction technology of metal oxides with H2-C mixture, this thesis put forward firstly the thought to develop a balance model based on mass and heat balancing. This model can be used for balance calculation with input of composition parameters such as raw material, hot metal and coal, as well as operation parameters such as ratios of ore to slag,enrichment of oxygen and post combustion. Not only the accordance for process optimization, but also a foundation for kinetic model of metal oxides reduction in an iron bath reactor with H2-C mixture can be provided from the model.
     According to the kinetic characteristics, a thought of modeling method with multiple regions and fluxes was originally proposed. The reactor was separated into five regions and two fluxes, which are regions of post combustion, emulsification, side-blowing combustion, hydrogen bottom-blowing, smelt metal pool, fluxes of top ore and carbon side-blowing. Then part-models in different regions were built from theories for solid-liquid, solid-gas and gas-liquid reactions combining theories of shrinking core, combustion and deoxidization etc, and changes of temperature and concentration were coupled with chemical reaction which took place in solid, liquid and mixed gas phases. Then complex integration was adopted to reveal the kinetics behavior of this new metallurgical reactor. Boundary and initial conditions of all regions reflexes the compatibility of substance and energy aviations between different regions. After discretization treatment with Control-Volume-Method, the model was programmed for numerical simulation.
     Furthermore, a scaled-up laboratory experiment with capacity of 800kg was applied for the purpose of verifying the model reliability. The results showed that calculated contents and temperatures at given points were basically similar to the experimental values. The fluctuant range of the values around the calculation curve was small enough to testify the reliability of the kinetic model. These results laid a theoretical foundation for further industrial experiments.
     The applied target of theoretical modeling and numerical simulation was analysis and prediction for an enlarged experiment. The author used the balance model and kinetic model separately to simulate the million tons grade production in imagining. The balance model provided elementary coefficients for the kinetic model used to calculate the transient production, temperature distribution, unit energy consumption etc. The kinetic model was also used to estimate the important coefficients such as ratios of post combustion and carbon to hydrogen etc, providing in the future theoretical guidance and data support for industrial tests with a scale of million tons.
引文
[1]殷瑞钰.绿色制造与钢铁工业[J].钢铁, 2000, 35(6): 61~65.
    [2] M.I.Hoffert et al. Energy Information Administration[R]. International Energy Outlook 2004, rep.no.DOE/EIA—0484 (2004), Nature 395, 891(1998).
    [3]郑少波,洪新,徐建伦等.新型竖式熔化—还原炉的构想[J].包头钢铁学院学报, 2001, 20(3): 261~265.
    [4] Jonathan Edelson, American Patent, USPatent5464464.
    [5]王太炎,王少立,高成亮.试论氢冶金工程学[J].鞍钢技术, 2005, (1): 4~8.
    [6]徐匡迪.低碳经济与中国钢铁工业发展[R].第七届中国钢铁年会, http://www.chinaisa.org.cn/news.php?id=2157615.
    [7]徐匡迪.钢铁冶金方向[R].中国材料名师讲坛:http://tech.sina.com.cn/other/2004-07-21/1009390928.shtml.
    [8]徐匡迪.国家重大项目“新一代可循环钢铁”课题启动[N].新浪财经, http://finance.sina.com.cn/g/20070620/10231486538.shtml.
    [9]江志刚,张华.钢铁企业实施绿色制造技术的策略研究[J].冶金设备, 2005, (2): 44~47.
    [10]江志刚.绿色炼铁工艺特性分析及前景展望[J].冶金设备, 2007, 10(5): 38~41.
    [11]赵庆杰.高炉炼铁生产的清洁化[J].鞍钢技术, 2003, (4): 1~4.
    [12] (中)周渝生.煤基熔融还原炼铁新工艺发展动态评述[J].世界钢铁, 2005, (1): 1~9.
    [13] BEICHUAN Rong, LIAO Jian-guo, LIU Xing. The Status of Smelting Reduction Ironmaking[J]. Mordern Metallurgy, 2003, (2): 4~13.
