用户名: 密码: 验证码:
中国东北西太平洋俯冲带火山区地壳上地幔结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国东北西太平洋俯冲带位于欧亚板块与西太平洋板块的交界部位,西太平洋板块在日本海沟以约29°的角度俯冲到欧亚大陆下。研究表明这种俯冲作用是东北地区地质构造运动的主要动力来源,也是中国唯一的深源地震区—珲春深震区深源地震的动力来源。研究区存在许多全新世火山,全新世以来活动规模较大的有长白山天池火山,五大连池火山,镜泊湖火山,龙岗火山等。“九五”“十五”期间开展的中国主要活动火山的监测研究表明:长白山天池火山是最具有喷发危险性的火山。在天池火山口和镜泊湖火山口森林下均发现低速高导区,推测为岩浆囊。最近几年长白山天池火山微震群活动较为频繁也表明了天池火山具有一定的活动性。同时日本海俯冲带是世界上最古老的俯冲带之一,是研究俯冲带的俯冲对大陆构造运动的影响,俯冲板块与地幔的相互作用,特别是俯冲板块对地幔间断面形态的影响以及俯冲带是否穿过660km间断面等问题的最佳场所。因此对该地区的深部结构,火山活动及深震的发震机理的深入研究对了解中国东北俯冲带的构造特征演化及与大陆的相互作用是有件意义的工作。本论文主要做了以下几方面的研究工作:
     在对有关远震波形资料的利用、接收函数发展历史、提取、反演和叠加方法的原理比较了解的基础上,调试了接收函数提取及反演的有关程序。参照Dueker等人1997年的共转换点叠加方法,调试编制了间断面的叠加程序。
     对1998-1999年中美合作在长白山火山区布设的由19个宽频带地震仪组成的流动地震台网1年多所记录地震资料和2002年在镜泊湖火山口森林地区布设的有16个宽频带地震仪组成的流动地震台阵3个月记录记录资料进行了回放整理,地震挑选截取、滤波、加道头等预处理。经挑选长白山台阵资料有53个远震记录的波形资料可以用于接收函数处理;镜泊湖台阵有18个远震记录波形资料可以用于接收函数处理。利用这些远震资料共提取了243个接收函数。从CDSN台网上挑选了牡丹江台记录的23个震中距在30°-90°高质量的波形资料,提取了23个接收函数。
     对每个台站的接收函数进行挑选,去掉质量不高的接收函数,叠加质量较高的接收函数,这样就得到了35个台站的接收函数的径向分量和切向分量。反演接收函
The Western Pacific subduction zone in the northeast part of China is located at boundary of the Eurasia and the Western Pacific plate. The Western Pacific plate subducted beneath the northeast part of China with dip angle of 29° at Japan trench. The subduction action of the Western Pacific plate is main source of tectonics and Huichun deep earthquakes in the northeast part of China, There are many Quaternary volcanos in the studied area, such as Tianchi volcano, Wudalianchi volcano, Jinbohu volcano and Longgan volcano and so on. Research results revealed that Changbaishan Tianchi volcano is a most dangerous volcano that has potential possibility to erupt. The subducted zone is one of the oldest active subduction zone and good place for studying on the effections of subducted activity to Eurasia tectonics, relation between the subduction plate and mantal discontinuities, the subduction plate weather pierced the 660km discontinuity. So it is signification to study deep structure, volcano activity and focus of deep earthquake. The main work of this dissertation is as follow:Based on understanding teleseismic waveform utilization, history of receiver function development, extract receiver function, receiver function inversion and stack, debug the receiver function extract and inversion routine. Similar as Dueker(1997) common conversion point stack method, debug the receiver function stack routine.We first cut the waveform data from Changbaishan array (cooperative project between the State University of New York at Binghamton and the Research Center of Exploration Geophysics) that consist of 19 seismic stations recorded during 1998-1999 and Jinbohu array consist of 16 stations. Then pre-processed the waveform data with filtering and adding head. We obtained 53 teleseismic waveform records in Changbaishan array and 18 teleseismic waveform records in Jinbohu array. In all 243 receiver functions were obtained using these teleseismic waveform data. For each station, select the receiver functions with high signal-to-noise ratio, high quality waveform to be stacked. Finally, 34 radial components and tangential components of receiver functions that describe the response of medium beneath 34 stations were obtained. Inversing these radical receiver functions we obtained 34 1-D S-wave models beneath the stations. We think the depth of S-wave velocity 4.3km/s should be the Moho interface after analyzing the velocity structure beneath each station and comparing with results from wide-angle reflected/refraction sounding in Changbaishan volcanic area. To understand the character of velocity structure beneath the studied area intuitively, we got 2-D S-wave velocity structure and distribution of Moho depth by interpolation using 34 1-D velocity models that were gotten from receiver function inversion. From these results we can see that S-wave velocity contour is in the northeastern direction, this is agreement with geological structure trend on surface in studied area. Moho depth is between 33-36km beneath the most of studied area but beneath volcano crater Moho depth can reach to 39km. The S-wave velocity structures are different between volcanic area and non-volcanic area. We think that magma uplift is the main reason causing these differences. Receiver
