用户名: 密码: 验证码:
超磁致伸缩执行器的基础理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超磁致伸缩材料(简称GMM)是一种具有双向可逆换能效应的新型功能材料,利用其正效应可制作执行器(GMA),利用其逆效应可制作传感器。GMA相比压电类执行器具有承载大、快速响应、可靠性高、低压驱动等特点,在精密定位、主动降噪减振、流体控制(泵、阀)等领域具有广阔的应用前景。本文以直动型GMA为对象,对GMA的设计、性能优化和非线性迟滞控制进行了研究,成功研制了超磁致伸缩精密微位移执行器原型及GMA的综合实验平台,其成果对GMM执行器的设计和应用具有普遍的指导意义;另外,本文研究了偏置条件对GMA的磁致伸缩逆效应性能的影响,这对自感知GMA的设计有重要的参考价值,同时对自感知GMA的实现方法进行了一些探索性的研究。
     第一章介绍了现代执行器的发展背景,综合论述了国内外超磁致伸缩材料的应用和自感知执行器的研究现状,指出了目前GMA研究存在的一些问题,提出了本论文的选题意义,说明了论文的主要研究内容。
     第二章阐述了超磁致伸缩材料的基本特性,应用磁畴理论对磁致伸缩现象进行了解释,给出了小信号激励环境下GMM的线性压磁方程,分析了GMM的几个关键参数的含义及其相互的联系。
     第三章系统地阐明了直动型GMA的设计原理和方法,包括GMA的总体结构设计、GMM棒的几何参数设计及其横截面上的磁场分布研究、线圈的几何参数设计及优化、磁路设计、预压力装置等,设计了一种线圈内腔水冷式的GMA及其温控系统。
     第四章建立了基于虚拟仪器的GMA综合实验平台。通过对GMA的静态特性实验研究,给出了预压应力、偏置磁场、负载等因素对GMA性能的影响规律;建立了集中参数的GMA动力学模型,通过频响测量,得到了GMA的传递函数;实验测量了GMA的电阻抗随频率变化的特性,得到了GMA的磁机转换系数。本章不仅验证了研制的GMA原型的部分设计指标,对GMA的性能优化和正确使用有重要的参考价值。
     第五章首先阐明了经典Preisach模型的概念,建立了GMA的两种Preisach数值模型(密度函数法和F函数法),研究表明F函数法的迟滞预测精度高于密度函数法,提出了一种Preisach模型的实时数字补偿算法,建立了基于Preisach前馈补偿模型的PID控制算法,实验验证了该方法相对于开环控制和普通PID可显著提高GMA的响应速度、位置跟踪和轨迹跟踪能力,使GMA原型达到了微位移控制的设计指标。
     第六章首先设计了一种实验方法验证了GMA中磁致伸缩逆效应及GMA作力传感器的可行性,揭示了偏置条件(预压应力和偏置磁场)对GMA的正效应
Giant Magnetostrictive Material (GMM ) is a new functional material which has bi-directional transduction effects, it can be made into Giant Magnetostrictive Actuator (GMA) by using the direct effect, also can be made into kinds of sensors by using the converse effect. Compared with piezoelectric actuator, GMA owns the advantage of larger load capacity, rapider response, higher reliability and lower voltage drive, etc, It has a promising prospect in precision positioning, active noise and vibration control and fluid control (pump, valve) fields. This dissertation emphasizes on axial moving type GMA , studies theory for designing GMA, performance optimization and hysteresis control. We successfully developed a magnetostrictive precision micro-displacement actuator prototype and a general experiment table for GMA. These work offer good and universal guidance for design and application of GMA; Moreover, how the bias condition affects the converse effect of GMA is also studied, which provides a valuable reference for the design of self-sensing GMA, and then some new approaches of realizing the self-sensing GMA are explored in this dissertation.
    In the first chapter, the development background of modern actuator, the research situation of the application of GMM and self-sensing actuator in China and oversea are presented, some problems within GMA research are pointed out, the project significance and main contents of the research are provided.
    In the second chapter, the basic properties of GMM are introduced, the magnetostrictive phenomenon is explained by magnetic domain theory, and the linear piezo-magnetic equations are provided, then the connotation of some key parameters of GMM and their relations are analyzed.
