用户名: 密码: 验证码:
主辅站技术定位原理及算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主辅站技术是一种新颖的网络RTK技术,它发播的差分改正数采用的是标准的网络RTK差分改正数据格式,它克服了早期一些网络RTK技术的缺点,逐渐在我国的连续运行参考站网络中得到越来越广泛的应用,由于其理论研究涉及到一些专有知识产权,国内对其理论的研究非常少,本文通过对主辅站网络的数据采集、处理、计算、分发、服务等方面作进一步梳理,对主辅站技术的定位原理和实现方式进行了深入的探讨,详细阐述主辅站技术的原理以及实现方法,提供一个较完备的主辅站构建思路,同时为后续的研究工作做技术积累。
     本文从网络RTK技术的起源及特点开始论述,将其与传统的RTK技术进行对比,从五个方面对网络RTK技术的优点进行分析。简要介绍了几种主要的网络RTK技术,包括了VRS技术、FKP技术、CBI技术、ARS技术以及本文主要研究的对象MAC技术。然后,对主辅站技术的关键技术给出了分析结果,提出主辅站的关键技术有三个方面,其中最主要的是整周模糊度的解算方法和差分改正数的计算方法,并指出主辅站技术的实现必须首先解决上述两个算法问题。
     针对主辅站技术的定位算法展开研究,阐明了弥散性差分改正和非弥散性差分改正的来源和作用,阐明了它们的改正数是主辅站技术中最主要的差分改正。推导了主辅站技术的数学模型,从基本的观测方程出发,分析了公共整周模糊度水平的作用和意义,并通过公式说明它产生的过程。在确定公共整周模糊度水平的基础上,推导了主辅站差分改正数的公式,并对差分改正数在流动站的应用进行了详细分析。
     阐述了主辅站技术的实现过程,从最基础的硬件需求出发,阐述了连续运行参考站系统在主辅站技术的实现过程中的平台作用。通过对主辅站定位业务流程的分析,说明了数据处理的过程,并引出了主辅站与流动站之间通信的基本协议NTRIP协议和NMEA协议。讨论了主辅站技术的两种改正方式,MAX主辅站改正和i-MAX针对性的主辅站改正,分析了它们的作用和区别。最后从网络RTK的基本数据格式RTCM出发,对最新的RTCM Ver3.1数据进行了详细的分析,通过编程实现了RTCM传输电文的解码。
     详细论述了几种内插算法的原理和模型以及它们在主辅站技术中的应用,其中包括了加权平均法、线性内插法、低次曲面模型法、偏导算法、最优三角形内插法和最小二乘配置法,推导了差分改正数生成的公式
MAC is a novel network RTK technology, which sends the corrections difference using standard data format. It overcomes all of the weakness of the previous network RTK technology and gradually gaining a wide range of applications. Because of its theoretical research involves much proprietary information, the study of this theory is very little in china. In this paper, author through network data collecting, processing, computing, distribution and services to achieve a more in-depth study of the MAC positioning technology, and elaborate the principle and the realization method of MAC technology, provide a more complete idea of the master-auxiliary station. At the same time, the research work done for follow-up technology accumulation. The main work of this article includes the following aspects:
     In this paper, the origin and characteristics of network RTK was talked about, network RTK techniques and traditional RTK techniques are compared from five aspects. There introduced several major network RTK technology, including the VRS technology, FKP technique, CBI technology, ARS technology, and MAC technology which is major object of study in this paper. Then, based on the results of the analysis put forward three key technologies in MAC, chief among them is the solution of ambiguity and the arithmetic of the corrections differential, and pointed out that the realization of master-auxiliary station must first solving the above two questions.
     Conduct a study aim at location algorithm of MAC to clarify that correction difference can be resolved into two components: i.e., dispersive and non-dispersive parts, and they are the most important correction in MAC. Deduce the mathematical models of MAC technology and graphically explained in detail the common ambiguity level of meaning. Deduce the formula of correction, and carried out a detailed analysis in the rover applications.
     Describes the implementation process of the MAC, based on its hardware requirements, point out that the Continuously Operating Reference System is a platform in this process. Illustrates the data processing process and leads to a reference station and rover’s basically protocol that is NTRIP and NMEA, which is used for communication. RTK’s data format is based on the RTCM. It discusses the two correction methods of MAC technology, which is Master-Auxiliary Corrections and Individualized Master-Auxiliary Corrections, Finally, The latest RTCM Ver3.1 messages detailed analysis, and decoding of the message by programming.
     Described in detail the principles of several interpolation algorithms and models and their application of MAC technology, including the weighted average method, Linear Interpolation Method, Low-Order Surface Model, Partial Derivative Algorithm, Optimization Triangle Interpolation Algorithm and Least-Squares Collocation, at last a detailed derivation of the formula for generating correction.