    function inversion results are agreement with the results from wide-angle reflected/refraction sounding.We first filter 243 receiver functions using Butteworth filter, then calculated the conversion point positions using IASP91 velocity model at the stack depths. Stacking the conversion points within common the circle bin with 100km radius at the stack depth, we obtained structures of the AA' ,BB' ,CC' ,DD' four stack profiles respectively. From stack results we can see that Moho, 410km discontinuity and 660km discontinuity are obvious in the stack profiles. 520km discontinuity also can be seen in some profiles but it not always can be traced in all profiles. 410km discontinuity is obvious uplift beneath Changbaishan volcano area and its undulate is positive correlation with 660km discontinuity. The thickness of transition zone is about 250km approaching the average thickness of the globe's. From phases existed in the transition zone, we can deuce that the front part of the western Pacific plate may have been split into several blocks in transition zone. These blocks have different moving directions in the transition zone. Huichun deep earthquake zone is just located the most front part of the subduced plate and focus of the deep earthquakes may have relation with these blocks. 660km discontinuity is consisted of multi-interface and has characters of complicated discontinuity. From undulate of 660km discontinuity we can see that although the subduced plate may do not pierced through 660km discontinuity, but it has made great effects on 660km discontinuity.Seismic tomography is method for studying velocity structure. In recent twenty years it has great development. Tomography has been a powerful tool for studying inner structure of the Earth with digital seismogram widely used. When we have enough seismic data and reasonable ray distribution, for example some dense seismic station distribution area in Japan, tomographic resolution can be reach to kilometer scale. This dissertation reconstruct the velocity structure beneath studied area using DLSQR method developed by Prof. Dapeng Zhao. Epicenter and earthquake time are been corrected before next iteration using new velocity model and Geiger method. There are three data sets were used in the inversion. The first data set is 133 earthquake travel-times recorded by Jilin seismic network with magnitude >ML2.0 from 1982-1998. The second data set is 12 local earthquake first arrival travel-times recorded by Jingbohu seismic array. The third is Pg data from Changbaishan wide-angle reflected/refraction sounding. Checkboard was used to check resolution of different network using the three data sets. The checkboard results showed that the inversion resolution is about 0.4° using the three data sets. According checkboard results we divided model into 14×19×10. The space of network is 0.3° at Changbaishan and Jingbohu volcanic area and 0.3° ~0.5° at the other area. We also test the damp value used in inversion, test results showed that when damp is 5 model error and travel-time rms reach to balance. P-wave travel-time rms from 0.64s decreased to 0.55s after 42 iterative inversions. S-wave travel-time rms from 0.95 decreased to 0.81 after 52 iterative inversions. We obtained P-wave and S-wave velocity structure at depths of 2km, 5km, 8km, 12km, 17km, 22km and 34km respectively. From these results we can see that lower velocity anomaly at depth of 2-5km is distribution in northeast direction and agreement with geological structure
引文
刘启元,邵学忠,1985,天然地震PS转换波动力学特征的初步研究,地球物理学报,28,291~302.
    刘启元,范会吉,1992.震源区和接收区结构不同情况下体波合成地震图的矩阵—射线方法,地球物理学报,35,193~203
    刘启元,R. Kind,李顺成,1996,接收函数复谱比的最大或然性估计及非线性反演,地球物理学报,39,4,500~512.
    刘启元,R. Kind,李顺成,1997,中国数字地震台网的接收函数及其非线性反演,地球物理学报,40,3,356~368.
    刘启元,李顺成,陈九辉,1997,延怀盆地及其邻近地区地壳上地幔速度结构的宽频带地震台阵研究,地球物理学报,40,763~772.
    刘启元,陈九辉,李顺成,郭飙,2000,新疆伽师强震群区三维地壳上地幔S波速度结构及其地震成因的探讨.地球物理学报,43(3):356~365.
    刘启元,Rainer,陈九辉等.2005,大别造山带壳幔界面的断错结构和壳内低速体.中国科学,D辑,35(4):304~313
    刘启元,1997,利用宽频带流动台阵研究大陆岩石圈速度结构.中国地震局地质研究所
    陈九辉,刘启元,1999,合成三维横向非均匀介质远震体波接收函数的Maslov方法,地球物理学报,42(1):84~93.
    陈九辉,刘启元,2000,横向非均匀介质合成三维横向非均匀介质远震体波接收函数的波场特征,地震学报,22(1):614~621.
    范会吉,刘启元,1993,地球物理学分块三维模型的生成及其合成地震图的计算,地球物理学报,35,721~732
    姚振兴,1979,层状介质非轴对称情况下的反射率法,地球物理学报,22,181~194
    郑斯华,李幼铭,1986.一种适于近场理论地震图宽频域计算的矩阵分解算法,地球物理学报,29,42~53
    邵学钟,张家茹,扬小峰等.1978,利用地震转换波探测地壳上地幔构造试验,地球物理学报,21,89~100
    滕吉文编著,2003.固体地球物理学概论,地震出版社
    孙文斌,和跃时.2004.西太平洋Benioff带的形态及其应力状态.地球物理学报,47(3):433~440
    张庸,王锡魁,隋维国.1994.东北地区NE向断裂的左旋运动.见:M-SGT地质课题组编.中国满洲里—绥汾河地学断面域内岩石圈结构及其演化的地质研究.北京:地质出版社,46~51
    刘嘉麒.1999.中国火山.北京:科学出版社
    张立敏,唐晓明.1983.西太平洋板块俯冲运动与中国东北深震带.地球物理学报.26(4):331~340
    傅维洲.1996.中国东北深震及其构造意义.长春地质学院学报.26(3):316~321
    刘若新,李继泰,魏海泉等.1992.长白山天池火山—一座具有喷发危险的近代火山,地球物理学报,35(5):661~665
    刘若新,李继泰,汤吉等.1996.长白山天池火山研究进展,地震电磁观测研究,17(4):2~11
    刘福田,李强,吴华等.1986.用于速度图像重建的层析成像法,地球物理学报,29(5):442~449
    张贻侠,孙运生,张兴洲等,1998.中国满洲里—绥芬河地学断面。北京:地质出版社
    张先康,石琳珂.1987.地震定位的广义反演方法及计算程序.华北地震科学,5(3):1~17
    张先康,张成科,赵金仁等.2002.长白山天池火山区岩浆系统深部构造的深地震研究.地震学报,24(2):135~143
    汤吉,刘铁胜,江钊等,1997.长白山天池火山区大地电磁测深初步观测,地震地质,19(2):164~169
    朱仁学 付维洲 孟令顺等,2001.黑龙江镜泊湖火山地区电性结构初步研究.地震地质,23(2):186~190.