    In the third chapter, theory and methods for designing the axial moving type GMA are presented, including the frame design of GMA, the geometric parameter design of GMM rod and magnetic field distribution on the cross section, the geometric parameter design and optimization of the drive coil, magnetic circuit design, pre-stress mechanism design, a new cooling method using water filled in the chamber of the coil and the temperature control system are provided.
    In the fourth chapter, the general experiment table for GMA based on virtual instrument techniques is build up. The influences of pre-stress, bias magnet, and load to GMA are provided; Lump parameter kinetic model of GMA is build up, and transfer function of GMA is attained by frequency response measurement; Magnetomechanical coupling factor is attained through electrical impedance
引文
[1].杨宜民.新型驱动器及其应用.北京:机械工业出版社.1997.
    [2].孙宝元.现代执行器技术.长春:吉林大学出版社.2003
    [3].贾振元,王福吉,郭东明.功能材料驱动的微执行器及其关键技术.机械工程学报.2003,Vol.39(11):61~67
    [4].杨大智.智能材料与智能系统.天津:天津大学出版社.2000.
    [5].王博文.超磁致伸缩材料制备与器件设计.北京:冶金工业出版社.2003.
    [6].杨大智,魏中国.智能材料—材料科学发展新趋势.物理,1997,26(1):6~11.
    [7]. A.Burman, Erik Moster and Per Abrahamsson. On the Influence of Functional Materials on Engineering Design. Research in Engineering Design. 2000, (12):39~47.
    [8].李陪,伍虹.国外稀土超磁致伸缩材料的研究状况.稀土,1990,11(6):52~59
    [9].李扩社,徐静,张深根.稀土超磁致伸缩材料进展.金属功能材料.2003,10(6):30~33.
    [10]. F. Claeyssen,N.Lhermet,T.Maillard. Magnetostrictive Actuators Compared To Piezoelectric Actuators. Proceedings SPIE, 2003, Vol.4763:194~200.
    [11]. Steven Ashley. Magnetostrictive actuators. Mechanical Engineering. 1998, 120(6):68~69
    [12].王龙妹.21世纪战略性功能材料—超磁致伸缩合金.新材料产业.2002,98(1):23~26
    [13]. Garnett C.Horner, Leslie Bromberg, and J.P.Teter. A Cryogenic Magnetostrictive Actuator using a Persistent High Temperature Superconducting Magnet, Partl :Concept and Design. Proceedings SPIE, 1999, VoI.3674:499~504.
    [14]. F. Claeyssen, N.Lhermet. Actuators Based on Giant Magnetostfictive Materials. ACTUATOR 2002, 8th International Conference on New Actuators, 10~12 June 2002, Bremen, Germany. 148~153.
    [15]. Goran Engdahl. Handbook of Giant Magnetostrictive Materials. Sa Diego: Academic Press,2000.
    [16].郭东明,杨兴,贾振元等.超磁致伸缩执行器在机电工程中的应用研究现状.中国机械工程,2001,12(6):724~727.
    [17].肖柏勋,杜凯,刘春生.一种新型的井间声波CT震源.水利水电快报,2000,21(17):21~23
    [18]. Hiroyuld Wakiwaka, Muneo Mitamura. New magnetostrictive type torque sensor for sterring shaft. Sensors and Actuators. A.91(2001)pp.103-106.
    [19]. M.D. Mermelstein andA. Dandridge. Low-frequency magnetic field detection with a magnetostrictive amorphous metal ribbon. Appl. Phys. Lett., 1987, 51(7):545~547.
    [20]. H.Eda,T.Mori,L.Zhou,K.Kubota. Powder Metallurgic Giant Magnetostrictive Material and its Applications in Micro-actuator and Micro-sensors. SPIE Conference on Materials and Device Characterization in Micromachining. SPIE Vol.3875
    [21]. F.Claeyssen, R.Le Letty, EBarillot. Micromotors Using Magnetostrictive Thin Films. Part of SPIE Conference on Smart Structures and Integrated Systems. San Diego. California. March 1998.
    [22].董维杰,孙宝元,崔玉国.自感知执行器—传感器、执行器集成新概念.压电与声光,2001,23(2).
