用户名: 密码: 验证码:
黄芪总苷对β-淀粉样蛋白和糖皮质激素协同诱导大鼠海马神经元损伤的保护作用及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景中枢神经系统退行性疾病( Progressive neurodegenerative disease)是一类发生在老年前期及老年期的慢性进行性中枢神经系统退行性疾病,严重威胁老龄人身体健康及生活质量,其中以阿尔茨海默病(Alzheimer's disease, AD)较为常见。AD又常被称为老年性痴呆,在临床上,AD患者的症状是以进行性的记忆减退、认知障碍、人格改变等为主要特征的综合症, WHO的调查报告结果表明,65岁以上老人的AD发病率约为5~20%,AD患者的平均存活时间只有5年;脑衰老是多层次,多重性的退行性变化,其病因尚未阐明,国内外也尚无良药来防治该类疾病。因而,研究AD的发病机理及防治方法受到社会的极大关注,也是目前神经药理学等研究的热点之一。
     AD的主要病理学特征是在中枢神经系统的皮层、海马等处产生大量的β-淀粉样蛋白(β-Amyloid protein, Aβ),形成Aβ沉积、老年斑(Senile plaque, SP)和神经纤维缠结(Neurofibrilary tangle, NFT),其中Aβ是构成老年斑的主要成份。Aβ是由β-淀粉样前体蛋白(amyloid precursor protein, APP)经β、r-secretase酶裂解生成,Aβ是构成老年斑的主要成份;Aβ在AD患者的神经元中过度生成及其对神经元的细胞毒作用,在AD的发病和进展过程中起关键的作用。糖皮质激素(Glucocorticoids, GCs)是调节机体生长发育、新陈代谢和维持机体功能正常的一类重要激素,也是临床常用的抢救和治疗药物,GCs具有多种生理和药理作用,但长期大剂量应用GCs可对机体免疫和神经等系统造成严重的不良反应。目前,国内外都注重研究Aβ、GCs分别与AD发病之间的关系,但将Aβ与GCs相关联,研究它们之间的相互促进海马神经元细胞毒作用却很少,仅检索到2篇相关论文。
     近年来,国内外都投入了大量人力、物力从事防治中枢神经系统退行性疾病、AD等疾病及其发病机制的研究工作,我国中医中药具有悠久的防治衰老的历史和丰富的临床实践经验,目前,在国内,一些研究单位着重研究了传统延缓衰老的常用中药及其复方的疗效和部分作用机理,取得了一定的进展,但都还基本处于临床前研究阶段,已批准上市的防治AD中药还寥寥无几。黄芪是临床延缓衰老的名药,黄芪总苷(Astragalosides, AST)是从黄芪中提取的有效部位群,我们的前期研究表明, AST不仅具有抗炎、免疫调节和防治局灶性脑缺血和全脑缺血再灌注引起的脑损伤作用,还能明显改善D-半乳糖衰老小鼠和地塞米松(Dexamethasone, DEX)引起的老前期(20 mon)衰老模型小鼠的学习记忆功能,改善环磷酰胺降低的小鼠学习记忆功能;但AST对Aβ和GCs引起的海马神经元损伤是否有保护作用还未见报道。
     由于Aβ和GCs分别在AD的发病中均起重要的作用,如Aβ可引起体外培养的海马神经元凋亡和活力下降,向大鼠海马CA1区注射Aβ可引大鼠学习记忆能力下降;小鼠在长期给予GCs时,在引起老前期小鼠海马神经元损伤的同时,还可引起学习记忆能力明显下降,但它们二者之间对神经元是否具有协同的细胞毒性作用仍然不清楚;此外,临床上仍无理想的防治AD的药物和方法。为进一步研究AD的发病机理和寻找有效的防治AD等神经系统退行性疾病的方法和药物,本文拟(1)在体内,研究DEX是否具有协同促进Aβ引起大鼠海马神经元损伤和学习记忆能力下降的作用,然后进一步研究其可能的作用机制。在体外,同样观察DEX协同促进Aβ引起海马神经元损伤,分析其可能的作用机理。(2)进一步探讨AST对A?和DEX诱导大鼠海马神经元损伤的保护作用以及可能的相关分子与基因水平的作用机制。
     方法:
     第一部分地塞米松协同促进Aβ对大鼠海马神经元毒性及其机理的研究在体内,利用Morris水迷宫和病理组织检查,研究DEX(1 mg/kg/d,sc×7 d)和Aβ(海马CA1区注射、5μg/侧、双侧、单次)联合作用对大鼠学习记忆能力和海马神经元损伤的影响。在体外,取孕第18天Sprague Dawley(SD)大鼠胚胎的海马神经元进行体外原代培养,用MTT(Methyl thiazolyl tetrazolium)方法观察DEX(0.01-10μM)和Aβ25-35(1-40μM)对海马神经元活力的影响,分别找出DEX和Aβ引起海马神经元损伤的亚适浓度;再用MTT和TUNEL(Terminal- Deoxynucleotidyl Transferase Mediated Nick End Labeling)染色法检测DEX(1, 10μM)联合Aβ(1, 5μM)对海马神经元活力和神经元凋亡的影响,同时用激光共聚焦荧光显微镜测定DEX(10μM)联合Aβ25-35(5μM)对海马神经元胞内钙浓度(intracellular calcium, [Ca2+]i)的影响,用western blot分析测定核NF-κB(Nuclear Factor kappa B)、p53和p-tau蛋白含量,进一步探讨DEX是否通过下调核NF-κB蛋白水平,上调p53和p-tau蛋白水平促进Aβ的神经元毒性。
     第二部分黄芪总苷对A?和DEX协同诱导大鼠海马神经元损伤的保护作用及其机理的研究
