用户名: 密码: 验证码:
连铸用塞棒的组成、结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对提高连铸用塞棒性能的因素进行了研究。全文分为铝碳质和镁碳质两个系列。分别研究了结合剂用量,颗粒粒度分布、添加剂对材料性能的影响规律。重点研究了抗氧化添加剂的种类和加入量对材料性能的影响。
     在结合剂用量方面,本文在前人研究的基础上,结合塞棒体系自身的特性,选取一定范围的结合剂加入量进行单因素试验。通过对试样物理性能的检测和对树脂碳化机理的研究,可以得到下面结论:对于临界粒度为1mm的Al_2O_3-C体系,在外加6%左右的酚醛树脂时,可以使物料颗粒得到充分的润湿并且与细粉充分的结合,可以使制品的各项性能达到最佳;对于临界粒度为2mm的MgO-C体系加入4%左右的酚醛树脂较为合适。
     在颗粒粒度分布研究方面,根据Andreassen颗粒密堆理论公式,选取一定的q值范围进行单因素试验。对于临界粒度为1mm的铝碳质体系,无论是从物理性能检测方面看还是从电子显微图片方面分析都可以得到以下结论:当粒度分布系数在0.44左右,可达到较合理的粒度分布,并获得较好的性能。对于临界粒度为2mm的镁碳质体系,q=0.40时,试样则结合较为紧密。同时发现,在铝碳体系中,通过降低临界粒度和调整颗粒粒度组成不但不能提高强度,相反试样强度有所降低。
     在添加剂研究方面,对锆刚玉和SiC的加入量进行了研究,结论如下:在铝碳体系中加入锆刚玉可以提高试样的强度。加入量在10%时,试样结合致密,强度最高。加入量超过10%时,由于改变了体系的颗粒级配,造成原结构骨架不完整,不连续,而新的结构骨架还未形成,试样气孔增多,强度降低。当SiC加入量小于9%时,在基质中的交错穿插未能连成一体,破坏了原有的整体,致使气孔率增加,强度降低。加入量在6%时,破坏作用最大。
     最后对单种添加剂和复合添加剂的使用效果进行了研究。试验证明添加B_4C对提高试样的常温和高温强度、抗氧化性能有利,但降低材料的耐蚀性能,故加入量要适当。具体试验结果如下:对于铝碳体系,添加2%Si+2%B_4C的试样常温和高温强度较高,抗氧化性能较好。而单独加4%Si的试样具有良好的抗渣性和抗钢水侵蚀性能。对于镁碳体系,添加3%Al+1%Si+1%B_4C时,试样常温和高温强度较高,抗氧化性能较好。而同时加入金属Al和BN的试样具有较好的抗钢水侵蚀性能。同时加入金属Al和金属Si的试样具有较好的抗渣侵蚀性能。
Some factors affecting properties of stopper for con-casting system are studied in this paper. This paper is divided into two series:Al2O3-C system and MgO-C system. The relationship between amounts of binders, grain granularity distribution, additives and properties of samples are studied respectively. Effect of amounts of different anti-oxidants on properties of samples are studied emphatically.
    In the view of amounts of binders, amounts of binders are studied, on the basis of work done and combing with the self characteristics of stopper. Through detecting physical properties of samples and studying the carbonization mechanism of resin, the following conclusions can be drawn. For the Al2O3-C system what critical granularity is 1mm, when the amounts of resin are 6%, grain can be surrounded sufficiently by resin and can combine together more compactly with fine powder and the sample has optimal properties. For the MgO-C system what critical granularity is 2mm, the fittest amounts of resin is 4%.
    In the regard of the experiment of grain granularity distribution, on the basis of the Andreassen formula, through changing the distribution condition of the particle size, it is concluded that grain and matrix combine together more compactly and the sample has higher cold crushing strength, when distribution coefficient equal 0.44 and 0.40 respectively in the Al2O3-C system and in the MgO-C system. Meanwhile, It shows that higher intensity can not be gotten through diminishing critical granularity or adjusting granularity distribution.
    As for the study on additives, the amounts of zirconia-corundum and SiC added are studied. It indicates that zirconia-corundum added can enhance the intensity of samples in the A12O3-C system. The grain granularity distribution of system is changed when the amounts added is above 10%, this results in the imperfect and noncontinuous structure, meanwhile, new structure has not formed, the porosity of sample increases, intensity decreases. When the amounts of SiC added is below 9%, the original structure is destroyed, result in porosity increases, intensity decreases. Attacking is the most when the amounts of SiC added are 6%.