    [23]. Dosch J J, Inman D J, Garcia E. A self-sensing piezoelectric actuator for collocated control. Journal of Intelligent Material Systems and Structures, 1992,3(l):166~185.
    [24]. Vallone Phillip. High performance piezo-based self-sensor for structural vibration control. Proceedings SPIE, 1995, Vol.2443:643~655.
    [25]. Yan T H, Lin R M. Feedback control of disk vibration/flutter by distributed self-sensing actuators. Magnetic Recording Conference, 2002, Digest of the Asia-Pacific, 2002, TU-P:2501~2502.
    [26]. Lowell D.Jones and Ephrahim Garcia. Novel approach to self-sensing actuation. Proceedings SPIE, 1997, Vol.3041:305~314.
    [27]. Vipperman J S, Clark R L. Implementation of an adaptive piezoelectric sensoriactuator, AIAA Journal, 1996, 34(10):2102~2109.
    [28]. Oshima k, Takigami T, Hayakawa Y. Robust vibration control of a cantilever beam using self-sensing actuator. JSME International Journal, 1997, Series C 40(4):681~687.
    [29].方有亮,武哲。配置压电自感作动器复合层板的振动主动控制.航空学报.2000,21(3):247~250
    [30].高坚新,沈亚鹏.自感知主被动阻尼悬臂梁动态特性分析.固体力学学报.2000,21(1):1~10
    [31].董维杰,孙宝元,崔玉国等,基于状态观测器的压电自感知执行器研究.机械工程学报.2002,38(7):80~83
    [32].王波,殷学纲,黄尚廉.压电自感知悬臂梁振动的主动控制研究.固体力学学报.2004,25(1):107~110
    [33]. J.L.Pons, D.Reynaerts, J.Peirs. Comparison of Different Control Approaches to Drive SMA Actuators. International Conference on Advanced Robotics, Monterey, CA,July 7-9,1997:819~824.
    [34].杜彦良,聂景旭,赵长占.构件裂纹的探测和主动控制的一种新方法.航空学报.1993,14(7):A337~341
    [35].王吉军,初奕,马孝江.NiTi形状记忆合金振动感知与主动控振研究.大连理工大学学报.1997,37(6):736~741
    [36]. Jon pratt, Alison B.Flatau. Development and analysis of a self-sensing magnetostrictive actuator design. Proceedings SPIE, 1993, Vol. 1917:952~961.
    [37]. Ralph C.Fenn, Michael J.Gerver. Passive damping and velocity sensing using magnetostrictive transduction. Proceedings SPIE, 1994, Vol.2190:216~227.
    [38]. Jones L D, Garcia E. Self-sensing magnetostrictive actuator for vibration suppression. J.Guidance, 1996,19(3):713~715.
    [39]. Bernd Clephas, Hartmut Janocha. Simultaneous sensing and actuation of a magnetostrictive transducer. Proceedings SPIE, 1998, Vol.3329:174~184.
    [40]. Kulmen, K., Schommer, M., Janocha, H., Design of a smart magnetostrictive actuator by sensing the variation of magnetic flux. Proceeding of the 11th International Conference of Sensor 2003, Nuremberg, May 2003: 267-272.
    [41]. K.Kuhnen, H.Janocha, M.Schommer. Exploitation of inherent sensor effects in Magnetostrictive actuators. Actuator 2004, Proc. 9th International Conference on New Actuators, Bremen, June 2004:367-370.
    [42].贾振元,杨兴,王福吉.具有位移感知功能的超磁致伸缩微位移执行器的研究.应用科学学报.2002,20(4):354~359
    [43].田民波.磁性材料.北京:清华大学出版社.2001年
    [44]. Mcmasters O D, Verhoeven J B, Gibson E D. Preparation of Terfenol-D by float zone solidification. Magnetism and Magnetic Materials. I986, 54(57):849-851.
    [45].赵凯华.电磁学.北京:高等教育出版社,1985年.
    [46]. Clark A E, Teter J P, Mc Masters O D. Magnetostriction jumps in twined Tb_(0.3)Dy_(0.7)Fe_(1.9). J Appl Phys, 1988,63(8) :3910-3912.