     采用在大鼠海马CA1区注射A?25-35的方法,建立大鼠AD模型;运用Morris水迷宫方法观察AST对AD模型大鼠学习、记忆能力的影响;利用病理组织学检查,观察AST对AD模型大鼠脑组织病理性损伤的保护作用。在体外,培养胎鼠海马神经元的基础上,观察AST对A?和DEX+A?协同诱导海马神经元损伤的保护作用。采用MTT细胞活力检测法检测海马神经元细胞活力;利用TUNEL法检测细胞凋亡;运用激光共聚焦显微镜(Laser confocal microscopy ,LSCM)检测胞内钙离子浓度变化;用western blot分析测定p-tau蛋白含量;采用RT-PCR法检测P53 mRNA的表达;采用氯化硝基四唑氮蓝(Nitrotetrazolium blue chloride, NBT)法和苯甲酸羟化法观察AST对体外产生氧自由基是否有直接捕获作用。
     结果:
     第一部分地塞米松协同促进Aβ对大鼠海马神经元毒性及其机理的研究
     1. DEX( 5 mg/kg/d, sc×7 d)或向大鼠双侧海马CA1区注射Aβ25-35(5μg/侧)可使大鼠逃避潜伏期和游泳距离有延长趋势,但无统计学意义;DEX( 1 mg/kg/d, sc×7 d)对大鼠逃避潜伏期和游泳距离无明显影响;DEX和Aβ25-35联合使用后d9,大鼠逃避潜伏期及游泳距离明显延长,并有部分动物死亡(1/8-3/8)。病理组织学检验结果显示, 5 mg/kg/d DEX+ 5μg Aβ25-35组CA1区神经元数目明显减少,排列紊乱,脱失现象明显,核固缩为三角形或多角形,浓染。表明DEX可协同促进Aβ引起大鼠学习记忆能力下降和海马组织病理损伤的作用。
     2. DEX(0.01-10μM)对海马神经元细胞活力无明显影响;但A ?25-3(51-40μM)可浓度依赖性地降低海马神经元细胞活力;DEX(1μM, 10μM)预处理海马神经元24 h可明显增强Aβ25-35(1μM, 5μM)引起的海马神经毒性,显著降低海马神经元活力,说明DEX可协同促进A ?引起海马神经元损伤。
     3. DEX(1μM, 10μM)不能增加TUNEL染色阳性细胞数(对照组28.3%, DEX30.4%),但DEX(10μM)预处理海马神经元24 h可明显增加Aβ(5μM)诱导的升高的海马神经元凋亡细胞数,表明DEX可协同促进Aβ引起海马神经元凋亡。
     4. Aβ25-35(5μM)组彗星拖尾长度明显大于溶剂对照组, DEX(10μM)对彗星拖尾长度无明显影响,但DEX(10μM)可进一步促进Aβ25-35(5μM)引起彗星拖尾长度增长,表明DEX可协同促进Aβ引起海马神经元DNA损伤,进一步证实DEX可协同促进Aβ引起海马神经元凋亡。
     5. Aβ25-35(5μM)作用海马神经元10 min后,海马神经元胞内[Ca2+]i轻度增加,维持60 min,然后逐渐下降; DEX(10μM)加入培养液中24 h后不能影响海马神经元的[Ca2+]i水平;但DEX(10μM)预处理海马神经元24 h后可进一步提高Aβ25-35(5μM)诱导的[Ca2+]i上升,使海马神经元胞内[Ca2+]i达到较高水平,说明DEX可能通过促进海马神经元胞内钙离子超载促进Aβ引起海马神经元损伤。
     6.与对照组(0μM Aβ, 0μM DEX)相比,10μM DEX不能增加海马神经元p53蛋白水平,5μM Aβ25-35组的p53蛋白量明显增加。DEX(10μM)+Aβ25-35(5μM)的p53蛋白表达量与同剂量Aβ25-35组相比,差异没有显著性。
     7. 5μM Aβ可时间依赖性地引起海马神经元核NF-κB蛋白表达量增加,与正常对照组相比,10μM DEX可使神经元核NF-κB表达量减少,5μM Aβ25-35能够增加核NF-κB表达量,与同剂量的Aβ(5μM)相比,DEX(10μM )+Aβ25-35(5μM)组的核NF-κB表达量明显下降,说明DEX可能通过抑制海马神经元核NF-κB p65蛋白表达促进Aβ引起海马神经元损伤。此外,与对照组相比,5μM Aβ25-35作用海马神经元4 h后,胞浆IκBα表达量降低,10μM DEX组的胞浆IκBα表达量增加,DEX(10μM)可上调Aβ(5μM)引起的下降的胞浆IκBα表达量,提示DEX可能通过上调海马神经元胞质IκBα蛋白表达、抑制NF-κB p65核转移。
     8. Aβ25-35(0-20μM)能够呈剂量依赖性的增加海马神经元p-tau-Thr231蛋白水平,与对照组相比,10μM DEX亦能增加海马神经元p-tau-Thr231的蛋白水平。10μM DEX+5μM Aβ25-35组p-tau-thr231蛋白水平与同剂量DEX和Aβ25-35组相比,可进一步增加p-tau-thr231蛋白水平,提示DEX可能通过促进Aβ25-35引起p-tau-Thr231蛋白表达量增加而促进海马神经元损伤。
     第二部分黄芪总苷对A?和DEX协同诱导大鼠海马神经元损伤的保护作用及其机理的研究
     1.向大鼠海马CA1区注射A?25-35(10μg/侧,双侧)可制造大鼠AD模型,损伤大鼠的学习记忆能力;AST(20、40、80 mg/kg,ig×7 d)可引起AD模型大鼠升高的逃避潜伏期降低、游泳距离缩短,学习记忆能力恢复,表明AST对A?25-35引起大鼠的学习记忆能力损伤有保护作用。
     2.在海马CA1区注射A?25-35组,海马CA1区神经元数目明显减少,排列紊乱,脱失现象明显,部分神经元核消失。AST(40、80mg/kg)能不同程度改善上述神经元损伤,使海马神经元数目明显增加,排列较整齐,核消失现象改善。