    吴庆举,1996,宽频带远震体波波形反演方法与青藏高原岩石圈速度结构研究。中国地震局地球物理研究所博士论文。
    吴庆举,曾融生.1998.用宽频带远震接收函数研究青藏高原的地壳结构,地球物理学报.41(5):669~679
    吴建平,2003.长白山天池火山地震监测研究.中国地震局地球物理研究所
    陈友麟,臧绍先.1998.中国东北地幔间断面的研究。见:陈颙,王水,秦珊等主编。寸丹集—庆祝刘光鼎院士工作50周年学术论文集。北京:科学出版社,703~714
    臧绍先,宁杰远.1996.西太平洋俯冲带的研究及其动力学意义.地球物理学报,39(2):188~202
    臧绍先,吴忠良,宁杰远.1992.日本海——鄂霍次克海下俯冲带的应力状态及其深部形变.地球物理学报,35(5):560~572
    臧绍先,周元泽,蒋志勇,2003.伊豆-小笠原地区地幔间断面的起伏及其意义,中国科学(D集),33(3):193~201
    周元泽,臧绍先.海拉尔和牡丹江台下方地幔结构及有关推论.地球物理学报,2001,44(6):761~773
    雷建设,2002.中国及邻近区地幔底部和部分地区地壳上地幔三维速度结构的研究,中国科技大学博士学位论文
    王椿镛,张先康等,1997,大别造山带上部地壳结构的有限差分层析成像,地球物理学报,40(4):495~501
    段永红,赖晓玲等,1999,二、三维有限差分走时层析成像,华北地震科学,4,54~60
    段永红,张先康等,2002,华北地区上部地壳三维有限差分层析成像,地球物理学报。45(3):362~369
    段永红,张先康,杨卓新等,长白山天池火山区基底结构研究,地震地质,2003,25(3):501~508
    段永红,张先康,刘志等。长白山镜泊湖接收函数研究,地球物理学报。2005,48(2):352~358
    段永红,刘志等,2003.镜泊湖火山监测与研究.中国地震局地球物理勘探中心
    艾伯特.塔兰托拉著.1986.张先康译.反演理论.1992.北京:学术出版社,173~229
    王椿镛,张先康,1994,华北盆地滑脱构造的地震学证据,地球物理学报,37(5),613~620
    傅维洲.1996.中国东北深震及其构造意义.长春地质学院学报,26(3):316~321
    李献智,吕梅梅.1995.日本海—鄂霍次克海深震带地震活动与中国大陆地震的关系.地震地磁观测与研究,16(2):41~45
    刘维贺,王振亚,许勤.2000.东北深地震区的地震活动与中国大陆强震活动相关特征的初步研究.西北地震学报,22(1):68~73
    全蓥道.1994.我国东北地区地震活动特征再研究[J].地震,(5):44~52
    王周元,何少林,李勇.2000.中国中深源地震分布特征及其意义[J].西北地震学报,22(3):288~295
    赵文峰.1989.东北深源和浅源地震同步活动的地球动力机制.西北地震学报,11(1):41~46
    臧绍先,宁杰远.1996.西太平洋俯冲带的研究及其动力学意义.地球物理学报,39(2): 188~202
    Houston H著.1994.晁洪太译.1995.深源地震引起争论.地震科技情报,(12):25~27
    Viem A著.1994.张德成译.1995.深源地震的余震序列及其破裂机制.地震科技情报,(6):13~15
    Green H W著.1993.沈晶译.1994.深源地震机制.地震地质译丛,16(2):23~24
    Adams, R. D., 1971. Reflections from discontinuities beneath Antarctica. Bull. Seismol. Soc. Am., 61, 1441~1451
    Akaogi, M., and S. Akimoto,1977. Pyroxene-garnet solid-solution equilibrium in the systems Mg_4Si_4O_(12)-Mg_3A_(12)Si_3O_(12) and Fe_4Si_4O_(12) at high pressures and temperatures. Phys. Earth Planet. Inter., 15, 90~106
    Aki, K., A. Christofferssort, and E. S. Husebye, 1976. Three-dimensional seismic structure of the lithosphere under Montana LASA. Bull. Seismol. Soc. Am., 66, 501~524
    Aki, K., A. Christoffersson, and E. S. Husebye, 1977. Determination of the three-dimensional seismic structure of the lithosphere. J. Geophys. Res., 82, 277~296
    Aki, K. P. G. Richards, 1980. Quantitative seismology: theory and methods. W. H. Freeman and Company, San Francisco.