    [47]. F.T.Calkins, R.C.Smith, A.B.Flatau. Energy-Based Hysteresis Model for Magnetostrictive Transducers. IEEE Transactions on Magnetics, 2000, 36(2):429~439.
    [48]. D.C.Jiles. Theory of the magnetomechanical effect. J.Phys. D:Appl. Phys., 1995, 28:1537~1546
    [49]. Amer R.Rathore, Teruo Mori. A study on torque induction in the giant magnetostrictive material. Journal of Alloys and Compounds. 1997, 258:93~96.
    [50]. E.du Tremolet de Lacheisserie. Magnetostriction theory and applications of magnetoelasticity. CRC Press, Inc., Boca Raton, FL. 1993.
    [51]. Marcelo J.Dapino, Ralph C.Smith, Alison B.Flatau. A Model for the E Effect in Magnetostrictive Transducers. Proceedings of SPIE, 2000, Vol.3985:174~185.
    [52]. Keith A. Barrels, Chris Dynes, Yichi Lu. Evaluation of concrete reinforcements using magnetostrictive sensors. Proceedings of SPIE, 1999, Vol.3587:210~218.
    [53]. James H. Goldie, Michael J.Gerver, John Oleksy. Composite Terfenol-D Sonar Transducers. Proceedings of SPIE, 1999, Vol3675:223~234.
    [54]. G.Nick Weisensel, T.Toby Hansen, William D. Hrbek. High power ultrasonic Terfenol-D transducers enable commercial application. Peoceedings of SPIE, 1998, Vol.3326:450~458.
    [55].吕福在.用于柴油机电喷系统的GMM高速强力电磁阀和电控系统的研究:[博士学位论文].杭州:浙江大学,2000年.
    [56]. M.P.Schulze, R.D.Greenough, N.Galloway. The Stress Dependence of k_(33), d_(33), and U in Tb_(0.3)Dy_(0.7)Fe_(1.95). IEEE Transactions on Magnetics, 1992, 28(5):3159~3161.
    [57]. A.E.Clark, M.L. Spano, H.T.Savage. Effect of Stress on the Magnetostriction.and Magnetization of Rare Earth-Re_(1.95) Alloys. IEEE Transactions on Magnetics, 1983, 19(5): 1964~1966.
    [58]. Xiaobo Tan, Ram Venkataraman, P.S.Krislmaprasad. Control of hysteresis:theory and experimental results. Proceedings of SPIE, 2001, Vol.4326:101~112.
    [59].电气工程师手册(第二版).北京:机械工业出版社,2002年.
    [60]. G. Engdahl. Design Procedures for Optimal Use of Giant Magnetostrictive Material in Magnetostrictive Actuator Applications. ACTUATOR 2002, 8th International Conference on New Actuators, 10- 12 June 2002, Bremen, Germany, P41:554~557.
    [61].唐志峰,项占琴,吕福在.超磁致伸缩执行器优化设计及控制建模.中国机械工程.2005,16(9):753~757.
    [62]. McMasters O.D, Development, Application, Markets, and Patent Situation of Magnetostrictive TERFENOL-D. Journal of Rare Earths, 1995, 13(4):295~301.
    [63].小飒工作室,最新经典ANSYS及Workbench教程.北京:电子工业出版社,2004年.
    [64].唐兴伦.ANSYS工程应用教程(热与电磁学篇).北京:中国铁道出版社.2003年.
    [65]. M.B.Moffet, A.E.Clark, M.Wun-Fogle. Characterization of Terfenol-D for magnetostrictive transducers. Journal of the Acoustic Society of America. 1991, 89(3):1448~1455.
    [66].高光天主编,张伦,冯新强译.传感器与信号调理器件应用技术.北京:科学出版社.2002年.
    [67].Robert H.Bishop著,乔瑞萍等译.LabVIEW 6i实用教程.北京:电子工业出版社.2003年.
    [68]. National Instruments Inc., LabVIEW7.1 User Manual, 2004.
    [69]. National Instruments Inc., LabVIEW7.1 Measurement Manual, 2004.
    [70]. LVC5050 Power Supply Amplifier Technical Manual. AE Techron Corp.