     3.体外A?25-35(10-40μM)可直接引起海马神经元活力下降。AST(10、20和40μg/ml)对体外A?25-35(10-40μM)和DEX(10μM)+A?25-35(5μM)引起胎鼠海马神经元活力有保护作用,使MTT法A值分别上升3.6-125%和12.3%,表明AST对体外A?25-35和DEX+A?25-35引起的胎鼠海马神经元的损伤有保护作用。
     4. A?25-35(10μM)可引起海马神经元发生凋亡。AST(20μg/ml)能显著降低神经元中凋亡细胞的百分率; AST(20μg/ml)亦能明显降低DEX(10μM)+A?25-35(5μM)引起的增高的凋亡细胞百分率。
     5. A?25-35(10μM)可诱导海马神经元胞内[Ca2+]i升高;AST(20μg/ml)能使升高的胞内[Ca2+]i降低。AST(20μg/ml)亦能明显降低DEX(10μM)+A?25-35(5μM)引起的增高的海马神经元胞内[Ca2+]i。
     6. Aβ25-35(10μM)作用海马神经元1 h后,海马神经元p-tau-Thr231表达量显著升高;AST(10 , 20μg/ml)可显著下调Aβ引起的升高的p-tau-Thr231表达量。AST (10, 20μg/ml)亦能明显降低DEX(10μM)+A?25-35(5μM)引起的增高的海马神经元p-tau-Thr231蛋白表达水平。
     7. A?25-35(5μM)可诱导海马神经元p53 mRNA水平升高。加入AST (20μg/ml) 18小时后行RT-PCR,电泳结果显示p53 mRNA条带面积及灰度均降低,积分光密度下降。表明AST可以降低A?25-35诱导增加的海马神经元p53 mRNA水平。
     8. AST(5-80μg/ml)可浓度依赖性地抑制黄嘌呤(Xanthine, X)-黄嘌呤氧化酶(Xanthine oxidase, XO)体系和非酶体系引起NBT还原显色反应; AST仅在高浓度(80μg/ml以上)时才对XO活性有抑制作用。AST(0.5-80μg/ml)与甘露醇(·OH捕捉剂)均可浓度依赖性地抑制Fenton反应引起的苯甲酸羟化。
     结论:
     (1)在体内,DEX具有促进Aβ引起大鼠学习记忆能力下降的作用,导致大鼠海马CA1区神经元数目明显减少、排列紊乱、脱失、浓染和核固缩。表明DEX与Aβ具有协同引起大鼠学习记忆下降和海马组织病理损伤的作用。
     (2)AST可逆转A?25-35引起的大鼠学习记忆下降和海马组织病理损伤。
     (3)在体外,DEX可明显促进Aβ引起海马神经元活性下降和细胞凋亡率增加,这可能与其具有协同促进Aβ引起海马神经元胞内Ca2+升高、下调升高的核NF-κB蛋白水平,引起tau高度磷酸化有关。另外,DEX对Aβ引起的升高的海马神经元总p53蛋白水平和核p53蛋白水平无影响。
     (4)在体外,AST对A?25-35、DEX+A?25-35引起的海马神经元损伤有保护作用, AST能明显降低A?和DEX+A?引起的升高的凋亡细胞百分率,进一步说明AST对A?,DEX协同A?引起的海马神经元损伤有保护作用,这可能与AST能明显降低A?和DEX+A?引起的升高的海马神经元[Ca2+]i、降低增高的海马神经元p-tau-Thr231蛋白表达水平、降低增加的海马神经元p53 mRNA水平以及直接清除超氧阴离子自由基和羟自由基的作用有关。
Background:
     Alzheimer's disease(AD) is the major neurodegenerative disorder of the elderly, and is characterized by progressive cognitive deficits such as impairment of memory. One of the pathological hallmarks of Alzheimer's disease is extracellular accumulation of senile plaques composed primarily of aggregated amyloid ?-protein(Aβ). A report from WHO showed that the incidence rate of AD is 5-20% among the people older than sixty five year old. Although mutations in three different genes are known to underlie some cases of the rare, inheritable forms of the disease, the etiology of the more common sporadic cases remains unknown, and up to now, there is no reliable methods to prevent and treat the diesase.Therefore, many researchers focus on studying the machnism and reliable methods to prevent and treat the diesase.