    The effects of single additive and multiple additives are studied at the end. Experimental results show that additive of B4C is beneficial for improvement of sample's intensity at room and elevated temperature , oxidation prevention, but the erosion prevention is decreased, so the amount added should be appropriate. Specific experimental results are as follow: for A12O3-C system, samples added 2%Si+2%B4C have higer intensity at room and elevated temperature, better oxidation resistance. Samples added 4%Si have well corrosion resistance by slag and molten steel. For MgO-C system, samples added 3%Al+l%Si+l%B4C have higher intensity at room and elevated temperature, oxidation resistance. The samples added Al and BN at the same time have well corrosion resistance by molten steel. The samples added Al and Si at the same time have well corrosion resistance by slag.
引文
[1] 陈雷主编.连续铸钢[M].北京:冶金工业出版社,1994.
    [2] 肖英龙等译.吴制铁所2号连铸机提高连浇炉数的措施.重钢技术[J].2000,(2):23-25.
    [3] 杨广军等.连铸系统用耐火材料的现状和发展.五钢科技[J].2002,(2):11-16.
    [4] 田守信等.连铸用耐火材料及其发展.中国冶金[J].2003,(4):41-44.
    [5] 张文杰等.碳复合耐火材料[M].北京:科学出版社,1991.
    [6] 邵毅峰.塞棒控制及浸入式水口浇注工艺.五钢科技[J].1993,(4):9-13.
    [7] 王先陶等.攀钢连铸用耐火材料.四川冶金[J].1998,(3):55-57.
    [8] 李红霞等.连铸用功能耐火材料的发展.耐火材料[J].2001,(1):45-49.
    [9] 刑守渭.连铸对耐火材料的新要求和应采取的对策.耐火材料[J].1990,(1):1-2.
    [10] 齐书祥.高效连铸下的耐材选择与分析.马钢技术[J].2002,(1):12-14.
    [11] 陈树江等.连铸中间包耐火材料的使用现状及发展.钢铁研究[J].1998,(5):50-59.
    [12] 魏同等.连铸用耐火材料的现状及其今后发展趋向.国外耐火材料[J].1999,(11):3-13.
    [13] 张新译.耐火材料与钢水的相互关系以及它们对钢水洁净度的影响.现代冶金[J].2000,(1):51-71.
    [14] 肖英龙.改进耐材材质结构提高连浇炉数.宽厚板[J].2000,(3):32-36.
    [15] 李霞等.天津钢管公司连铸耐火材料的使用和改进.特殊钢[J].2002,(8):49-50.
    [16] 荣学良等.薄板坯连铸中间包塞棒侵蚀原因分析.河北冶金[J].2002,(1):15-17.
    [17] 杨力争译.连铸用水口的损伤.太钢译文[J].1994,(1):7-12.
    [18] 王守权译.MgO-C砖机械特性对石墨含量的依赖性.国外耐火材料[J].1995,(7):55-60.
    [19] 杨大宪等.连铸系统耐火材料对提高钢质及冶金性能的影响.钢铁技术[J].2002,(6): 5-15.
    [20] Akse'Irod L M. Improving the endurance of graghite-containing submerged nozzle for CCM. Refractories and Industrial Ceramics. 1996(5, 6):37.
    [21] Nomura K, Ishizaka A, et al. Improvement of long nozzle life for continuous casting. Proceedings of 79th Conference on Refractories for the Steel Continuous Casting, Japan, 1997:47.
    [22] 张刚.镁碳砖的损毁机理及防损对策.鞍钢技术[J].2000,(9):10-13.
    [23] Nomura O, Lin W, et al. Decarbonization behavior of graphite containing refractories caused by molten steel. Proceeding of 80th Conference on Refractories for the Steel Continuous Casting, Japan, 1998:25-34.
    [24] 张悦明.连铸用复合式整体塞棒.耐火材料[J].1996,(2):93-95.
    [25] 李存弼译.连铸高氧钢用新型浸入式水口的开发.国外耐火材料[J].2001,(1):23-27.
    [26] 潭立华译.用于连铸的碱性耐火材料.国外耐火材料[J].1996,(10):19-23.
    [27] 苏留记,张广智.钢水的钙处理与连铸用耐火材料发展的新趋势.耐火材料[J].1995,(4): 234-237.
    
    
    [28] 张广智.连铸用复合式镁炭质塞头及水口的使用性能分析.耐火材料[J].1995,(6): 321-323.