    [71].李大明.磁场的测量.北京:机械工业出版社.1993年
    [72].严钟豪,谭祖根.非电量电测技术.北京:机械工业出版社.1999年
    [73].王幸之,王雷等.单片机应用系统抗干扰技术.北京:北京航空航天大学出版社.2000 年.
    [74].余永权.Atme189系列Flash单片机原理及应用.北京:电子工业出版社.1997年.
    [75].梁德沛,李宝丽.机械工程参量的动态测试技术.北京:机械工业出版社.1996年.
    [76].邓焱,王磊.LabVIEW 7.1测试技术与仪器应用.北京:机械工业出版社.2004年.
    [77].邬义杰,刘楚辉.超磁致伸缩驱动器设计方法的研究.浙江大学学报(工学版),2004,6(38):747~760
    [78].贾振元,杨兴,郭东明.超磁致伸缩微位移执行器控制方法的研究.仪器仪表学报.2002.23(3):288~301.
    [79].Katsuhiko Ogata著,卢伯英,于海勋等译.现代控制工程.北京:电子工业出版社.2000年.
    [80].梁德沛,李宝丽.机械工程参量的动态测试技术.北京:机械工业出版社.1996年.
    [81].曾庆勇,微弱信号检测.杭州:浙江大学出版社.1986年.
    [82]. National Instruments Inc., LabVIEW Analysis Concepts, 2004.
    [83].沈永欢,梁在中,许履瑚编.实用数学手册.北京:科学出版社.1992年.
    [84]. Reed, R.S. and Uldrick, J.P. Model ofa Magnetostrictive Actuator with Application to simple Systems. Modeling and Simulation. 1988, Vol. 19:2105~2109.
    [85]. Bryant, M.D. and Wang, N. Audio Range Controllability of Linear Motion Terfenol Actuators. Journal of Intelligent Material Systems and Structures, 1994, Vol.5:431~436.
    [86]. David M. Dozor. Magnetostrictive Wire Bonding Clamp for Semiconductor Packaging, Proceedings of SPIE, 1998, Vol.3326:516~526.
    [87]. F.T.Calkins, R.C.Smith, A.B.Flatau. Energy-Based Hysteresis Model for Magnetostrictive Transducers. IEEE Transactions on Magnetics, 2000, 36(2):429~439.
    [88]. Marcelo J.Dapino, Ralph C. Smith, Alison B.Flatau. Structural Magnetic Strain Model for Magnetostrictive Transducers. IEEE Transactions on Magnetics, 2000, 36(3):545~556.
    [89]. Julie C.Slaughter, Marcelo J.Dapino, Ralph C.Smith. Modeling ofa Terfenol-D ultrasonic transducer. Proceedings of SPIE, 2000, Vol3985:366~377.
    [90]. I.D. Mayergoyz, G. Frienman. Generalized Preisach Model of Hysteresis(invited). IEEE Transactions on Magnetics, 1988, 24(1):212~217.
    [91]. E.Della Torre. Preisach modeling and reversible magnetization. IEEE Transactions on Magnetics, 1990, 26(6):3052~3058.
    [92]. I.D. Mayergoyz, Vector Preisach hysteresis models(invited). J.Appl.Phys. 1988, 63(8):2995~3000.
    [93]. D. Hughes, J. T. Wen. Preisach modeling and compensation for smart material hysteresis. Proceedings of SPIE, Vol 2442:328~336.
    [94]. R. B. Gorbet, D. W. L. Wang. Preisach Model Identification of a Two-Wire SMAActuator. Proceedings of the 1998 IEEE International Conference on Robotics & Aumation. May 1998, Leuven, Belgium, ⅹ-5:2161~2167.
    [95]. C. Natale, E Velardi. Modelling and Compensation of Hysteresis for Magnetostrictive Actuators. 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, July, 2001,Como, Italy, Proceedings B-12(5):744~749.
    [96]. T. Doong, I. D. Mayergoyz. On Numerical Implementation of Hysteresis Models. IEEE Transactions on Magnetics. 1985, Vol. Mag-21 (5): 1853~1855.
    [97]. Ping Ge, Musa Jouaneh. Modeling hysteresis in piezocerarnic actuators. Precision Eng. 1995, Vol17:211~221.