引文
[1]张成军.虚拟参考站误差分析与算法研究[D].郑州:信息工程大学. 2006
    [2]张锋.基于多参考站网络的VRS算法研究与实现[D].郑州:信息工程大学. 2007
    [3]王惠南. GPS导航原理与应用[M].北京:科学出版社, 2003
    [4]黄俊华,陈文森.连续运行卫星定位综合服务系统建设与应用[M].北京:科学出版社, 2009
    [5] N. Brown, I. Geisler and L. Troyer, RTK Rover Performance using the Master-Auxiliary Concept[J], Journal of Global Positioning Systems, 2006, Vol. 5, No. 1-2:135-144
    [6]李凤霞.网络RTK的质量控制[D].昆明:昆明理工大学. 2007
    [7]史先领,张书华.网络RTK中几种实用技术的分析比较[J].海洋测绘, 2006(5)
    [8]刘彦芳,何建国,张现礼等.几种网络RTK技术的比较分析[J].地理空间信息. 2009(4).
    [9] Lambert Wanninger. Introduction to Network RTK[EB/OL]. http://www.network-rtk.info/intro/introduce- tion .html.
    [10]李成钢.网络GPS/VRS系统高精度差分改正信息生成与发布研究[D].西南交通大学. 2007
    [11] Wubbena G., Software Development for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements, in Goad [C], in Proc. of First Int. sym. on Precise Position. with GPS Rockville, Maryland, 1985, 403-412
    [12] Blewitt G. Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up-to 2000km[J]. Journal of Geophysical Research, 1989, 94(B8), 187-203
    [13] Romondi B. W. Pseudo-Kinematic GPS Results Using the Ambiguity Function Method. NAVIGATION [J], Journal of the U. S. ION, 1989, 38(1), 17-36
    [14] Romondi B.W, S.A.Hilla. Pseudo-Kinematic Surveying Based On Upon Full-Wavelength Dual- Frequency GPS Observations[R]. NOAA Technical Memorandum NOS NGS-56, 1993, 20
    [15] Melbourne W. G. The case for ranging in GPS based geodetic systems[C]. in Proc. of the First Symp. On Precise. Pos. with GPS-1985, 373-386
    [16] Hatch R. R. Instantaneous Ambiguity Resolution. Kinematic Systems in Geodesy[J], Surveying and Remote Sensing, IAG Symp. 107, Springer-Verlag, 1990, 299-308
    [17] Frei E, G Beutler. Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach FARA: Theory and First Resuts[M]. Manuscripta Geodaetica, 1990, 15, 325-356
    [18] Frei E, J Yau. Ambiguity Resolution on the Fly(AROF): Results, Facts, Limitations[C]. Proc. ION-GPS-93, 6th Int. Tech. Meeting of the Satellite Division of the ION, Salt Lake City, Utah, 1993, 1059-1067
    [19] Chen D., Fast Ambiguity Search Filtering(FAST): A Novel Concept for GPS Ambiguity Resolution[C]. Proc. ION GPS-93, 6th Int. Tech. Meeting of the Satellite Division of the ION, Salt Lake City, Utah, 1993, 781-787
    [20] Teunissen P. J. G., A New Method for Fast Carrier Phase Ambiguity Estimation Proc. IEEE Postioning Location&Navigation Symp. PLANS94, Las Vegas, Nevada, 1994, 562-573
    [21] Teunissen P. J. G., The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation, J. Geod., 70, 65-82, 1995
    [22]高星伟,刘经南,葛茂荣.网络RTK基准站间基线单历元模糊度搜索方法[J],测绘学报, 2002(4)
    [23]周乐韬,黄丁发,李成钢,徐锐.参考站间双差模糊度快速解算策略研究[J],大地测量与地球动力学, 2006, 26(4):34-40
    [24]周乐韬,黄丁发,李成钢,徐锐.网络RTK参考站间模糊度动态解算的卡尔曼滤波算法研究[J],测绘学报, 2007, 36(1):37-42
    [25] Wanninger L. Improved ambiguity resolution by regional differential modeling for the ionosphereie[C]. 8th int. Tech. Meeting of the Satellite Div. of the U. S. ION, Palm Springs, California, 1995, 55-62
    [26] Wubbena G., Bagge A. Seeber G. Reducing distance dependent errors for real-time precise DGPS applications by establishing reference station networks[C]. 9th int. Tech. Meeting of the Satellite Div. of the U. S. ION, Kansas City, Missouri, 1996, 1845-1852
    [27] Wanninger L.The Performance of virtual reference stations in active geodetic GPS-networks under solar maximum conditions[C]. 12th int. Tech. Meeting of the Satellite Div. of the U.S. ION, Nashville, Tennessee, 1999, 1419-1427
    [28] Schaer S., G. Beutler. The impact of the atmosphere and other systematic errors on permanent GPS networks[C]. Presented at the IAG Symp. on Positioning, Birmingham, UK,1999
    [29] Fotopoulos G., Cannon. M.E. An Overview of Multiple-Reference Station Methods for cm-Level Positioning[J]. GPS Solutions, 2001, Vol.4, No.3, 1-10
    [30] Varner C, Cannon M.E. The Application of Multiple Reference Stations and the Determination of Multipath and Spatially Decorrelating Errors[C]. Proc.of ION-NTM97, 1997, 323-333
    [31] Gao Y., Li Z. Carrier phase based regional area differential GPS for decimeter-level positioning and navigation[C]. 10th Int. Tech. Meeting of the Satellite Div. of the U.S.Institute of Navigation, Nashville, Tennessee, 1997, 91-97.