    Ammon. C. J., G. E. Randall, and G. Zandt, 1990. On the nonuniqueness of receiver function inversions. J. Geophys. Res., 95, 15303~15318
    Ammon. C. J., 1991. The isolation of receiver effects from teleseismic P waveforms. Bull. Seismol. Soc. Am., 81, 2504~2510
    Anderson, D., L., Bass, J. D., 1986. transition region of the Eaarth's upper mantle. Nature, 320, 321~328
    Anderson, D., L., and M. N. Toksoz 1963. Surface waves on a spherical earth. Upper mantle structure from Love waves. J. Geophys. Res. 68, 3483~3500
    Anderson, D., L., 1979. The deep structure of continents, J. Geophys. Res., 84, 7555~7560
    Backus, G, Gilbert, F., 1967. Numerical application of formulism for geophysical inversion problem, Geophys. J. R Astr. Soc., 13, 247~276
    Bass, J. D., Anderson, D. L.,1984. composition of the upper mantle: Geophysical tests of two petrological models. J. Geophys. Res. Lett., 11, 237~240
    Bina, C., Helffrich, G. R.. 1994. Phase transition Clapeyron slops and transition zone seismic discontinuity topography. J. Geophys Res. 99, 15853~15860.
    Bina, C. R., Stein, S., Marton, F. C., VanArk, E. M., 2001. Implications of slab mineralogy for subduction dymics. Physics of the Earth and Planetary Interiors, 127
    Bijwaard H., Spakman W., Engdahl E. R., 1998. Closing the gap between regional and global travel time tomography, J. Geophys. Res. 103: 30055~30078.
    Bock, G, 1988. Sp phases from the Australian upper mantle. Geophys. J., 94, 73~81
    Bolt, B. A., 1970. PKIKP waves and diffracted PcP waves. Geophys. J. R Astr. Soc., 20, 367~382
    Burdick, L. J. and Helmberger, 1974. Time functions appropriate for deep earthquakes. Bull. Seismol. Soc. Am., 64, 1419~1428
    Burdick, L. J. and C. A. Longston, 1977. Modelling crustal structure through the use of converted phases in teleseismic body waves. Bull. Seismol. Soc. Am., 67, 677~691
    Cassidy, J. F., 1992. Numerical experiments in broadband receiver function analysis, Bull. Seism. Soc. Am., 67: 677~691
    Ceveny, V., I. A. Molotokv, I. Psencik, 1971, Ray Theroy in Seismology, Charles University Press, Prague
    Ceveny, V., M. M. Popov, I. Psencik, 1982, Computation of seismic wave fields in inhomegeneous media—Gaussian beam approach, Geophys. J. R Astr. Soc., 70, 109~128
    Chapman, C. H., 1978. A new method for computing synthetic seismograms, Feophys. J. R. Atr. Soc., 54, 481~518
    Chapman, C. H., 1982. Body wave seismograms in inhomogeneous media using Maslov asymptotic theroy, Bull. Seismol. Soc. Am., 72, S227~S317
    Chapman, C. H., and J. A. Orcutt, 1985. The computation of body wave synthetic seismograms in laterally homgeneous media. Rev. Geophys., 23, 105~163
    Cornier, V. F. Richards,P. G., 1977. Full wave theroy applied to a discontinuous velocity incress: the inner core boundary, J. Geophys. 43, 3~31,
    Creager, K. C., Jordan, T. H., 1986, Slab penetration into the lower mantal beneath the Mariana and other island arcs of the northeast Pacific, J. Geophys. Res., 91, 3573~3580.
    Davies, D., Kelly, E., J., and Filson, J. R., 1971. Vespa process for analysis of seismic aignals, Nature, 232, 8~13
    Davies, J. P., R. Kind, Sacks I. S., 1989. Precursors to P' P' re-examined using broad-band data. Geophys. J. Int., 99, 595~604
    De Gori P., G. B. Cirnini, C Chiarabba, et al., 2001, Teleseismic tomography of the Campanian volcanic area and surrounding Apenninic belt. Journal of Volcanology and Geothermal Research. 109: 55~75
    Deal, M. M., G. Nolet, 1999. Slab temperature and thickness from seismic tomography 2. Izu-Bonin, Japan, and Kuril subduction zones, J. Geophys. Res. 104, 28803~28812.
    Dueker K. G., Sheehan A. F., Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track. J. Geophys. Res. 102(1997): 8313~8327
    Ducker K. G.,.Sheehan A. F. Mantle discontinuity structure beneath the Colorado Rocky Mountains and High plains. J. Geophys. Res. 103(1998): 7153~7169
    Dziewonski A. M. and Anderson D. L., 1981, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297~356
    Faber, S., and Muller G., 1980. Sp phases from the transition zone between the upper and lower mantle. Bull. Seismol. Soc. Am., 70, 487~508
    Flanagan M. P., Shearer P. M., 1998. Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors, J. Geophys. m Res. 103: 2673-2692
    Fountain, D. M., Christensen, M. I., Composition of the continental crust and upper mantal; a review. Geol. Soc. Amer. Bull. 1989, 172: 711~742
    Fuchs, K., 1968. The reflection of spherical waves from transition zones with arbitrary depth-depedent elastic moduli and density, J. Phys. Earth, 16, special 27-41
    Fuchs, K., and Muller., 1971. Computation of synthetic seismograms with the reflectivity method and comparision with observations. Geophys. J. R. Astron. Soc. 23, 417-433
    Fukao Y, Obayashi M, Inoue H, et al. 1992. Subducting slabs stagnant in the mantle transition zone. J Geophys Res, 97: 4 809~4 822
    Fukao Y., Widiyantoro S., M. Obayashi, 2001. Stagnant slabs in the upper and lower mantale transition region, Rev. Geophys, 39: 291-323.