    [98]. I.D Mayergoyz. The classical Preisach model of hysteresis and reversibility. J.Appl.Phys. 1991, 69(8):4602~4604.
    [99]. I.D. Mayergoyz. Mathematical Models of Hysteresis(invited). IEEE Transactions on Magnetic, 1986, Vol. Mag-22, No.5:603~608.
    [100]. A.A.Adly, I.D. Mayergoyz. Preisach modeling of magnetostrictive hysteresis. J.Appl.Phys. 1991, 69(8):5777~5779.
    [101].赵国生.磁滞数学模型及考虑磁滞时磁场数值计算.郑州:黄河水利出版社.2004年.
    [102]. J.B.Restorff, H.T. Savage, A.E. Clark. Preisach modeling of hysteresis in Terfenol. J.Appl.Phys. 1990, 67(9):5016~5018. (hysteresis main in BH)
    [103].江思敏.TMS320LF240xDSP硬件开发教程.北京:机械工业出版社.2003
    [104].清源科技.TMS320LF240xDSP应用程序设计教程.北京:机械工业出版社.2003
    [105].黄英哲,董胜源.TMS320C240原理与C语言应用实习.北京:中国水利水电出版社.2003
    [106].Andrew Bateman著,陈健等译.DSP算法、应用与设计.北京:机械工业出版社.2003.
    [107]. Texas Instruments Inc., TMS320F/C24x DSP Controllers Reference Guide, 1999.
    [108].戴忠达.自动控制理论基础.北京:清华大学出版社.1991年.
    [109].刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社.2003年.
    [110]. Neubert Hermann K P. Instrument transducers: an introduction to their performance and design. Oxford: Clarendon Press, 1975.
    [111].Gayford,M.L著,包紫薇等译.电声学.北京:科学出版社.1981.
    [112]. De Boer, Egbert. Theory of Motional Feedback. IRE Transactions on Audio, 1961, January-February: 15~21.
    [113]. B.Ko, B.H.Tongue. Acoustic control using a self-sensing actuator. Journal of Sound and Vibration, 1995, 187(1):145~165.
    [114]. Leonard Haynes, Zheng Geng, Joseph Teter. A new Terfenol-D Actuator Design with Applications to Multiple DOF Active Vibration Control. Proceeding of SPIE, 1993, Vol.1917: 919~928.
    [115]. I.D.Mayergoyz. Mathematical Models of Hysteresis. New York: Springer Verlag, 1991.
    [116]. Frederick T.Calkins, Alison B. Flatau. Transducer based measurements of Terfenol-D material properties. Proceedings of SPIE, 1996, Vol.2717: 709~719.
    [117]. John M, Garcia E, Newton D V. Precision position control of piezoelectric actuators using charge feedback. Journal of Guidance, Control and Dynamics, 1995, 18(5): 1068~1073.
    [118].董维杰,崔玉国,杨志欣.电压驱动与电流积分器相结合实现压电电荷控制.计算机自动测量与控制,2002,10(4):260~262.
    [119].夏春林,丁凡,陶国良.GMM电—机械转换器驱动的启动压力阀.液压气动与密封.1999,(3):21~22.
    [120].徐峰,张虎,蒋成保.超磁致伸缩材料作动器的研制及特性分析.航空学报.2002,23(6):552~555.
    [121].石延平,张永忠,刘成文.超磁致高速开关阀的研究与设计.中国机械工程.2003.14(21):1824~1826.
    [122].邬义杰,项占琴.新型功能材料在活塞异型销孔制造中的应用.制造技术与机床.1997,(8):36~38.
    [123].唐志峰,项占琴,吕福在.基于稀土超磁致伸缩材料的高速强力电磁阀的建模、设计和控制研究.第五届全球智能控制与自动化大会(WCICA 2004).Vol4:3357~3361,2004,6,中国,杭州.
    [124]. Mel J. Goodfriend, Kevin M. Shoop. High force, high strain, wide band width linear actuator using the magnetostrictive material, Terfenol-D. Proceedings of SPIE. 1991, Vol.1543: 301~312.