    [32] Gao Y., Li Z. Ionosphere effect and modeling of regional area differential GPS network[C]. 11th Int. Tech. Meeting of the Satellite Div. of the U.S. Institute of Navigation, Nashville, Tennessee, 1998, 91-97.
    [33] Han S, C Rizos. GPS network design and error mitigation for real-time continuous array monitoring systems[C], 9th int. Tech. Meeting of the Satellite Div. of the U.S. ION, Kansas City, Missouri, 1996, 1827-1836.
    [34] Han S. Carrier Phase-Based Long-Range GPS Kinematics Positioning[J], UNISURV S-49, School of Geomatic Engineering, The University of New South Wales, Sydney, Australia, 1997, 185.
    [35] Raquet J.F. Development of A Method for Kinematic GPS Carrier-Phase Ambiguity Resolution Using Multiple Reference Receivers[D], Dept. of Geomatics Engineering, University of Calgary, Canada, l998
    [36] Odijk D, Marel H., Song I., Precise GPS positioning by applying ionosphereic corrections from active control networks[J], GPS Solutions, 2000(3), 49-57
    [37]李成钢,黄丁发,袁林果,周乐韬,徐锐. GPS参考站网络的电离层延迟建模技术[J],西南交通大学学报, 2005, 40(5), 610-615
    [38]熊永良,黄丁发,丁晓利,殷海涛.虚拟参考站技术中对流层误差建模方法研究[J],测绘学报, 2005, 35(2)
    [39]李成钢,黄丁发,周东卫,周乐韬,熊永良,徐锐. GPS/VRS网络实时精密轨道改正算法研究[J],大地测量与地球动力学, 2006, 26(4)
    [40]李成钢,黄丁发,周乐韬,熊永良,徐锐. GPS/VRS参考站网络对流层误差建模技术研究[J],测绘科学, 2007(4)
    [41]李成钢,黄丁发,周乐韬,熊永良,徐锐. GPS参考站网络的多路径误差建模技术研究[J],测绘工程, 2007(2)
    [42]吴耀强,吕弋培,廖华,陈维锋,彭晋川,黄丁发. GPS/VRS卫星定位服务网络建设与精度评定[J],测绘科学, 2005, 30(3), 75-77
    [43] Vollath U, The Factorized Multi-Carrier Ambiguity Resolution (FAMCAR) Approach for Efficient Carrier-Phase Ambiguity Estimation[C], ION GPS 2004. 2004.
    [44]周乐韬.连续运行参考站网络实时动态定位理论、算法和系统实现[D].西南交通大学. 2007
    [45]吴星华,吕振业, Joel VanCranenbroeck,王贵武,吴俐民,徕卡最新主辅站技术在昆明市GPS参考站网中的应用[C], 2005数字江苏论坛——电子政务与地理信息技术论文专辑
    [46] Euler, H.-J., Zebhauser, B.E. The Use of Standardized Network RTK Messages in Rover Applications for Surveying[C], ION NTM 2003, January 22-24, 2003, Anaheim, CA
    [47] H. J. Euler, S. Seeger, F. Takac, Analysis of biases influencing successful rover positioning with GNSS-Network RTK[C], The 2004 International Symposium on GNSS/GPS, December 6–8, 2004, Sydney, Australia
    [48]陆金凤,史先领,网络RTK主辅站作业的思路与技术分析[J],现代测绘, 2007.07
    [49] Euler, H.-J., Keenan, C.R., Zebhauser, B. E., Wübbena, G. Study of a Simplified Approach in Utilizing Information from Permanent Reference Station Arrays[C], ION GPS 2001, September 11-14, 2001, Salt Lake City, UT
    [50] Kyle O’Keefe, Minmin Lin and Gérard Lachapelle, NETWORK REAL-TIME KINEMATIC PERFORMANCE ANALYSIS USING RTCM 3.0 AND THE SOUTHERN ALBERTA NETWORK, GEOMATICA Vol. 61, No. 1, 2007, pp. 29 to 41
    [51] Euler, H.-J., Zebhauser, B. E., Townsend, B., Wübbena, G. Comparison of Different Proposals for Reference Station Network Information Distribution Formats[C], ION GPS 2002, September 24-27, 2002, Portland, OR
    [52] RTCM (2004) RTCM Recommended Standards for Differential GNSS (Global Navigation Satellite Systems) Service[R], Version 3.0, RTCM paper 30-2004-SC104-STD.
