用户名: 密码: 验证码:
非圆加工用高速高精度快速刀具进给系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非圆回转类零件在工业中的应用日益广泛,在其形状日趋复杂化的同时,对加工精度的要求也随之提高,而相应的精密高效加工技术逐渐成为当今加工领域的研究热点。活塞是发动机的心脏,为了满足发动机性能不断提高的要求,目前活塞型面通常被设计成具有中凸变椭圆特征的复杂三维立体曲面,而其数控车削加工的关键在于硬件上配置一套高频响、大行程和高精度的快速刀具进给机构(Fast Tool Servo,简称FTS),软件上拥有相应的高效伺服控制算法。本文以基于压电堆致动器(PZT Stack Actuator,简称PSA)的FTS机构为研究对象,探索了该机构在非圆回转类零件车削加工中的若干控制问题,并进行了相关的试验分析与验证。
     本文首先根据中凸变椭圆活塞的精密数控车削加工要求,确定了快速刀具进给机构的主要设计参数,如位移精度、频响、行程范围、刚度、驱动力和动态性能等。鉴于PSA的行程较小这一事实,目前基于PSA的FTS机构中普遍采用了柔性铰链微位移放大机构。由于被控对象模型的精确度对系统的控制精度有很大的影响,所以本文还介绍了借助频率扫描获取FTS机构的频率响应,然后利用受控自回归(AutoRegressive with eXogenous input,简称ARX)模型对其进行系统辨识的方法。频率响应和阶跃响应结果表明,所用的FTS机构具有较宽的频带和良好的随动性能。
     在开环、变频、变负载情况下,压电堆致动器具有非常强烈的迟滞非线性特性,最大迟滞可高达满行程的43%。因此,建立迟滞模型进行前馈补偿是十分必要的。在对传统迟滞建模方法进行回顾的基础上,提出了一种基于Preisach原理和支持向量机(Support Vector Machine,简称SVM)算法的动态混合泛化模型,一方面利用SVM代替了传统Preisach建模过程中的双线性插值算法和查找表的功能,另一方面能够在宽频变负载工况下,更精确地描述压电陶瓷的迟滞特性,从而显著提高了迟滞模型的泛化能力和预测精度。对比试验的结果表明,所提出的SVM动态混合泛化模型是十分有效的。
     中凸变椭圆活塞裙部的外型曲面在数控车削加工时,刀具进给运动的目标轨迹是精确预知的,而且刀具进给运动具有较强的周期性和重复性。针对这些特点,提出了一种改进的嵌入式重复控制系统结构,并在稳定性分析的基础上,给出了控制器参数的选择方法。试验结果表明,变负载情况下,重复控制器的跟踪误差有所增大,但仍具有较高的跟踪控制精度。
     采用数控车床加工中凸变椭圆活塞时,完成活塞中凸型线加工的纵向进给运动和实现裙部椭圆加工的高频径向往复运动可以采用不同的运动轴来实现,因此,在普通车床上利用FTS机构建立非圆车削加工试验系统是可行的。本文最后以铝合金棒料为加工对象,在不同椭圆度和不同转速下进行了非圆车削试验,初步验证了所提出的控制策略在基于压电堆致动器的快速刀具进给机构应用中的有效性。
The noncircular parts have been widely used in industry. As their shapes are be-coming more and more complicated, the requirements for machining accuracy are im-proved too, and the corresponding accurate high-efficient process technology evolvesas the research focus of the field gradually. Piston is the heart of an engine. To meetthe challenge of constant improvement in the engine performance, pistons are oftendesigned to be of middle convex and variable ellipse at present. The key point ofnumerically controlled turning process lies in two sides: one is the fast tool servo(FTS), which is of high frequency, long travel and high precision; the other is thecorresponding servo control algorithm of high performance. The subject investigatedin this paper is the PZT stack actuator (PSA) based FTS mechanism. Using thismechanism, several control problems are explored to make the noncircular turningprocess possible. Some experiments were carried out to validate the proposed controlalgorithm.