     Histopathologically, AD is characterized by intraneuronal neurofibrillary tangles, synaptic loss , neuronal death and senile plaques composed primarily of aggregated amyloid ?-protein(Aβ). Aβis a heterogeneous 39-43-amino acid peptide generated by sequential cleavage of amyloid precursor protein by ?-secretase andγ-secretase. It is generally considered that Aβplays a pivotal role in the pathogenesis of AD.
     Glucocorticoids(GCs) are important adrenal steroids that affect numerous physiological processes in the brain and body, but long-term elevations of GCs are associated with decreased cognitive performance, attenuated synaptic efficacy and neuronal atrophy. Many studies in the world are focusing on the relationship between the GCs, Aβand pathogenesis of AD, but whether GCs could enhance Aβ-inducing hippocampal neuronal injury is not well determined.
     Astragaloside (AST) is an active compound extracted from the root of astragalus membranaceus, a valuable Chinese Herbs. Our previous studies showed that the AST not only have significant immunomodulatory, anti-inflammatory and anti-stress effect , but also improves the learning and memory impairment induced by cytoxan and dexamethasone in two-month old mice and senescent mice respectively as well as protect against cerebral ischemia- reperfusion injury. However, whether AST could protect hippocampal neuron against the injury induced by Aβor DEX plus Aβwas not elucidated.
     Previous studies showed that Aβand GCs all play a important role during the progress of AD. For example, Aβcould induce apoptosis of hippocampal neuron in vitro, injection of A?25–35 into CA1 field of rat hippocampus could damage the brain tissue of rats in vivo, and prolonged exposure to high concentration of DEX induced obvious memory impairment as well as severe histological damage in CA1 field of hippocampus in senescent mice. But synergetic effects of Aβand GCs on hippocampal neuronal injury was not well known. On the other hand, there are no effective methods for prevention and treatment of AD. Therefore, in this study, we first examine whether DEX could potentiate Aβ-induced learning and memory impairment in SD rats in vivo, and, if so, what is the underlying mechanism. Then we want to study the protective effects of AST on hippocampal neuronal injury induced by A? or DEX plus A?, and its relative mechanism.
     Methods
     PartⅠSynergetic Effect of DEX and A ? on Hippocampal Neurotoxicity and Its Related Mechanisms
     Morris water maze test was used to investigate whether DEX could potentiate Aβ-induced learning and memory impairment in SD rats in vivo, and the histopathologic changes in CA1 field of hippocampus was examined under a light microscope. Primary hippocampal neurons derived from 18 day embryonic rat were cultured. Cultured cells were treated with 0.01-10μM DEX for 48 h or 1-40μM A?25–35 for 24 h and the suboptimal concentrations of DEX and A?25–35 which producing suboptimal effects on neuronal activity were defined using MTT(3-(4,5-Dimethylthiazol -2-yl)-2,5-Diphenyl Tetrazolium Bromide) assay. Then cultured cells were treated DEX alone at 10μM for 48 h or A?25–35 alone for 24 h in serum-free DMEM, or cultured cells were pretreated with DEX at 10μM for 24 h followed by A?25–35 at 1μM or 5μM for various time in serum-free DMEM. Colorimetric MTT assay and TUNEL(Terminal- Deoxynucleotidyl Transferase Mediated Nick End Labeling) staining were used to investigate the influence of DEX on hippocampal neuronal cell death with Aβ. It was determined the effect of DEX on intracellular calcium ([Ca2+]i) with Aβ25-35 by fluorescence imaging with a confocal laser microscope using fluo-3 acetoxymethylester (AM) as a fluorescent dye. The effects of DEX on Aβ25-35-induced p53 protein, phospho-tau and nuclear factorκB (NF-κB) were analyzed by western blot.