    [125]. David L.Hall. Dynamic and vibrations of magnetostrictive transducers[D]. Department of Aerospace Engineering and Engineering Mechanics, Iowa State University. 1994.
    [126].孙慷,张福学.压电学.北京:国防工业出版社.1984.
    [127]. F. Claeyssen, N. Lhermet, R. Le Letty. Actuator, transducer and motors based on giant magnetostrictive materials. Journal of Alloys and Compounds 1997(258):61~73.
    [128]. Rick Kellogg, Alison Flatau. Investigation of a Terfenol-D tunable mechanical resonator. Proceedings of SPIE, 2001, Vol.4327: 550~559.
    [129]. Rick Kellogg, Alison Flatau. Blocked force investigation of a Terfenol-D transducer. Proceedings of SPIE, 1999, Vol.3668:184~195.
    [130]. LeAnn E. Faidley, Marcelo J. Dapino, Alison B. Flatau. Characterization of a small Terfenol-D transducer in mechanically blocked configuration. Proceedings of SPIE. 2001, Vol.4327: 521~532.
    [131].徐灏,蔡春源,严隽琪等.机械设计手册第2版第3卷.北京:机械工业出版社.2001.
    [132]. R.Venkataraman, P.S.Krishnaprasad. A novel algorithm for the inversion of the Preisach operator. Proceedings of SPIE, 2000, Vol.3984: 404~414.
    [133]. C. Visone, C. Serpico. Hysteresis operators for the modeling of magnetostrictive materials. Journal of Physica B, 306(2001): 78~83.
    [134].左鹤声,彭玉莺.振动试验模态分析.北京:中国铁道出版社.1995.
    [135]. Alessandro Salvini, Francesco Riganti Fulginei, and Giuseppe Pucacco. Generalization of the Static Preisach Model for Dynamic Hysteresis by a Genetic Approach. IEEE Transactions on Magnetics, 2003, 39(3):1353~1356.
    [136]. Y.Bernard, E.Mendes, EBouillault. Dynamic Hysteresis Modeling Based on Preisach Model. IEEE Transactions on Magnetics, 2002, 38(2):885~888.
    [137]. David L.Hall. Dynamics and vibrations of magnetostrictive transducers[D]. Department of Aerospace Engineering and Engineering Mechanics, Iowa State University, 1994.
    [138]. I.D. Mayergoyz. Dynamic vector Preisach models of hysteresis. J.Appl.Phys, 69(8),15:4829~4831, 1991.
    [139].程耀东.机械振动学.杭州:浙江大学出版社.1990.
    [140].吴博达,鄂世举,杨志刚等.压电驱动与控制技术的发展与发展.机械工程学报,2003,39(10):79~85.
    [141]. Ralph C. Smith. Modeling techniques for magnetostrictive actuators. Proceedings of SPIE, 1997, Vol.3041: 243~253.
    [142]. Chad H. Joshi. Cryogenic Magnetostrictive Actuators and Stepper Motors. Proceedings of SPIE, 2000, Vol.4131: 240~249.
    [143]. Jurgen Schafer, Hartmut Janocha. Compensation of hysteresis in solid-state actuators. Sensors and Actuators A 49(1995):97~102.
    [144]. Ram V.Iyer, Matthew E. Shirley. Hysteresis Parameter Identification With Limited Experimental Data. IEEE Transactions on Magnetics, 2004, 40(5):3227~3239.
    [145]. Xiaobo Tan, John S. Baras. Modeling and Control of a Magnetostrictive Actuator. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas,Nevada USA, Dec 2002:866~872.
    [146]. 赵文峰.控制系统设计与仿真.西安:西安电子科技大学出版社.2002.
    [147]. 候媛彬,汪梅,王立琦.系统辨识及其Matlab仿真.北京:科学出版社.2004.
    [148].张志涌.精通MATLAB6.5版.北京:北京航空航天大学出版社.2003.
    [149].姜健飞,胡良剑,唐俭.数值分析及其MATLAB实验.北京:科学出版社.2004.
    [150]. F. Stillesjo, G. Engdahl, A. Bergqvist. A Design Technique for Magnetostrictive Actuators with Laminated Active Material. IEEE Transactions on Magnetics, 1998, 34(4):2141~2143.