    [14]张殿伟,郭培民,赵沛.现代炼铁技术进展[J].钢铁钒钛, 2006, 27(2): 26~47.
    [15]周渝生.煤基熔融还原炼铁新工艺开发现状评述[J].钢铁, 2005, 40(11): 1~8.
    [16]方觉等.非高炉炼铁工艺与理论[M].北京:冶金工业出版社, 2002: 18~29.
    [17]黄希枯.钢铁冶金原理[M].北京:冶金工业出版社, 1997: 158~167.
    [18]陈津,林万明,赵晶.非焦煤冶金技术[M].化学工业出版社, 2007, 1: 27~28.
    [19]殷瑞钰.中国钢铁工业的回顾与展望[J].鞍钢技术, 2004, (4): 1~6.
    [20]刘浏.熔融还原炼铁新工艺的发展与展望[C].钢铁冶金的前沿技术,冶金工业前沿科技信息研究班专集,2000: 25~31.
    [21]赵庆杰,王治卿,董文献.我国直接还原铁生产现状及发展[J].包头钢铁学院学报, 1999, (18): 383~386.
    [22]刘际昌. AISI直接炼钢工艺[J].山东冶金, 1991, (2): 77~79.
    [23] R.J.Fruehan.对先进熔融还原工艺关键点的评价[J].鞍钢技术, 2004, (4): 48~57.
    [24]刘日新,许志宏.熔融还原技术最新进展[J].矿冶, 1997, 6(2): 68~84.
    [25]周渝生,陈宏.HIsmelt熔融还原工艺的现状与评析[J].世界钢铁, 2001, (5): 1~9.
    [26] Hard., GT,徐新华. HIsmelt工艺阶段进展报告[J].世界钢铁, 1996, (4): 17~22.
    [27] Keogh, JV,易文殊. HIsmelt工艺的发展[J].烧结球团, 1993, (18): 45~51.
    [28]杨雪峰,张竹明,唐启荣等.昆钢应用HISmelt工艺的可行性[J].昆钢科技, 2005, (4): 1~4.
    [29]刘文运,王学峰. HIsmelt工艺及技术[J].鞍钢技术, 2004, (3): 16~19.
    [30]徐书刚,李子木,吕庆. HImelt熔融还原炼铁技术考察与分析[J].炼铁, 2007, 26(5): 59~62.
    [31] Reza Husain, Jan Weckes. HIsmelt工厂用铁矿石的预加热和预还原[J].设计通讯, 2004, (1): 67~70.
    [32]杨天钧,黄典冰,孔令坛.熔融还原[M].北京:冶金工业出版社, 1998: 85~103.
    [33]杨天钧,刘述临.熔融还原技术[M].北京:冶金工业出版社, 1991: 50~97.
    [34] M. GOJIC, S. KOZUH. Development of Reduction Processes for the Steel Production[J]. Kem. Ind. 2006, 55(1): 1~10.
    [35] Sanjay Sengupta. Emerging steel technologies[J]. Steelworld, 2005, 4(5): 5~9.
    [36] Sajtsev, A.K.,Krivolapov, A.K.,Valavin, V.S.,Vandar’ev,S.V., Poletaeva, A.A. Morphology, structure, and properties of foamy slag in Romelt furnace[J]. Stal, 2001, (11): 71~76.
    [37] Senqupta, Sanjay. First Romelt plant for India[J]. Steel Times Int, 2004, 28(3): 39~44.
    [38] Romenets, V.A. Romelt process[J]. Iron Steelmaker I&SM, 1995, 22(1): 37~41.
    [39] Romelt offers flexible single step hot metal without coke[J]. Steel Times Int, 1996, 20 (1): 40~45.
    [40] Jong-Leng LIOW. Sloshing of Melts in a Bath Smelting Process Having an Elliptic Cross Section[J]. ISIJ International, 2002, 42(7): 694~701.
    [41] David Sherrington, Ross McClelland, Greg Campbell. The AusIron Direct Smelting Technology[J]. AISE, Pittsburgh, PA, 2002: 48~57.