     PartⅡNeuroprotective Effects of AST Against Synergistic Hippocampal Neurotoxicity of Aβand DEX in Rat
     The AD (Alzheimer,s Disease)model rats were established by injecting Aβ25-35 into the CA1 field of hippocampus. The effect of AST on learning and memory impairment in the model rats were studied by Morris water maze,and the brain protection of AST in model rats were observed through pathomorphologic changes. It were used the methods of MTT assay to investigate the influence of AST on hippocampal neuronal cell death with amyloid ?-protein (A?). The effect of AST on intracellular calcium ([Ca2+]i) with A?25–35 was detected by fluorescence imaging with a confocal laser microscope using fluo-3/acetoxymethylester (AM) as a fluorescent dye, and the effect of AST on hippocampal neuron apoptosis induced by A?25–35 were determined with TUNEL staining. The effects of AST on DEX and Aβ25-35-induced phospho-tau protein were analyzed by western blot. The level of p53 mRNA was obsersed by RT-PCR(Reverse Transcriptase Polymerase Chain Reaction ). The effects of AST on reactive oxygen species(ROS) in vitro were detected by NBT reduction and hydroxylation of benzoic acid.
     Results
     PartⅠSynergetic Effect of DEX and A ? on Hippocampal Neurotoxicity and Its Related Mechanisms
     1. Microinjection of A?25–35 (5μg,each CA1) bilateralis into the CA1 region of adult rats and DEX(5 mg/kg/d, sc×7d)could slightly increase the escape latency and the swim distances in SD rats during training session in the Morris water maze test, but there was no statistic significant compared with vehicle-treated control. DEX(1 mg/kg/d, sc, 7d) did not decreased the escape latency and the swim distances in SD rats during training session in the Morris water maze test, but DEX(5 mg/kg/d, sc×7d) could potentiate Aβ(5μg,each CA1)-induced learning and memory impairment in SD rats. Severe histological damage was observed in the CA1 cell fields of the hippocampus in DEX plus Aβ-treated group. These neuropathological changes were characterized by decreased cell number, soma shrinkage and condensation, or nuclear pyknosis. Our results suggest that DEX could potentiate Aβ-induced learning and memory impairment and neuropathological abnormalities.
     2. Treatment for 48 h with DEX(0.01-10μM) alone did not cause a significant reduction in MTT compared with vehicle-treated control cultures. Treatment with aggregated A?25–3(51-40μM)alone decreased cell viability in a concentration-dependent manner. A 24-h preincubation with DEX(1 or 10μM)further decreased the viability of hippocampal neuron induced by A?25–35(1 or 5μM), suggesting synergetic hippocampal neurotoxicity of DEX and A?.
     3. DEX( 10μM) alone failed to increase the number of cells stained positively for TUNEL in the hippocampal neurons,but pretreatment with DEX(10μM) significantly prompted the A?(5μM) -induced apoptosis in hippocampal neurons. This result suggests that DEX could enhances apoptosis in hippocampal neurons induced by A?.
     4. A?25–35(5μM) could significantly increased the length of the whole comet in alkaline single-cell gel electrophoresis. DEX( 10μM) did not influence the the length of the whole comet, but the length of the whole comet in DEX ( 10μM) plus A?25–35(5μM) treated group was markedly longer than that in A?25–35 alone treated group. This result futher suggest that DEX increase the vulnerability of the hippocampal neuron to A?.
     5. Treatment with A? 25-35(5μM) alone induced a slight increase in [Ca2+]i in neurons 10 min later. [Ca2+]i then declined but remained higher than basal level until analyzed over 60 min. DEX(10μM ) alone did not affect [Ca2+]i in hippocampal neurons 24 h after DEX was added to the culture, but pre-incubation of neurons with DEX (10μM) markedly increased the A? 25-35(5μM) -triggered elevation in [Ca2+]i. These results imply that DEX could potentiate the neurotoxic action of A? mediated by increasing the level of intracellular Ca2+.
     6. A?25–35(5μM) causes a time-dependent increase in the level of nuclear NF-κB p65 proteins. A 24 h preincubation with DEX (10μM)could down-regulate the elevated level of nuclear NF-κB p65 proteins induced by A?25–35, suggesting that DEX increase the vulnerability of the hippocampal neurons to A? mediated by down-regulating the level of nuclear NF-κB proteins. A?25–35(5μM) alone could decrease the cytoplasmic level of IκBαprotein 4 h after A?25–35 was added to the culture. Increased levels of cytoplasmic IκBαprotein were observed in hippocampal neurons 28 h after incubation with DEX(10μM), and pretreatment of hippocampal neurons with DEX(10μM) for 24 h could slow the disappearance of cytoplasmic IκBαprotein mediated by A?25–35, suggesting that DEX down-regulation of the elevated level of nuclear NF-κB p65 proteins induced by A? might be associated with increased rate of IκBαprotein synthesis.