    Geiger L. Probability method for the determination of earthquake epicenters from arrival time only[J]. Bull. St. Louis. Univ, 1912, 8: 60-71
    Gilbert, A. F. Sheehan, Wiens D. A., Dueker K. G, et al., 2001. Upper mantle discontinuity sturcture in the region ofthe Tonga subduction zone, Geophys. Res. Lett. 281855-1858.
    Green, H. W., Houston, H., 1995. The mechanics of deep earthquakes, Ann. Rev. Earth planet. Soc., 23, 169~213
    Gutowski, P. R., and Kanasewich E. R., 1974. Velocity spectral evidence of upper mantle discontinuities. Geophys. J. R. Astron. Soc., 36, 21-32
    Hales, A. L.,1972. The travel times of P seismic waves and their relevance to the upper mantle velocity distribution. Tectonophysics, 13, 447-482
    Harvey, D. J., 1981. Seismograms synthesis using normal mode superposition: the locked mode approximation, Geophys. J. R. Astron. Soc., 66, 37-69
    Helmberger, D. V., 1968. The crust-mantle transition in the Bering Sea. Bull. Seismol. Soc. Am., 58, 179~214
    Helmberger, D. V., and R. Wiggins, 1971. Upper mantle structure of the midwestern United States. J. Geophys. Res. 76, 3229~3245
    Helmberger, D. V., 1974. Generalized ray theroy for shear dislocations. Bull. Seismol. Soc. Am., 64, 45~64
    Hetland, E., Wu, F., Song, J., 2004. Crstal structure in the Changhaishan volcanic area, China, determined by modeling receiver functions. Tectonophysics 386, 157~175
    Hilde, T. W. C., S. Uyeda, L. Kroenke, 1977. Evolution of the Western Pacific and its margin, Tectonophysics 38, 145~165.
    Hobbs, B. E., Ord, A., 1988. Plastic instabilities: implications for the origin of intermediate and deep focus earthquakes. J. geophys. Res., 93, 10521~10540
    Hole J. A., 1992. Nonlinear High-Resolution Three-Dimensional Seismic Travel-time Tomography, J. G. R. 97
    Humphreys E., Clayton R., 1988. Adaptation of back projection tomography to seismic travel time problems. J. Geophys. Res. 93, 1073~85
    Husebye, E., and Madariaga, 1970. The origins of precursors to core waves. Bull. Seismol. Soc. Am., 60, 939~952
    Iidaka T, Suetsugu D. 1992. Seismological evidence for metastable olivine inside subducting slab. Nature, 356: 593~595
    Ito, E., Takahashi, E., 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications, J. Geophys. Res. Lett., 28, 2485~2488.
    Jacek Stankiewicz, Sebastein Chewot, Rob D. van der Hilst, et al. 2002, Crustal thickness, discontinuity depth, and upper mantal structure beneath southern Africa: constraints from body wave conversions. Phys Earth Planet Int, 130: 235~251
    Jacob K., 1970. Three-dimensioal seismic ray tracing in a lateral htgerogeneous spherical Earth. J. Geophys. Res. 75, 6675~89
    Julian B., Gubbins D., 1977. Three-dimensioal seismic ray tracing. J. Geophys. 43, 95~113
    Kamiya, S., Miyatake, T., Hirahara K., 1990. Three dimensional P wave velocity structure beneath the Japanese island, Bull. Earthq. Res. Inst. Univ. Tokyo, 64, 457~485.
    Kanamori, H., Anderson, D. L., Heaton, T. H., 1998. Frictional melting during the rupture of the 1994 Bolivian earthquake, Science, 279, 839~842
    Karato, S., Rubie, D. C., 1997. Towards an experimental study of deep mantle rheology: a new multianvil sample assembley for deformation studies under high pressures and temperatures. J. Geophys. Res. 102, 20111~20122
    Karato, S., Riedel, M. R., Yuen, D. A., 2001. Rheological structure and deformation of subducted slabs in the mantle transition zones: implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors, 127
    Keilis Borok, V. J., Yanovskaya, T. B., 1967. Inverse problems of seismology(structure review), Geophys. J. R. Astr. Soc., 13, 223~234
    Kennett B. L. N., Kerry N. J., 1979. Seismic waves in a stratified hath space. Geophys. J. R. Astron. Soc., 57, 557~583
    Kennett B. L. N., 1980. Seismic waves in a stratified hath space Ⅱ—Theoretical seismograms. Geophys. J. R. Astron. Soc., 61, 1~10
    Kennett B. L. N., 1983. Seismic wave propagation in Stratified Media. Cambridge University Press, New York.
    Kennett B. L. N., Engdahl E. R., 1991, Traveltimes for global earthquake location and phase identification, Geophys. J. Int. 105 429~465.