    [42] Liqhtfoot, B.W., Arthur, Neill F.. Development of the Ausiron process[J]. Proceedings of the 1996 International Symposium on Injection in Pyrometallurgy, 1996: 325~334.
    [43] Anon, AusIron. A new smelter for South Australia[J]. Steel Times Int, 2001, 25(2): 13~19
    [44]麦炽昌. 30吨转炉的物料平衡和热平衡[J].首钢科技, 1993, (10): 5~8.
    [45] A.M.彼格耶夫.炼钢过程的数学描述与计算[M].冶金工业出版社, 1998: 10~58.
    [46]邓志贤. rd计算的简化及其讨论[J].马钢科研, 1989, (2): 39~46.
    [47]那树人.炼铁计算[M].北京:金工业出版社, 2005: 102~171.
    [48]曹英,朱宏利,魏季和等.不锈钢AOD精炼过程热量衡算模型的进展[J].上海金属,2005,27, (3): 46~49.
    [49]郑兆平,曾汉生,蒋扬虎等.大型转炉物料平衡及热平衡测定[J].冶金能源, 2002, 21(5): 59~62.
    [50]胡继孟,刘定邦.低V—Ti铁水炼钢物料平衡与热平衡计算[J].重钢技术, 1991, (5): 63~96.
    [51] Dongke Ma等.高炉富氧鼓风煤粉喷吹时的热平衡和物料平衡[J].昆钢科技, 1995, (4): 28~42.
    [52]师志宏.广钢8t转炉的物料平衡与热平衡[J].冶金丛刊, 1995, (6): 1~6.
    [53]王臣,周继良,皱宗树等. COREX工艺静态模型的开发和应用[J].材料与冶金学报, 2007, 6(3): 169~173.
    [54]王道净,陈华,李秋菊等.铁矿微粉低温快速氢还原实验研究[J].过程工程学报, 2007, 7(4): 706~711.
    [55]周校平,燃烧理论基础[M].复旦大学出版社, 2001: 133~154.
    [56]李保卫,贺友多.顶吹转炉内流动、燃烧及传热的一个数学模型[J].包头钢铁学院学报, 1994, 13(4): 30~40.
    [57] M.K.SHIN, S.D.LEE, S.H.JOO, J.K.YOON. A Numerical Study on the Combustion Phenomena Occurring at the Post Combustion Stage in Bath-type Smelting Reduction Furnace[J]. ISIJ International, 1993, 33(3): 369~375.
    [58] A.M.Kanury. Introduction to Combustion Phenomena[M]. Gordon and Breach Science Publisher, N.Y., 1975: 81~97.
    [59]傅维镳.燃烧学[M].高等教育出版社, 1989: 62~104.
    [60]高执棣.化学热力学基础[M].北京大学出版社, 2006: 61~87.
    [61]华一新.冶金过程动力学导论[M].北京:冶金工业出版社, 2004: 144.
    [62] Suhas V.Patankar. Numerical Heat Transfer and Fluid Flow[D]. McGraw Hill, 1980: 113~135.
    [63]韩旭,彭一川,肖泽强.倾斜侧吹粉气流在熔池中射流轨迹的研究[J].东北大学学报(自然科学版), 1995, 16(6): 579~583.
    [64]詹树华,赖朝斌,肖泽强.侧吹金属熔池内的搅动现象[J].中南工业大学学报(自然科学版), 2003, 34(2): 34~39.
    [65]黄宗泽,肖兴国,肖泽强.固体碳还原熔渣FeO反应的动力学研究[J].东北大学学报(自然科学版), 1994, 15(2): 140~144.
    [66] Dener Martins dos Santos, Marcelo Breda Mourao. High-temperature reduction of iron oxides by solid carbon or carbon dissolved in liquid iron–carbon alloy[J]. Scandinavian Journal of Metallurgy, 2004,33(4): 229~235.