     7. A? 25–35 (5μM) treatment resulted in small but significant increases in the level of total protein and nuclear protein of p53 24 h after A? was added to the culture. Treatment with DEX (10μM) alone for 48 h did not increase the levels of total protein and nuclear protein of p53. Pretreatment with DEX for 24 h didn’t promote the increased total protein and nuclear protein of p53 induced by A?25–35..
     8. Aβ25-35(0-20μM) dose-dependently induced phosphorylation of tau at Thr-231 in primary hippocampal neurons cocultured for 1 h with Aβ25-35, whereas maximal phosphorylation was obtained with Aβ25-35(10μM). DEX treatment of neurons in primary culture for 24 h could results in an slight elevation in tau phosphorylation at Thr-231, and pretreated with DEX at 10μM for 24 h could promote the increased level of phospho-tau at Thr-231 induced by Aβ25-35(5μM). These results suggest that DEX increasing the vulnerability of the hippocampal neurons to Aβwas mediated by promoting Aβ-induced tau phosphorylation at Thr-231.
     PartⅡNeuroprotective Effects of AST Against Synergistic Hippocampal Neurotoxicity of Aβand DEX in Rat
     1. AD was modeled by microinjection of A?25–35 (10μg/CA1)bilateralis into the CA1 region of adult rats under stereotaxic guidance. AST(20, 40, 80mg/kg, ig×7 d) could decreased the escape latency and the swim distances of AD model rats, suggesting that AST could improve the ability of learning and memory in AD model rats in the Morris water maze test.
     2. Injection of A?25–35 (10μg/CA1) into CA1 field of rat hippocampus could damage the brain tissue of rats in vivo and the neuropathological changes were characterized by decreased cell number, soma shrinkage and condensation, or nuclear pyknosis. AST( 40 and 80mg/kg )improved histopathologic change in the CA1 field of rats hippocampus.
     3. AST(10μg/ml, 20μg/ml and 40μg/ml) could protect hippocampal neurons against A?25-35(10-40μM)-induced hippocampal neuronal injury in vitro. AST(10μg/ml, 20μg/ml and 40μg/ml)could also protect hippocampal neurons against DEX(10μM) plus A?25-35(5μM)- induced hippocampal neuronal injury. These results suggest that AST could protect hippocampal neuron against synergistic neurotoxicity of Aβand DEX.
     4. It was used the method of TUNEL staining to investigate the influence of AST on hippocampal neuronal cell apoptosis induced by A?25-35 or DEX plus A?25-35 . Results showed that AST (20μg/ml) could significantly inhibited the apoptosis of the hippocampal neurons induced by A?25-35(10μM) or DEX(10μM) plus A?25-35(5μM).
     5. Treatment with A? 25-35(10μM) alone induced a increase in intracellular calcium( [Ca2+]i) in neurons 10 min after A? was added into the culture. [Ca2+]i then declined but remained higher than basal level until analyzed over 60 min. AST (20μg/ml) could inhibit the increased levels of the [Ca2+]i induced by A?25–35. Pre-incubation of neurons with DEX(10μM) markedly increased the A? 25-35(5μM )-triggered elevation in [Ca2+]i , and AST (20μg/ml) could also inhibit the increased levels of the [Ca2+]i induced by DEX(10μM) plus A?25-35(5μM).
     6. Aβ25-35(10μM) could increase the level of phospho-tau at Thr-231 in primary hippocampal neurons. Pretreatment with DEX at 10μM for 24 h could further promote the increased level of phospho-tau at Thr-231 induced by 5μM Aβ25-35. AST( 10, 20μg/ml) could significantly inhibit the level of phospho-tau at Thr-231 induced by Aβ25-35(10μM) or DEX(10μM) plus Aβ25-35(5μM).
     7. The level of p53 mRNA increased 18 h after A?25-35(5μM) was added to the cultured. AST( 20μg/ml) could significantly inhibit the level of p53 mRNA 18 h after A?25-35 was added to the culture.
     8. AST(5- 80μg/ml) could inhibit NBT reduction induced by both xanthine-xanthine oxidase and non-enzyme generated superoxide anions ( ), but the inhibitory effect of this compound on activity of xanthine oxidase was obtained only at high concentration (more than 80μg/ml). It was also found that AST(0.5-80μg/ml) could dose-dependantly inhibit the hydroxylation of benzoic acid induced by Fenton reaction generated . OH.
     Conclusions
     (1) In vivo, DEX could potentiate Aβ-induced learning and memory impairment and pathological damage in CA1 field of hippocampus in SD rats.