    Kind, R., 1978. The reflectivity method for a buried source, J. Geophys., 44, 603~612
    Kind, R., 1985. The reflectivity method for different source and receiver structures and comparision with GRF data, J. Geophyss., 58, 146~152
    Kind, R, Vinnik, L. P., 1988. The upper mantle discontinuities underearth the GRF array from P-to_S converted phases. J. Geophys. 62, 138~147
    Kirby, S. H., Durham, W. B., Stein, L. A., 1991. Mantle phase changes and Deep-earthquake Faulting in subducting lithosphere, Science, 242, 216-225
    Kirby, S. H., Stein, S., Okal. E. A., Rubie, D. C., 1996. Metastable oceanic lithosphere, Rev. Geophys. 34, 261-306
    Koketsu K., Sekine S. 1998. Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with discontinuities. Geophys. J. Int. 132 339~46
    Langston, C. A., Helmberger, D. V., 1975. A procedure for modeling shallow dislocation sources. Geophys. J. R. Astron. Soc., 42, 117~130
    Langston, C. A., 1977a. Corvallis, Oregon, crustal and upper mantle receiver structure from telseismic P and S waves. Bull. Seismol. Soc. Am., 67, 1029~1050
    Langston, C. A., 1977b. The effect of planar dipping structure on source and receiver responses for constant ray parameter. Bull. Seismol. Soc. Am., 67, 1029~1050
    Langston, C. A., 1979. Structure under Mount Rainier, Washton, inferred from teleseismic body waves. J. Geophys. Res. 84, 4749~4762
    Lees J., Crosson R., 1989. tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data. J. Geophys. Res. 94, 5716~29
    Lehmann, L., 1961. S and the structure of the upper mantle. Geophys. J. R. Astron. Soc., 4, 124~138
    Leveque J., Rivera L., Wittlinger G. 1993. On the use the checkboard test to assess the resolution of tomographic inversions. Geophysical Journal International 115, 318~8
    Llifford H. Thurber, 1983, Earthquake locations and Three-Dimensional Crustal Structure in the Coyote Lake Area, Central California. J. G. R. 88(B 10): 8226~8236
    Li, X., Yuan, X., 2003. Receiver functions in northeast China-implications for slab penetration into the lower mantale in Northwest Pascific subduction zone. Earth Planet. Sci. Lett. 216, 679-691
    Loredanna Bisio, Rita Di Giovambattista, girolamo Milano, Ciaudio Chiarabba, 2004, Three-dimensional earthquake locations and upper crstual structure of the Sannio-Matese region(southern Italy). Tectonophysics, 385, 121-136
    Lundgren P, Giardini D. 1994. Isolated deep earthquakes and the fate of subduction in the mantle. J Geophys Res, 99: 15 833~15 842
    McGuire, J. J., Wiens, D. A., Shore, P. J., Bevis, M. G., 1997. The Match 9, 1994(Mw7.6) deep Tonga earthquake: rupture outside the seismically active slab, J. Geophys Res, 102:15 163~15 182
    Meade, C, Jeanloz, R., 1991. Deep-focus earthquakes and rectcling of water into the earth's mantle, Science, 252, 68~72
    Michael Landes, W. Fielitz, F. Hauser, M. Popa, CALIXTO Group, 2004, 3-D upper crstal tomographic structure across the Vrancea seismic zone, Romania. Tectonophysics 382(2004)85~102
    Mirelli Laigle, Alfred Hirm, Martine Sapin, and Jean-Claude Lepine, 2000, Mount Etna dense array local earthquake P and S tomography and implications for volcanic plumbing. J. G. R. 105(B9): 21633~21646
    Mohamed K. Salah, Dapeng Zhao, 2004, Mapping the crustal thickness in southwest Japan using Moho-reflected waves. Physics of the Earth and Planetary Interiors 141: 79~94
    Moser T. 1991. shortest path calculation of seismic rays. Geophysics, 56, 59~67
    Muller, G., 1985. The reflectivity method: a tutorial, J. Geophys., 153~174
    Nakajima J, Matsuzawa T, Hasegawa A, et al. 2001. Three-dimensional structure of Vp, Vs, and Vp/Vs beneath northeastern Japan: Implications for arc magmatism and fluids, d Geophys Res, 106: 21, 843~21, 857
    Nakanishi I & Anderon D. 1982. World-wide distribution of group velocity of mantale Rayleigh wave as determined by spherical harmonic inversion. Bulletion of the Seismological Society of America 72, 1185~94
    Niu F., Kawakatsu H., 1996. Complex structure of the mantle discontinuities at the tip of the subdueting slab beneath northeast China: A preliminary investigating of broadband receiver functions, J. Phys. Earth, 44: 701~711.
    Niu F., Kawakatsu H., 1998. Determination of the absolute depths of mantle transition zones discontinuities beneath China: Effect of stagnant slabs on transition zones discontinuities, Earth Planets Space 50: 965~975.