     According to the machining requirements of middle convex and variable ellipsepistons used in sedan cars, the main design parameters of FTS are determined, suchas position accuracy, frequency response, travel range, stiffness, driving force andseveral dynamic performance. Since the stroke of PSA is not long enough, the ?ex-ible hinge amplifier is popular in the PSA based FTS mechanism. For the controllerdesign, a more accurate model is needed. So, the swept sine method is used to ob-tain the frequency response of this FTS, and an autoregressive with exogenous input(ARX) model is utilized to identify the model parameters of FTS. The test results offrequency response and step response indicate that the used FTS has broader bandwidth and better follow-up performance.
     In the case of open-loop control, high-frequency and heavy-load applications, thenonlinear hysteresis of PSA is so serious that it can be up to 43% of the full stroke.Therefore, it is necessary to model the hysteresis to compensate feedforwardly. Toimprove the control precision of PSA, a dynamic generalized hybrid model is putforth, which is based on the Preisach principle and the support vector machine (SVM)algorithm. The linear spline kernel based SVM hybrid model can substitute the look-up table and complete the bilinear interpolation used in the classical Preisach model,but also can describe the nonlinear hysteresis characteristic of PSA when load andfrequency change in a large range. As a result, both the generalization ability and theprediction precision are improved obviously. Comparison test results show that theproposed SVM hybrid model is valid.
     In the turning process of middle convex and variable ellipse pistons, the referencetarget is known, and the feed movement of the lathe tool is of periodic and repetitive.Based on these characteristics, a modified plug-in repetitive controller is put forward.In accordance to the stability analysis, the design method of controller parameter isrecommended. Although the tracking error is enlarged when the load is varied, ahigher tracking control accuracy is obtained.
     Since the longitudinal feed motion to machine the middle convex shaped con-ductor, and the high-frequency reciprocating motion to shape the oval piston skirt canbe separated in the realization of numerically controlled turning process, it is possibleto build up a noncircular cutting pilot system on a centre lathe. In the end, a group ofaluminum alloy bar stocks are machined with different ovalities and distinct speeds,to validate the proposed control methods used for the PSA based FTS mechanismprimarily.
引文
[1] 胡德金, 张蕾, 许黎明, 活塞销孔高效镗削技术研究, 上海机床, 1998, (1), 27-29
    [2] 胡德金, 刘仁茂, 许黎明等, 全自动CNC精车活塞止口专机, 制造技术与机床, 1998,(10), 16-18
    [3] 胡德金, 刘仁茂, 许黎明等, 全自动CNC镗削活塞销孔专机的研究开发, 组合机床与自动化加工技术, 1999, (1), 27-30
    [4] Piston calculation, KIOLBENSCHMIDT AKTIENGESELLSCHAFT (资料)
    [5] Piston design, KIOLBENSCHMIDT AKTIENGESELLSCHAFT(资料)
    [6] Piston Basic Principle, KIOLBENSCHMIDT AKTIENGESELLSCHAFT(资料)
    [7] Goenka,P.K., Meenik,P.R., Lubrication analysis of piston skirts, SAE paper920490,1992