    [53]孙良育,刘春,吴杭彬. GPS虚拟参考站RTCM传输电文的分析与解码[J].全球定位系统, 2008.05
    [54] Euler, H.-J., Seeger, S., Zelzer, O., Takac, F., Zebhauser, B. E. (2004-I) Improvement of Positioning Performance Using Standardized Network RTK Messages, ION NTM 2004, January 26-28, 2004, San Diego, CA
    [55] Euler, H.-J., Seeger, S., Takac, F. (2004-II) Influence of Diverse Biases on Network RTK, ION GNSS 2004, Long Beach, CA
    [56] Dr. Gy?rgy Busics, FROM STATIC MEASUREMENT TO NETWORK RTK–HUNGARIAN EXPERIENCES, West-Hungarian University College of Geoinformatics, 2006, Székesfehérvár, Hungary
    [57]黄丁发,熊永良等. GPS卫星导航定位技术于方法[M].北京:科学出版社, 2009
    [58]李健.卫星定位连续运行参考站网的系统架构及软件体系设计[D].郑州:信息工程大学. 2007
    [59] N. Brown, R. Keenan, B. Richter, L. Troyer, Advances in Ambiguity Resolution for RTK Applications Using the New RTCM V3.0 Master-Auxiliary Messages, ION GNSS 2005, 13-16 September, 2005, Long Beach, CA
    [60]李征航,黄劲松等. GPS测量与数据处理[M].武汉:武汉大学出版社, 2007
    [61] Volker Janssen, A comparison of the VRS and MAC principles for network RTK[C], IGNSS Symposium 2009, 1-3 December, 2009, Qld, Australia
    [62] F. Takac, O. Zelzer, The Relationship Between Network RTK Solutions MAC, VRSTM, PRS, FKP and i-MAX[C], ION GNSS 2008, 19-22 September, 2000, Salt Lake City, UT
    [63] Paul Alves, Evaluation of Multiple-Reference DGPS RTK Using a Large Scale Network[C], ION NTM-2001, 22-24 January, 2001, Long Beach, CA
    [64] P. Alves, G. Lachapelle and M.E. Cannon, In-Receiver Multiple Reference Station RTK Solution[C], ION GNSS 2004, 22-24 September, 2004, Long Beach, CA
    [65]徐周. GPS差分定位技术及实现方法的研究[D].郑州:信息工程大学. 2006
    [66] P. Alves, I. Geisler, N. Brown, J. Wirth, and H.-J. Euler, Introduction of a Geometry-Based Network RTK Quality Indicator[C], ION GNSS 2005, 13-16 September, 2005, Long Beach, CA
    [67] Zebhauser, B. E., Euler, H.-J., Keenan, C.R., Wübbena, G. (2002) A Novel Approach for the Use of Information from Reference Station Networks Conforming to RTCM V2.3 and Future V3.0[C], January28-30, 2002, San Diego, CA.
    [68] P. Alves, H. Kotthoff, I. Geisler, O. Zelzer, and H.-J. Euler, Rover Processing with Network RTK and Quality Indicators[C], ION NTM 2006, January 18-20, 2006, Monterey, CA
    [69] Frank Takac, Werner Lienhart, SmartRTK: A Novel Method Of Processing Standardised RTCM Network RTK Information For High Precision Positioning[C], ENC GNSS 2008, April 22-25, Toulouse, France
    [70] Mark Burbidge, Introducing SmartNet-UK, the first Leica Geosystems commercial Network RTK Correction service[R]. FIG, October 8-13, 2006, Munich, Germany
    [71] H.-J. Euler, C.R. Keenan, B.E. Zebhauser, Reference Station Networks: A Conceptual Study using their Information with the Current and Next Generation of RTCM Messages[C]. Proceedings of GNSS 2002, May 27-30, 2002, Copenhagen, Denmark

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700