     (2) AST could protect against A?-induced learning and memory impairment. Injection of A? into CA1 field of rat hippocampus could damage the brain tissue of rats in vivo, and AST could improve histopathologic change in the CA1 field of SD rats.
     (3) in vitro, DEX could potentiate the neurotoxic action of A? and could enhances apoptosis in hippocampal neurons induced by A?, which might be related to its effects in increasing the A?-triggered elevation in [Ca2+]i, down-regulating the elevated level of nuclear NF-κB p65 proteins, slowing the disappearance of cytoplasmic IκBαprotein as well as promoting the increased level of phospho-tau at Thr-231 with Aβ. In contrary, DEX didn’t promote the increased levels of total protein and nuclear protein of p53 induced by A?.
     (4) AST could protect against A? or DEX plus A?-induced hippocampal neuronal injury , which might be related to its down-regulating the increased levels of the [Ca2+]i and phospho-tau at Thr-231, inhibiting the level of p53 mRNA induced by Aβor DEX plus Aβand scavenging and . OH generated by xanthine-xanthine oxidase system, non-enzyme system and Fenton reaction.
引文
[1]Ramalho RM, Ribeiro PS, Sola S, Castro RE, Steer CJ, Rodrigues CM. Inhibition of the E2F-1/p53/Bax pathway by tauroursodeoxycholic acid in amyloid beta-peptide-induced apoptosis of PC12 cells[J].Journal of Neurochemistry, 2004, 90: 567-575.
    [2]Yankner BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid protein: reversal by tachykinin neuropeptides[J]. Science, 1990, 250: 279-282.
    [3]Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, Masdeu J, et al. Clinico-pathologic studies in dementia: Nondemented subjects with pathologically confirmed Alzheimer's disease[J]. Neurology, 1988; 38: 1682-1687.
    [4]Dominique J.-F. de Quervain, Raphael P, Magdalini T, Andreas P. Glucocorticoid-related genetic susceptibility for Alzheimer's disease[J]. Human Molecular Genetics, 2004, 13: 47-52
    [5]Arbel I, Kadar T, Levy A, et al. The effects of long-term corticosterone administration on hippocampal morphologic and cognitive performance of middle-aged rats[J]. Brain Res, 1994, 657: 227-235.
    [6]Lupien SJ, Wilkinson CW, Nair NPV, et al. Acute Modulation of Aged Human Memory by Pharmacological Manipulation of Glucocorticoids[J]. J Clin Endocrinol Metab,2002, 87: 3798-3807
    [7]Paul J. Lucassen, Marianne B. Müller, Florian Holsboer, Jan Bauer, Anne Holtrop, Jose Wouda, Witte J. G. Hoogendijk, E. Ron De Kloet,et al. Hippocampal Apoptosis in Major Depression Is a Minor Event and Absent from Subareas at Risk for Glucocorticoid Overexposure[J]. Am J Pathol, 2001, 158: 453-459.
    [8]Elliott EM, Mattson MP, Vanderklish P, Lynch G, Chang I, Sapolsky RM. Corticosterone exacerbates kainate-induced alterations in hippocampal tau immunoreactivity and spectrin proteolysis in vivo[J]. J Neurochem , 1993, 61:57-67.
    [9]Sapolsky RM, Glucocorticoids, Hippocampal Atrophy in Neuropsychiatric Disorders[J]. Arch Gen Psychiatry, 2000, 57: 925-935.
    [10]Landfield PW, Waymire JC, Lynch G. Hippocampal aging and adrenocorticoids: quantitative correlations[J]. Science, 1978, 202: 1098-1102.
    [11]Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA. Increased CSF cortisol in AD is a function of APOE genotype[J]. Neurology, 2001, 56: 1094-1098.
    [12]Green K., Billings LM, Roozendaal B, McGaugh JL, LaFerla FM. Glucocorticoids Increase Amyloid- ? and Tau Pathology in a Mouse Model of Alzheimer’s Disease[J]. J Neurosci, 2006,26: 9047-9056.
    [13]Fukumoto H, Rosene DL, Irizarry MC, et al. ?-Secretase Activity Increases with Aging in Human, Monkey, and Mouse Brain[J]. Am J Pathol, 2004, 164: 719-725.
    [14]Mattson MP, Culmsee C, Yu Z, Camandola S. Roles of nuclear factor kappaB in neuronal survival and plasticity[J]. J Neurochem, 2000, 74: 443-456
    [15]Culmsee C, Siewe J, Junker V, Retiounskaia M, Schwarz S, Camandola S, et al. Reciprocal Inhibition of p53 and Nuclear Factor-κB Transcriptional Activities Determines Cell Survival or Death in Neurons[J]. J Neurosci, 2003, 23:8586-8595.
    [16]Stevens TR, Krueger SR, Picciotto MR, et al. Neuroprotection by Nicotine in Mouse Primary Cortical Cultures Involves Activation of Calcineurin and L-Type Calcium Channel Inactivation[J]. J Neurosci, 2003, 23: 10093-10099.