    [67] V. S. T. Ciminelli,K. Osseo-Asare.Kinetics of Pyrite Oxidation in Sodium HydroxideSolutions[J]. Metallurgical and Materials Transactions B, 1995, 26(4): 677~685.
    [68] R. D. MORALES,H. RODRIGUEZ-HERNANDEZ, P. GARNICA-GONZALEdZ , J.A. ROMERO-SERRANO. A Mathematical Model for the Reduction Kinetics of Iron Oxide in Electric Furnace Slags by Graphite Injection[J]. ISIJ International, 1997, 37 (11):1072~1080.
    [69] Y.Ogawa, D.Huin, H.gaye and N. Tokumitsu[J]. ISIJ Int, 1993, (33): 224.
    [70] M.S.Bafghi, Y.Ito, S.Yamada and M.Sano[J]. ISIJ Int., 1992, (32): 1280.
    [71] P.Wei, M.Sano, H.Hirasawa and K.Mori[J]. ISIJ Int., 1991, (31): 358.
    [72] L.R.FARIAS and G.A.IRONS[J]. Metall.Trans.B, 1985, (16B): 211.
    [73] W. O. Philbrook , S. K. Tarby[C]. Trans. TMS-AIME, 1963, (227): 1039~1044.
    [74] I.D. Sommerville, M. Rishea, A. McLean.The reduction of iron oxide from slag by carbon in iron Technology Division Conf. [J]. ISS, Warrendale, PA, 1995, 14(1): 25~36.
    [75] PANWeil, MasamichiSAN, Masahiro HIRASAWA.Kinetics of Carbon Oxidation Reaction between Molten lron of High Concentration and lron Oxide Containing Slag[J]. ISIJ International, 1991, 31(4): 358~365.
    [76] S. L. TEASDALE, P. C. HAYES.Kinetics of Reduction of FeO from Slag by Graphite and Coal Chars[J]. ISIJ International, 2005, 45(5): 634~641.
    [77] B. Sarma, A. W. Cramb and R. J. Fruehan: Metall. Mater. Trans. B, 27B, 1996, 717.
    [78] B. Bhoi, A. K. Jouhari, H. S. Ray and V. N. Misra. Smelting reduction reactions by solid carbon using induction furnace: foaming behaviour and kinetics of FeO reduction in CaO–SiO2–FeO slag[J]. Ironmaking and steelmaking , 2006, 33: 245~252..
    [79] K. Seo, R. Fruehan[J]: ISIJ Int., 2000, (40): 7.
    [80] T. B. Massalski.Binary Alloy Phase Diagrams, 2nd ed.[M].ASM Int: Materials Park, OH, 1990: 842.
    [81] J.C LEE, D.J MIN, S.S KIM.Reaction Mechanism on the Smelting Reduction of Iron Ore by Solid Carbon[J].METALLURGICAL AND MATERIALS TRANSACTIONS B, 1997, 28(6): 1019~1028.
    [82] D.J. Min.The 6th Proc. Process Metallurgy[M]. Pohang City, Korea, The Korean Institute of Metals, Seoul, Korea. 1993: 107.
    [83] Fumitaka TSUKIHASHI, Kimio KATO, Ken-ichi OTSUKA. Reduction of Molten Iron Oxide in CO Gas Conveyed System[J]. Transactions ISIJ, 1982, (22): 688~695.
    [84] Y. LI, I.P. RATCHEV, J.A. LUCAS, G.M. EVANS, the late G.R. BELTON.Rate of Interfacial Reaction between Liquid Iron Oxide and CO-CO2[J].Metallurgical and Materials Transactions B, 2000, 31(5): 1049~1057.
    [85] Shoji HAYASHI, Yoshiaki IGUCHI.Hydrogen Reduction of Liquid Iron Oxide Fines in Gas-conveyed Systems[J]. ISIJ International, 1994, 34(7): 555~561.
    [86]沈巧珍,杜建明.冶金传输原理[M].北京:冶金工业出版社, 2008: 193.
    [87] Y. Zhang. R. J. Fruehan.Metall[J]. Trans. B, 1995, (26B): 813.