    [8] Knoll,G.D., Peeken,H.J., Hydrodynamic lubrication of piston skirts, ASME Journal ofLubrication Technology, 1982, 104(3), 40-51
    [9] 陈志华, 非圆截面零件车削控制研究, [学位论文], 长沙, 国防科技大学, 2000
    [10] 虞孝彬, 活塞裙部的变椭圆——中凸型面, 小型内燃机, 1992, (2), 8-10
    [11] 刘淑先, 杜密科, 机床上加工椭圆的机构设计及原理, 机械制造, 1997, (9), 12-l3
    [12] 朱峰葆, 一种简单的椭圆面加工方法, 机械制造, 1996, 34(1), 30-31
    [13] 邓中亮, 非圆零件车削加工技术, 北京, 人民邮电出版社, 1998
    [14] Urata,E., Hara,M., Turning of pistons with elliptic cross section using hydraulic copy-ing system, Bulletin of the JSME, 1982, 25(208), 1627-1633
    [15] Burton,K.AU., Closing the loop on hydraulic control, Machine Design, 1994, (9), 93-97
    [16] 刘达利, 刘丕骧, 新型铝活塞, 北京, 国防工业出版社, 1999
    [17] 李敏政, 车削变椭圆活塞的立体靠模, 内燃机工程, 1989, 10(2), 66-70
    [18] Freeman,N.B., Turning out piston assemblies, American Machinist, 1982, 126(2), 118-119
    [19] 焦明波, 谷强, 李堂, 数字仿形控制的研究, 组合机床与自动化加工技术, 1997, (2),24-27
    [20] Higuchi,T., Mizuno,T., Sugai,H., et al, Primary study on application of electro-hydraulic servo mechanism to non-circular cutting by lathe, Seiran Kenkyu, 1984, 36(2),71-73
    [21] Tran,H.D., DeBra,D.B., Design of a Fast Short-Stroke Hydraulic Actuator, CIRP An-nals, 1994, 43, 469-472
    [22] Tsao,T.C., Tomizuka,M., Adaptive and repetitive digital control algorithms for noncir-cular machining, In Proc. of American Control Conference, Atlanta, GA, 1988, 115-120
    [23] Tsao,T.C., Tomizuka,M., Robust adaptive and repetitive digital tracking control andapplication to a hydraulic servo for noncircular maching, Journal of Dynamic System,Measurement and Control, 1994, 116, 24-32
    [24] 田中实, 活塞加工用高速CNC车床的开发, 国外内燃机, 1991, (3), 14-22
    [25] 通口俊郎, 电磁吸引力を利用した高速位置决め机构の开发, 精密工学会志,1993, 59(10), 37-42
    [26] Higuchi,T., Yamaguchi,T., Development of a new high speed positioning servomech-anism by electromagnetic attractive force, Journal of the Japan Society for PrecisionEngineering, 1993, 59(10), 1619-1624
    [27] Higuchi,T., Yamaguchi,T., Tanaka,M., Development of a high speed non-circular ma-chining NC-lathe for cutting a piston-head of a reciprocating engine by use of a newservomechanism actuated by electromagnetic attractive force, Journal of the Japan Soci-ety for Precision Engineering, 1996, 62(3), 453-457
    [28] Kanizar,W.L., Liu,D.M., Moon,K.S., et al, Magnetostrictive actuator-based microp-ositioner and its application in turning, In, Crowe,C.R., Proc. of SPIE-Industrial andCommercial Applications of Smart Structures Technologies, 1996, 385-393
    [29] Liu,D., Sutherland,J.W., Moon,K.S., et al, Surface texture improvement in the turningprocess via application of a magnetostrictively actuated tool holder, Journal of DynamicSystems, Measurement and Control, 1998, 120(2), 193-199
    [30] Yan,W.Y., Al-Jumaily,A.M., Feasibility of using an active actuator for two-dimensionalvibration abatement in a turning process, Design Engineering Division, 2001, 111, 9-16
    [31] El-Sinawi,A.H., Kashani,R., Improving surface roughness in turning using optimalcontrol of tool’s radial position, Journal of Materials Processing Technology, 2005,167(1), 54-61
    [32] 唐任远, 特种电机, 北京, 机械工业出版社, 1998
    [33] Cross company, Cross 2000 Piston turning machine, 1989