    Nguyen-Hai, 1963. Propagation des ondes logitudinales dans le noyau ter-reste. Ann. Geophys., 15, 285~346
    Nolet G., 1985. solving or resolving inadequate and noisy tomographic systems. J. Computional Phys. 61, 463~82
    O'Connell, R. J., Budiansky, B., 1974. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res. 79: 5412~542
    Ogawa, M., 1987. Shear instability in a visco-elastic material as the cause of deep focus earthquakes, J. Geophys. Res. 92: 13801~13810
    Okal E A, Kirby S H. 1998. Deep earthquakes beneath the Fiji Basin, SW Pacific: Earth's most intense deep seismicity in stagnant slabs, Phys Earth Planet Int, 109: 25~63
    Okal E A, Bina C R. 1994. The deep earthquakes of 1921—1922 in Northern Peru. Phys Earth Planet Int, 87: 33~54
    Okal E A. 2001. "Detached" deep earthquakes: are they really?, Phys Earth Planet Int, 127: 109~143
    Olson, A. H., Orcutt J. A., Frazier, G. A., 1984. The discrete wave number/finite element method for synthetic seismograms, Geophys. J. R. Astron. Soc., 77, 421-460
    Owens, T. J., G. Zandt, and S. R. Taylor, 1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessess: A detailed analysis of broadband teleseismic P waveforms. J. Geophys. Res. 89, 7783~7795
    Owens, T. J., S. R. Taylor, and G. Zandt, 1987. Crustal structure at Regional Seismic Test Network stations determined from inversion og broadband teleseismic P waveforms. Bull. Seismol. Soc. Am., 77, 631~662
    Owens, T. J., and R. S. Crosson, 1988. Shallow structure effects on broadband teleseismic P waveforms. Bull. Seismol. Soc. Am., 78, 96~108
    Paige C., Satunders M., 1982. LSQR: An algorithm for sparse linear equations and sparse least squares. Association of computational mechanics transactions and mathematical software 8, 43~71
    Panza, G., F., 1985. Synthetic seismogram: the Rayleigh waves model summation, J. Geophys., 58, 125~145
    Paulssen, H., 1985. Upper mantle converted waves beneath the NARS array. Geophys. Res. Lett., 12, 709~712
    Paulssen, H., 1988. Evidence for a sharp 670-kmdiscontinuity as inferred from P-to-S converted waves. J. Gcophys. Res., 93, 10, 489~10, 500
    Phinney, R. A., 1964. Structure of the Earth's crust from spectral behavior of long-period body waves. J. Geophys. Res. 69, 2997~3107
    Prothero W., Taylor W. Eiekemeyer J., 1988. A fast, two-point, three-dimensional ray tracing algorithm using a simplex step search method. Bull. Seismol. Soc. Am., 78, 1190~8
    Ramesh, D. S. Kind R., Yuan X.. 2002. Receiver Function analysis of the North American crust and upper mantle. Geophys. J. Int. 150, 91~108
    Randall, G. E., 1989. Efficient calculation of differential seismograms for lithospheric receiver functions. Geophys. J. Int., 99, 469~481
    Randall, G. E., and T. J. Owens, 1994. Array analysis of the large-aperture array of the 1988-1989 Passcal Basin and Range passive-source seismic experiment. Geophys., J. Int., 116, 618~636
    Revenaugh, J. and T. H. Jordan, 1989. A study of mantle layering beneath the western Pacific. J. Geophys. Res. 94, 5787~5813
    Revenaugh, J. and T. H. Jordan, 1991a. Mantle layering from ScSreverberations, 1, waveform inversion of zeroth-order reverberations. J. Geophys. Res. 96, 19, 749~19, 762
    Revenaugh, J. and T. H. Jordan, 1991b. Mantle layering from ScSreverberations, 2, The transition zone. J. Geophys. Res. 96, 19, 763~19, 780
    Revenaugh, J. and T. H. Jordan, 1991c. Mantle layering from ScSreverberations, 3, The upper mantle. J. Geophys. Res. 96, 19, 781~19, 810
    Ringwood, A. E., 1982. Phase transformations and differentitation in subducted lithosphere, implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J. Geol., 90, 611-643
    Ringwood, A. E., and T., Irifuune, 1988. Nature of the 650km seismic discontinuity: implications for mantle dynamics and differentation. Nature, 331~136
    Sambridge, M., Drijkoningen, G., 1991. Geneetic algorithms in seismic waveform inverion, J. Geophys. Int.
    Shaw, P. R., Orcutt J. A., 1995. Wawform version of seismic refraction data and application to young Pacific crust. Geophys. J. R. Astron. Soc., 82, 375~415
    Scales J., 1987. Tomgrahic inversion via the Conjugate gradient method. Geophysics, 52, 179~85
    Shearer, P. M., 1990. Seismic imaging of upper-mantle structure with new evidence for a 520km discontinuity. Nature, 344,121~126
    Shearer, P. M., 1991. Constraints on upper mantle discontinuities from observations of longperiod reflected and converted phases. J. Geophys. Res., 18, 147~18, 182
    Shearer, P. M. T. G. Masters, 1992. Global mapping of topography on the 660-km discontinuity, Nature 355: 791~796
    Simmons, N. A. H. Gurrola, 2000. Multiple seismic discontinuities near the base of the transition zone in the Earth's mantle, Nature 405, 559~562.
    Spakman W., Nolet G., 1988. Imaging algorithms, accuracy and resolution in delay time tomography. In Vlaar N. et al. (eds.) Mathematical Geophysics, pp. 155-87. D. Reidel, Norwell
    Stammler, K., R. Kind, G. L. Kosarev et al., 1991. Broadband observations of PS conversions from the upper mantle in Eurasia, Geophys. J. int., 105, 801~804
    Tanimoto T., Anderson D., 1984. Mapping convertion in the mantle. Geophys. Res. Lett., 11, 287~90
    Tarantola, A. I., Valette, B., 1982. Inverse Problems=Quest for Information, J. Geophys. 50: 159-170
    Tarantola, A. I., Valette, B., 1987. Inversion problem theroy, methods for data fitting and model parameter estimation, Elsevier, 1987
    Thurber C., 1983. Earthquake locations and three-dimensional crustal structure in the Coyte Lake area, central California. J. Geophys. Res., 8826~36
    Thurber C., ellsworth W., 1980. Rapid solution of ray tracing problems in heterogeneous media. Bull. Seismol. Soc. Am., 70, 1137-48
    Tibi R, Estabrook C H, Bock G. 1999. The 1996 June 17 Flores Sea and 1994 March 9 Fiji— Tonga earthquakes: source processes and deep earthquake mechanisms. Geophys J Int, 138: 625~642
    Uyeda, S., A. Miyashiro, 1974. Plate tectonics and Japanese Islands, Geol. Soc. Am. Bull. 85, 1159-1170.