    [29] 廖建国译.尖晶石-碳质材料在Ca处理钢浇铸用塞棒上的应用.国外耐火材料[J].1998,(3):7-11.
    [30] 王维邦编.耐火材料工艺学[M].北京:冶金工业出版社.1996.
    [31] 刘浩斌译.C.C.Furnas.Grading Aggregates.硅酸盐学报[J].1991,(2):164-172.
    [32] A. H. M. Andreassen and J. Andersen. Kolloid Z[M]. 1930, (50): 217-228.
    [33] 泰兴市冶金耐火材料厂.铝锆碳定径水口的研制与应用.连铸[J].1998,(5):36-38.
    [34] 杨彬等.电熔氧化锆原料显微结构和抗侵蚀性研究.洛阳耐火材料研究院建院四十周年院庆科技文集:90-95.
    [35] 刘国齐.N_2保护热处理铝炭材料的研究:硕士学位论文.洛阳:洛阳耐火材料研究院.2000,5.
    [36] 王林俊等.β-Si_3N_4对MgO-C砖高温性能的影响.耐火材料[J].2003,(2):92-93,99.
    [37] 孙庚辰等.Si/Al添加剂对镁炭砖高温力学性能的影响.耐火材料[J].1992,(5):249-251.
    [38] 张文杰等.耐火材料[J].1985,(4):6.
    [39] 平栉敬资等.添加金属对MgO-C砖性能的影响.国外耐火材料[J].1987,(2):9.
    [40] 谭立华译.MgO-C和AL_2O_3-C耐火材料中金属添加剂的性能.国外耐火材料[J].1995,(5):27-31.
    [41] 山口明良编.实用热力学及其在高温陶瓷中的应用[M].武汉工业出版社:1993.
    [42] 田守信等.添加剂在Al_2O_3-C制品氧化过程中堵塞气孔的机理.耐火材料[J].1989,(2): 1-3.
    [43] 王诚训编著.MgO-C质耐火材料[M].北京:冶金工业出版社,1995.
    [44] T.Rymon-Lipinski.含碳耐火材料金属添加剂的抑制氧化作用.何林朴译.国外耐火材料[J].1989,(9):54-58.
    [45] 崔学正译.防氧化用添加物对无硅AG材料抗侵蚀性的影响.国外耐火材料[J].1998,(9):58-60.
    [46] 徐慧译.添加铝和硅的MgO-C耐火材料在空气中的氧化.国外耐火材料[J].2001,(3):196-202.
    [47] 陈肇友等.Al与Si添加剂对Al_2O_3-C材料抗保护渣侵蚀的影响.金属学报[J].1989,(6): 191-195.
    [48] 黄文生等.添加物Al和Si对碳结合刚玉-莫来石材料氧化行为的影响.耐火材料[J].1991,(4):191-193.
    [49] 渡边明.MgO-C添加金属举动.耐火物[J].1986,(11):2-8.
    [50] 松村龙雄.及合金添加物性.耐火物[J].1987,(9):39-41.
    [51] 山口明良.碳复合耐火材料.耐火材料[J].1994,(3):128-132.
    
    
    [52] 江彦见俊等.Mechanical Properties of Magnesia Carbon Bricks.耐火物[J].1981,(5): 271.
    [53] 孙庚辰等.沥青/酚醛树脂系结合剂对镁碳砖热机械性能的影响.耐火材料[J].1993,(1):7-11.
    [54] 李君等.MgO-ZrO_2材料的烧结、显微结构和性能.耐火材料[J].1996,(2):69-73.
    [55] 赵海雷等.锆刚玉莫来石对氮化硼材料显微结构及力学性能的影响.耐火材料[J].1994,(4):192-197.
    [56] 李庭寿等.锆刚玉莫来石-碳化硅复合材料抗热疲劳性能的研究.耐火材料[J].1992,(2):97-100.
    [57] 王天明等.添加剂及温度对Al_2O_3-C质耐火材料中SiC晶须形成的影响.炼钢[J].1996,(2):25-28.
    [58] 张朝霞.提高盛钢桶用优质不烧铝镁碳砖的质量.太钢科技[J].1998,(4):48-50.
    [59] 黄文生等.B_4C对碳结合刚玉.莫来石材料相组成和力学性能的影响.硅酸盐通报[J].1992,(4):31-34.
    [60] 戴贵平等.硼对炭材料氧化行为的综合效应.炭素技术[J].1999,(5):29-32.
    [61] 金在旭译.含各种添加剂的镁碳砖的氧化特性.国外耐火材料[J].1997,(7):54-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700