    [34] Wang,X., Wu,D., Yuan,Z.J., Experimental research on the linear motor micro-feed de-vice with high- frequency response, long travel and high accuracy, CIRP Annals, 1991,40(1), 379-382
    [35] 刘金凌, 王先逵, 冯之敬, 高频响直流直线电机, 微特电机, 1993, (4), 17-18, 28
    [36] GIDDINGS & LEWIS公司, 活塞车床样本, 1996
    [37] Physik Instrumente, Micropositioning, nanopositioning, nanoautomation: solutions forcutting- edge technologies, 2001
    [38] Lu,X.D., Ph.D. thesis proposal: Electromagnetically driven ultra fast tool servo,web.mit.edu/xdlu/OldFiles/thesis/edufts.pdf
    [39] Patterson,S.R., Magrab,E.B., The design and testing of a fast tool servo for diamondturning, Precision Engineering, 1985, 7(3), 123-128
    [40] Rasmussen,J.D., Tsao,T.C., Hanson,R.D., et al, A piezoelectric tool servo system forvariable depth of cut machining, In, Jouaneh M., eds., ASME Winter Annual Meeting,Anaheim, CA, 1992, 119-130
    [41] Rasmussen,J.D., Tsao,T.C., Hanson,R.D., et al, Dynamic variable depth of cut machin-ing using piezoelectric actuators, International Journal of Machine Tools and Manufac-ture, 1994, 34(3), 379-392
    [42] Kinetic Ceramics GmbH, Kinetic Ceramics Technical document, 2001
    [43] Piezosystem Jena GmbH, Products catalogue, 2001
    [44] Sugita,K., Yamakawa,Y., Sakakibara,N., et al, Development of a non-circular highspeed generating mechanism by hybrid system with VCM and PZT, Journal of the JapanSociety for Precision Engineering, 1992, 58(9), 1503-1508
    [45] Pahk,H.J., Lee,D.S., Park,J.H., Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter implementation, InternationalJournal of Machine Tools and Manufacture, 2001, 41(1), 51-63
    [46] Kim,B.S., Control of multiple degree of freedom fast tool stages for noncircular turningprocess, [Dissertation], Urbana-Champaign, University of Illinois, 2001
    [47] Kim,B.S., Li,J.W., Tsao,T.C., Two-parameter robust repetitive control with applica-tion to a novel dual-stage actuator for noncircular machining, IEEE/ASME Trans. onMechechatronics, 2004, 9(4), 644-652
    [48] 邓中亮, 高频响大行程微进给机构的研究, [学位论文], 北京, 清华大学, 1994
    [49] 刘金凌, 王先逵, 吴丹等, 直线电机伺服系统的模糊推理自校正PID控制, 清华大学学报(自然科学版), 1998, 38(2), 44-46, 50
    [50] 江思敏, 王先逵, 石忠东等, 中凸变椭圆活塞加工用高性能直线伺服系统的研究,机械工程学报, 2001, 37(9), 58-61
    [51] 吴丹, 王先逵, 易旺民等, 重复控制及其在变速非圆车削中的应用, 中国机械工程,2004, 15(5), 446-449
    [52] 非圆技术中心, http://www.nudt.edu.cn/fyjszx/product/rkm2.htm
    [53] 湖 南 一 派 数 控 设 备 有 限 公 司, 一 派 数 控 产 品 目 录,http://www.epochnc.com/chanpin/一派数控产品目录.doc
    [54] 徐军, CNC电致伸缩致动器加工OC曲面活塞裙的研究, [学位论文], 西安, 西安交通大学, 1989
    [55] 徐军, 房楷年, 史维祥, 一种微机控制车削非旋转对称曲面的电致伸缩刀架的研究, 西安交通大学学报, 1992, 26(3), 67-72
    [56] 李黎川, 卢秉恒, 活塞车床刀架中音圈电流直流成份的消除, 西安交通大学学报,1995, 29(7), 49-53, 66
    [57] 刘廷章, 卢秉恒, 李彦生等, 中凸变椭圆活塞裙面车削系统的开发, 内燃机, 1996,(1), 4-7
    [58] 刘廷章, 卢秉恒, 内燃机活塞复杂裙面加工方法及其数控系统研究, 组合机床与自动化加工技术, 1997, (12), 11-14, 8
    [59] 刘廷章, 叶冰, 卢秉恒等, 发动机异形活塞加工系统及其动态性能研究, 农业机械学报, 1998, 29(2), 121-125
    [60] 王大庆, 葛思华, 丁崇生等, 高速CNC活塞数控车床数控系统的新设计, 内燃机,1997, (4), 14-18
    [61] 刘山, 葛思华, 丁崇生等, 电磁铁驱动的微进给机构的研究, 机床与液压, 1998, (4),17-18
    [62] 刘山, 葛思华, 丁崇生等, 电磁铁驱动的微进给机构及其控制电路, 机械科学与技术, 1998, 17(5), 745-747
    [63] 刘山, 葛思华, 丁崇生等, 用于异圆加工的动铁式直线电机, 微特电机, 1999, 27(2),26-27, 36