    [88]韩其勇.冶金过程动力学[M].北京:冶金工业出版社, 1983: 167.
    [89]杨建炜.高Al2O3高炉渣冶金性能的研究[A].河北:河北理工大学, 2005: 17~20.
    [90]郭杰.碳氢混合还原熔融氧化铁的实验研究[D].上海:上海大学, 2010: 50~54.
    [91] Neil Goodman, Rod Dry. HIsmelt process[J]. Steel & Metallurgy. 2009, (7): 8~13.
    [92]谭灿樂,吴阿峰. 700MW机组锅炉混煤燃烧数值模拟[J].重庆电力高等专科学校学报, 2008, 13(4): 13~14.
    [93]谢树元,杜斌,林云,马志刚,刘勇. LF炉过程控制模型的开发与应用[J].冶金自动化, 2006,增刊(S2): 47~50.
    [94]林云,谢树元,杜斌,黄可为. RH精炼控制模型系统的设计与实现[J].冶金自动化, 2008, 32(1): 12~17.
    [95]张超群,于立军,崔志刚,姜秀民.超细与常规煤粉燃烧动力学特性及计算分析[J].化工学报, 2005, 56(11): 2189~2194.
    [96]王琼,吉跟林,陈波,周俊生,于泠.递归算法的教学与程序调试能力的培养[J].学科建设与教学改革, 2008, 23: 76~79.
    [97]李晖,汪晋三.环境中对流、扩散问题的控制容积离散方法及应用[J].海洋环境科学, 1996, 15(4): 1~7.
    [98]周俊虎,平传娟,杨卫娟,刘建忠,程军,岑可法.混煤燃烧反应动力学参数的热重研究[J].中国动力工程学报, 2005, 25(2): 207~230.
    [99]陈鸿伟,杨官平,杨勇平,王顶辉.基于控制容积面值的对流扩散差分格式[J].中国电机工程学报, 2007, 27(5): 105~110.
    [100]刘应征,陈汉平.交错网格下的有限控制容积多重网格计算[J].上海交通大学学报, 2000, 34(9): 1373~1377.
    [101]屠海,洪新,谢树元.利用烟气成分检测预报转炉冶炼过程的模型研究[J].包头钢铁学院学报, 2001, 20(3): 289~292.
    [102]张玉柱.钢铁冶金过程的数学解析与模型[M].北京:冶金工业出版社, 1997: 236~242
    [103]张腾飞,罗锐,任挺进,杨献勇.炉内煤粉燃烧一维数学模型及其仿真[J].热能动力工程, 2003, 18(5): 450~453.
    [104]尧志辉,旷戈.煤燃烧反应动力学的研究方法综述[J].广西轻工业, 2008, 12: 23~25.
    [105]丁立刚,李保卫,徐楚韶.圆柱坐标系下非轴对称三维湍流流动的离散化代数方程[J].包头钢铁学院学, 1999, 18(2): 91~93.
    [106]詹树华,欧俭平,赖朝彬,萧泽强. 2种浸入式侧吹模式下的熔池搅拌现象[J].中南大学学报(自然科学版), 2005, 36(1): 49~54.
    [107]顾潘.典型煤炭燃烧特性研究和数值模拟[J].煤炭转化, 1993, 16(4): 62~67.
    [108]黄奥,汪厚植,张美杰,顾华志,张慧民.底吹中间包气泡行程过程的数值模拟研究[J].武汉科技大学学报(自然科学版), 2007, 30(4): 353~356.
    [109] Shiro BAN-YA, Yasutaka IGUCHI, Tetsuya NAGASAKA. Rate of Reduction of Liquid Wustite with Hydrogen[J]. ISIJ, 1984, 70(14): 59~66.
    [110] Mansoor BARATI, Kenneth S. COLEY. A Comprehensive Kinetic Model for the CO-CO2 Reaction with Iron Oxide-Containing Slags[J]. Metallurgical and Materials Transactions B , 2006, 37(B): 61~69.