    [151]. G. Engdahl, A.Bergqvist. Loss simulations in magnetostrictive actuators. J. Appl. Phys, 1996, 79(8):4689~4691.
    [152]. L. Kvamsjo, G. Engdahl. Examination of eddy current influence on the behavior of a giant magnetostfictive functional unit. J. Appl. Phys, 1990, 67(9):5010~5012.
    [153]. A. Bergqvist, G. Engdahl. A Stress-dependent Magnetic Preisach Hysteresis Model. IEEE Transactions on Magnetics, 1991, 27(6):4796~4798.
    [154]. L. Kvamsjo, A. Bergqvist, G .Engdahl. Application of a Stress-dependent Magnetic Preisach Hysteresis Model on a Simulation Model for Terfenol-D. IEEE Transactions on Magnetics, 1992, 28(5):2623~2625.
    [155]. G.Song, Jinqiang Zhao, Xiaoqin Zhou, J.Alexis De Abreu-Garcia. Tracking Control of a Piezoceramic Actuator With Hysteresis Compensation Using Inverse Preisach Model. IEEE/A SME Transactions on Mechatronics, 2005, 10(2): 198~209.
    [156]. K. Prajapati, R. D. Greenough, A. G. Jenner. Device oriented magnetoelastic properties of Tb_xDy_(1-x)Fe_(1.95)(x=0.27, 0.3) at elevated temperatures. J. Appl. Phys, 1994, 76(10):7154~7156.
    [157]. M.J. Sablik, D. C. Jiles. A model for hysteresis in magnetostriction. J. Appl. Phys, 1988, 64(10):5402~5404.
    [158]. Toshiynki Ueno, Toshiro Higuchi. Dynamic Response in Magnetic Force Control Using a Laminate Composite of Magnetostrictive and Piezoelectric Materials. IEEE Transactions on Magnetics, 2005, 41(3):1082~1085.
    [159]. H.T.Savage, A.E.Clark, J.M.Powers. Magnetomechanical Coupling and △E Effect in Highly Magnetostrictive Rare Earth -Fe2 Compounds. IEEE Transactions on Magnetics, 1975, 11 (5): 1355~1357.
    [160]. Marcelo Jorge Dapino. Nonlinear and hysteretic magnetomechanical model for rnagnetostricfive transducers[D]. Department of Engineering Mechanics, Iowa State University, 1999.
    [161]. J.Mora, A.Diez, J.L.Cruz, M.V.Andres. A Magnetostrictive Sensors Interrogated by Fiber Gratings for DC-Current and Temperature Discrimination. IEEE Photonics Technology Letters,2000,12(12): 1680~1682.
    [162]. Rick Kellogg, Alison Flatau. Stress-strain relationship in Terfenol-D. Proceedings of SPIE, 2001, Vol.4327:541~549.
    [163]. G. Dewar. Static and dynamic magnetoelasticity. Proceedings of SPIE, 2001, Vol.4467:146~157.
    [164]. L. Gros, G Reyne, C. Body, G. Meunier. Strong Coulping Magneto Mechanical Methods Applied to Model Heavy Magnetostrictive Actuators. IEEE Transactions on Magnetics, 1998, 34(5):3150~3153.
    [165]. Rongge Yan, Bowen Wang, Qingxin Yang, Fugui Liu, Shuying Cao, and Wenmei Huang. A Numerical Model of Displacement for Giant Magnetostrictive Actuator. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1914~1917.
    [ 166]. M. Kaltenbacher, S. Schneider, R. Simkovics, H. Landes, R. Lerch. Nonlinear Finite Element Analysis of Magnetostrictive Transducers. Proceedings of SPIE, 2001, Vol.4326:160~168.
    [167]. Mohamed E.H. Benbouzid, Gilbert Reyne, and Gerard Meunier. Finite Element Modelling of Magnetostrictive Devices: Investigations for the Magnetic Circuit. IEEE Transactions on Magnetics, 1995, 31(3):1813~1816.
    [168]. Frederick Theodore Calkins. Design, analysis, and modeling of giant magnetostrictive transducers[D]. Department of Engineering Mechanics, Iowa State University, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700