    [64] 刘山, 电磁式微进给机构的研究, [学位论文], 西安, 西安交通大学, 1999
    [65] 邬义杰, 项占琴, 活塞异形消孔制造CNC数控系统研究, 机电工程, 1997, 14(5),24-25
    [66] 吕福在, 项占琴, 方正辉, 超磁致伸缩材料在活塞异形销孔加工中的应用, 机电工程, 1997, 14(6), 71-72
    [67] 吕福在, GMM换能器及其在高精度非圆截面加工中的应用研究, [学位论文], 杭州, 浙江大学, 2003
    [68] Tang,Z.F., Xiang,Z.Q., Lv,F.Z., Modeling and control method study of magnetostrictivemicropositioner and its application, In, IEEE International Conference on Systems, Manand Cybernetics, 2004, 4296-4300
    [69] 翟鹏, 活塞异形外圆精密数控加工技术研究, [学位论文], 济南, 山东大学, 2002
    [70] 程良伦, 杨宜民, 新型压电式直线驱动器的研究, 高技术通讯, 1997, 7(10), 16-19
    [71] 程良伦, 杨宜民, 新型精密直线驱动器及其控制器的研究, 计算技术与自动化,2000, 19(1), 19-21, 30
    [72] 李峻, 异型圆车削的数字控制刀具同步进给系统的研究, [学位论文], 上海, 上海交通大学, 1999
    [73] 秦月霞, 非圆仿形车削加工误差补偿技术研究, [学位论文], 上海, 上海交通大学,2003
    [74] 马浩全, 非圆回转曲面车削加工中的新型高精度快速刀具进给系统的研究, [学位论文], 上海, 上海交通大学, 2005
    [75] 薛实福, 李庆祥, 精密仪器设计, 北京, 清华大学出版社, 1991
    [76] Redmond,J., Sensors and Actuators, Internal report, The University of Michigan, 2004
    [77] Kinetic Ceramics, Products overview, 2004
    [78] 候国屏, 王珅, 叶齐鑫等, LabVIEW7.1编程与虚拟仪器设计, 北京, 清华大学出版社, 2005
    [79] National Instruments, LabVIEW system identification toolkit user manual, 2004
    [80] 吴今培, 系统辨识, 北京, 中国铁道出版社, 1994
    [81] Vapnik,V.N., The nature of statistical learning theory, New York, Springer-Verlag, 1995
    [82] Vapnik,V.N., Statistical learning theory, New York, John Wiley, 1998
    [83] Vapnik,V.N., The nature of statistical learning theory, 2nd edn, New York, Springer-Verlag, 1999
    [84] Cristianini,N., Shawe-Taylor,J., An introduction to support vector machines, Cam-bridge, UK, Cambridge University Press, 2000
    [85] Mayergoyz,I.D., Mathematical models of hysteresis, New York, Springer-Verlag, 1991
    [86] Hall,D.A., Review nonlinearity in piezoelectric ceramics, Journal of Materials Science,2001, 36(19), 4575-4601
    [87] Goldfarb,M., Celanovic,N., Modeling piezoelectric stack actuators for control of mi-cromanipulation, IEEE Control systems, 1997, 17(3), 69-79
    [88] Preisach,F., Uber die magnetische nachwirkung, Zeitschrift fur Physik, 1935, 94, 277-300
    [89] Ge,P., Jouaneh,M., Modeling hysteresis in piezoceramic actuators, Precision engineer-ing, 1995, 17(3), 211-221
    [90] Ge,P., Jouaneh,M., Tracking control of a piezoceramic actuator, IEEE Transactions oncontrol systems technology, 1996, 4(3), 209-216
    [91] Galinaitis,W.S., Rogers,R.C., Control of a hysteretic actuator using inverse hysteresiscompensation, In, Varadan,V.V., SPIE conference on mathematics and control in smartstructures, 1998, 267-277
    [92] Cruz-Hernandez,J.M., Hayward,V., Phase control approach to hysteresis reduction,IEEE Transaction on control systems technology, 2001, 9(1), 17-26
    [93] Xu,J.H., Neural network control of a piezo tool positioner, In, CCECE/CCGEI’93,1993, 333-336
    [94] 党选举, 谭永红, 压电陶瓷回环特性的RBF神经网络建模研究, 系统仿真学报,2005, 17(1), 144-147
    [95] Tao,G., Kokotovic,P.V., Adaptive control of systems with actuator and sensor nonlin-earities, New York, John Wiley & Sons, 1996
    [96] Gorbet,R.B., Control of hysteretic systems with preisach representations, [Disserta-tion], Waterloo, University of Waterloo, 1997