    [111] Mohammad SHEIKHSHAB BAFGHI, Yoshiki ITO, Shinji YAMADA, Masamichi SANO. Effect of Slag Composition on the Kinetics of the Reduction of Iron Oxide in Molten Slag by Graphite[J]. ISIJ, 1992, 32(12): 1280~1286.
    [112] Yuji OGAWA, Didier HUIN, Henri GAYE, Naoki TOKUMITSU. Physical Model of Slag Foaming[J]. ISIJ, 1993, 33(1): 224~232.
    [113] Yoshiyuki MATSUI, Mutsumi TANAKA, Muneyoshi SAWAYAMA, Shinji KITANO, Takashi IMAI, Akiyoshi GOTO. Analyses on Dynamic Solid Flow in Blast Furnace Lower Part by Deadman Shape and Raceway Depth Measurement[J]. ISIJ, 2005, 45(10): 1445~1451.
    [114] Hiromitsu UENO, Kazuyoshi YAMAGUCHI, Kenji TAMURA. Coal Combustion in Raceway and Tuyere of a Blast Furnace[J]. ISIJ International, 1993, 33(6): 640~645.
    [115] Yotaro OHNO, Takeshi FURUKAWA, Masahiro MATSU-URA. Combustion Behavior of Pulverized Coal in a Raceway Cavity of Blast Furnace and Its Application to a Large Amount Injection[J]. ISIJ International, 1994, 34(8): 641~648.
    [116] Tatsuro ARIYAMA, Masahiro MATSUURA, Hidetoshi NODA, Minoru ASANUMA, Tsutomu SHIKADA,Ryota MURAI, Hiromi NAKAMURA, Takashi SUMIGAMA. Development of Shaft-type Scrap Melting Process Characterized by Massive Coal and Plastics Injection[J]. ISIJ International, 1997, 37(10): 977~985.
    [117] Chisato YAMAGATA, Shinichi SUYAMA, Syu HORISAKA, Koji TAKATANI, Yoshimasa KAJIWARA, Syusaku KOMATSU,Hiroshi SHIBUTA, Yoichi AMINAGA. Fundamental Study on Combustion of Pulverized Coal Injected into Coke Bed at High Rate[J]. ISIJ International, 1992, 32(6): 725~732.
    [118] Kanji TAKEDA, F.C. LOCKWOOD. Integrated Mathematical Model of Pulverised Coal Combustion in a Blast Furnace[J].ISIJ International, 1997, 37(5): 432~440.
    [119] Toshihiko UMEKAGE, Shinichi YUU, Masatomo KADOWAKI. Numerical Simulation of Blast Furnace Raceway Depth and Height, and Effect of Wall Cohesive Matter on Gas and Coke Particle Flows[J]. ISIJ International, 2005, 45(10): 1416~1425.
    [120] Kenji TAKAHASHI, Masahiro MUROYA, Kunihiro KONDO, Teruyuki HASEGAWA, Ichiro KIKUCHI, Masahiro KAWAKAMI. Post Combustion Behavior in In-bath Type Smelting Reduction Furnace[J]. ISIJ International, 1992, 32(1): 102~110.
    [121] Sarbendu SANYAL, Sanjay CHANDRA, Suresh KUMAR, G.G. ROY. An Improved Model of Cored Wire Injection in Steel Melts[J]. ISIJ International, 2004, 44(7): 1157~1166.
    [122] Maria NICOLAE, Augustin SEMENESCU, Christian MIHAILESCU, Cristian PREDESCU, Bogdan NICULAE, Avram NICOLAE. Mathematical Model and Experiments on Reactive Powders Injection into a Metal Bath in a Pouring Ladle[J]. ISIJ International, 1996, 36: S66~S68.
    [123] Miao-yong ZHU, Ikuo SAWADA, Manabu IGUCHI. Physical Characteristics of a Horizontally Injected Gas Jet and Turbulent Flow in Metallurgical Vessels[J]. ISIJ International, 1998, 38(5): 411~420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700