    Umakoshi K, Shimizu H, Matsuwo N. 2001. Volcano-tectonic seismicity at Unzen Volcano, Japan, 1985-1999. J Volcanol Geotherm Res, 112: 117~131
    Um, J., and C. H. Thurber, 1987. A fast algorithm for two-point seismic ray tracing, Bull. Seismol. Soc. Am., 77, 972-986
    Van Laarhoven, P. J. M., Aarts, E. H. L., 1987. Simulated Annealing: Theroy and Practice, Reidel, Dordrecht
    Vinnik, L., P., 1977. Detection of waves converted from P to SV in the mantle, Phys. Earth Planet. Inter., 15, 39~45
    Vinnik, L., P., R. A. Avetisjan, and N. G. Wikhailova,1983. Heterogeneities in the mantle transion zone from observations of P-to-SV converted waves. Phys. Earth Planet. Inter., 33, 149~163
    Vacher P., Mocquet A., C. Sotin, 1998. Computation of seismic profiles from mineral physics: the importance of the olivine components for explaining the 660km depth discontinuity, Phys. Earth Planet. Inter. 106: 275-298.
    Van der, Hilst, R. D., Engdahl R., Spakman W., Nolet G., 1991. Tomographic imaging of subducted lithosphere below, northwest Pacific island arcs, Nature, 353, 37-43.
    Van Laarhoven, P. J. M., Aarts, E. H. L., 1987. Simulated Annealing:. Theroy and Practice, Reidel, Dordrecht
    Wajeman, N., 1988. Detection of underside P reflections at mantle discontinuities by stacking broadband data. Geophys. Res. Lett., 15, 669~672
    Wang, C. Y., Herrmann, R. B., 1980. A numberical study of P-, SV- and SH-wave generation in a planelayered medium, Bull. Seismol. Soc. Am., 70, 1015~1036
    Ward, S. N., 1978. Long-period reflected and converted upper mantle phases. Bull. Seismol. Soc. Am., 68, 133~153
    Wallace, T. C., Helmberger, D. V., Melman, G. R., 1981. A thechnique for the inversion of regional, data in source parameter studies, J. Geophys. Res., 86, 1679~1685
    Weidner, D. J., Sawamoto, Sasaki, S., 1984. Single-crystal elastic properties of the spinel phase of Mg_2SiO_4. J. Geophys. Res., 89, 7852~7860
    Wiens, D. A., McGuire, J. J., Shore, P. J., Bevis, M. G., Draunidalo, K., Prasad, G., Helu, S., 1994. A deep earthquake aftershock sequence and implications for the rupture mechanism of deep earthquakes, Nature, 372, 540~543
    Wiens, D. A., 2001. Seismological constraints on the mechanism of deep earthquakes: temperture depence of deep earthquake source properties. Physics of the Earth and Planetary Interiors, 127
    Wiggins, R. A., and D. V. Helmberger, 1974. Synthetic seismogram computation by expansion in generalized rays. Geophys. J. R. Astron. Sot., 37, 73-90
    Wiens D A. 2001. Seismological constraints on the mechanism of deep earthquakes: temperature dependence of deep earthquakes source properties. Phys Earth Planet Int, 127: 145~163
    Woodhonse J., Dziewonski A. 1984. Mapping the upper mantle: three-dimensional modeling of the earth structure by inversion of seismic waveforms. J. Geophys. Res.
    Wyss M, Hasegawa A, Nakajima J. 2001. Source and path of magma for volcanoes in the subduction zone of northeastern Japan. Geophys Res Lett, 28:1 819~1 822
    Yamanaka, Y., 1993. Unified model of the state of stress in subducting slab(dissertation), Tokoy: Univ. of Tokoy, 16-106
    Yinshuang Ai, Tianyu Zheng weiwei Xu et al. A complex 660kin discontinuity beneath northest China. Earth and Planetary Science Letters 212(2003): 63~71
    Yuan X, Sobolev S V, Kind R. 2002. Moho topography in the central Andes and its geodynamic implications. Earth Planet Sci Lett, 199: 389~402
    Zhang J., Longston, C. A., 1995. Dipping structure under Dourbes, Belgium, determined by receiver function modeling and inversion, Bull. Seismol. Soc. Am., 85, 254~268
    Zhang, Z., and Lay, T., 1993. Investigation of upper mantle discontinuities near northwestern Pacific subduction zones using precursors to sSH, J Geophys Res, 98: 4389~4405
    Zhao D., 1991. A tomographic study of seismic velocity structure of the Janpan Islands. PhD theis, Tohoku University, Sendai, Japan.
    Zhao D., Hasegawa A. & Horiuchi S. 1992a. Tomographic imagine of P and S wave velocity structure beneath northeastern Japan. Journal of Geophysical Research 97, 19909-22
    Zhao D., Hasegawa A. & Kanamori H. 1994. Deep structure of Japan subduction zone as derived from local regional and teleseismic events. Journal of Geophysical Research 99, 22313-29
    Zhao D., 2001. New advances of seismic tomography and its applications to subduction zones and earthquake fault zones: A review, The Island Arc 10, 68-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700