    [97] Press,W., Numerical recipes, Cambridge, UK, Cambridge university press, 1986
    [98] Song,D.W., Li,C.J., Modeling of piezo actuator’s nonlinear and frequency dependentdynamics, Mechatronics, 1999, 9, 391-410
    [99] Park,J.K., Washington,G., Prediction of hysteretic effects in PZT stack actuators us-ing a hybrid modeling strategy, In, Smith,R.C., SPIE conference on modeling, signalprocessing and control of smart structures and materials, 2004, 48-59
    [100] Kwan,C., Xu,R., Lang,J., et al, Intelligent control of piezoelectric actuators for pre-cision manufacturing, In, Gopalakrishnan,B., SPIE conference of intelligent systems indesign and manufacturing, 1999, 2-11
    [101] 高隽, 人工神经网络原理及仿真实例, 北京, 机械工业出版社, 2003
    [102] Smola,A.J., Sch¨olkopf,B.,A tutorial on support vector regression, NeuroCOLT2 Tech-nical Report Series, 1998
    [103] Xiao,R., Wang,J.C., Zhang,F.Y., An approach to incremental SVM learning algorithm,In, 12th International Conference on Tools with Artificial Intelligence, 2000, 268-273
    [104] Gunn,S.R., Support vector machines for classification and regression, Technical Re-port, 1998
    [105] Hu,H., Mrad,R.B., On the classical Preisach model for hysteresis in piezoceramicactuators, Mechatronics, 2003, 13, 85-94
    [106] Mayergoyz,I.D., Friedman,G., Generalized Preisach model of hysteresis, IEEE Trans-actions on Magnetics, 1988, 24(1), 212-217
    [107] Ge,P., Jouaneh,M., Generalized preisach model for hysteresis nonlinearity of piezo-ceramic actuators, Precision engineering, 1997, 20, 99-111
    [108] Mayergoyz,I.D., Dynamic Preisach models of hysteresis, IEEE Transactions on Mag-netics, 1988, 24(6), 2925-2927
    [109] Yu,J.M., Error compensation in diamond turning via on-line metrology and robustcontrol, [Dissertation], New York, Rensselaer Polytechnic Institute, 2000
    [110] Li,J.W., Tsao,T.C., A two parameter robust repetitive control design using struc-tured singular values, In, Proc. 37th IEEE Conference on Decision and Control, Tampa,Florida, 1998, 1230-1235
    [111] Inoue,T., Nakano,M., Iwai,S., High accuracy control of a proton synchrotron magnetpower supply, In, Proc. of the 8th World Congress of IFAC, 1981, 216-222
    [112] Francis,B.A., Woharn,W.M., The internal model principle for linear multivariable reg-ulators, Applied Mathematics & Optimization, 1975, 2(2),170-194
    [113] 中野道雄, 井上惠, 山本裕, 等著, 吴敏译, 重复控制, 中南工业大学出版社, 1994
    [114] Hara,S., Yamamoto Y., Omata,T., et al., Repetitive control system: a new type servosystem for periodic exogenous signals, IEEE Transactions on automatic control, 1988,33(7), 659-668
    [115] Cong,S., An innovative repetitive control system, In, IEEE International conferenceon intelligent processing systems, 1997, 640-644
    [116] Tsai,M.C., Yao,W.S., Design of a plug-in type repetitive controller for periodic inputs,IEEE Transactions on control systems technology, 2002, 10(4), 547-555
    [117] Srinivasan,K., Shaw,F.R., Analysis and design of repetitive control systems using theregeneration spectrum, Journal of Dynamic Systems, Measurement and Control, 1991,113(2), 216-222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700