    [17]Lezoualc'h F, Sagara Y, Holsboer F, Behl C. High Constitutive NF-κB Activity Mediates Resistance to Oxidative Stress in Neuronal Cells[J]. J Neurosci, 1998, 18: 3224-3232.
    [18]Wang HY, Li WW, Benedetti NJ, et al.α7 Nicotinic Acetylcholine Receptors Mediateβ-Amyloid Peptide-induced Tau Protein Phosphorylation[J]. J. Biol. Chem., 2003, 278: 31547-31553.
    [19]Zhang Y, McLaughlin R, Goodyer C, et al. Selective cytotoxicity of intracellular amyloid ? peptide1-42 through p53 and Bax in cultured primary human neurons[J]. J Cell Biology, 2002, 156:519-529
    [20]Kruman II, Kumaravel TS, Lohani A,et al. Folic Acid Deficiency and Homocysteine Impair DNA Repair in Hippocampal Neurons and Sensitize Them to Amyloid Toxicity in Experimental Models of Alzheimer's Disease[J]. The Journal of Neuroscience, 2002, 22:1752-1762
    [21]Crochemore C, Michaelidis TM, Fischer D, Loeffler JP, Almeida OX. Enhancement of p53 activity and inhibition of neural cell proliferation by glucocorticoid receptor activation[J]. FASEB J 2002;16:761-770.
    [22]Aditi B, Robert S. Mathias et al. Glucocorticoids Prolong Ca2+ Transients in Hippocampal-Derived H19-7 Neurons by Repressing the Plasma Membrane Ca2+-ATPase-1. Mol Endocrinol[J], 2002, 16: 1629-1637.
    [23]Unlap T, Jope RS. Inhibition of NF-kB DNA binding activity by glucocorticoids in rat brain[J]. Neurosci Lett, 1995, 198: 41-44.
    [24]沈玉先,杨军,魏伟,刘丽华,徐叔云.β-淀粉样多肽25~35片段诱导的大鼠学习记忆功能障碍[J].中国药理学通报,2001, 17 : 26-29
    [25]Kim NG, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM. Glucocorticoids Increase Amyloid- and Tau Pathology in a Mouse Model of Alzheimer’s Disease[J]. J Neurosci, 2006, 26: 9047-9056.
    [26]Williamson R, Scales T, Clark BR, Sheppard PW, Everall I, Anderton BH. Rapid Tyrosine Phosphorylation of Neuronal Proteins Including Tau and Focal Adhesion Kinase in Response to Amyloid-βPeptide Exposure: Involvement of Src Family Protein Kinases[J]. J Neurosci 2002, 22: 10-20.
    [27]Liu T, Perry G, Chan HW, et al. Amyloid-β-induced toxicity of primary neurons is dependent upon differentiation-associated increases in tau and cyclin-dependent kinase 5 expression. Journal of Neurochemistry[J], 2004, 88: 554-563.
    [28]Bayatti N, Zschocke J, Behl C. Brain Region-Specific Neuroprotective Action and Signaling of Corticotropin-Releasing Hormone in Primary Neurons[J]. Endocrinology, 2003,144: 4051-4060.
    [29]Sarnelli G, Berghe PV, Raeymaekers P, Janssens J, Tack J. Inhibitory effects of galanin on evoked [Ca2+]i responses in cultured myenteric neurons. Am J Physiol Gastrointest Liver Physiol[J], 2004, 286: G1009-G1014.
    [30]Yang L, Lindholm K, Konishi Y, et al. Target Depletion of Distinct Tumor Necrosis Factor Receptor Subtypes Reveals Hippocampal Neuron Death and Survival through Different Signal Transduction Pathways[J]. J Neurosci, 2002, 22:3025-3032
    [31]Kawarabayashi T, Shoji M, Younkin LH, et al. Dimeric Amyloid Protein Rapidly Accumulates in Lipid Rafts followed by Apolipoprotein E and Phosphorylated Tau Accumulation in the Tg2576 Mouse Model of Alzheimer's Disease[J]. J Neurosci, 2004, 24: 3801-3809
    [32]Linseman DA, Cornejo BJ, Le SS, Meintzer MK, Laessig TA, et al.A myocyte enhancer factor 2D (MEF2D) kinase activated during neuronal apoptosis is a novel target inhibited by lithium[J]. J Neurochem, 2003, 85: 1488-99.
    [33]Lee HG, Casadesusg G, Zhu X,et al. Challenging the Amyloid Cascade Hypothesis: Senile Plaques and Amyloid-? as Protective Adaptations to Alzheimer’s Disease[J]. Ann. N.Y. Acad.. Sci., 2004, 1019:1-4
    [34]Milton NG. Role of hydrogen peroxide in the aetiology of Alzheimer's disease: implications for treatment[J].Drugs Aging, 2004, 21:81-100
    [35]Xie CW. Calcium-regulated signaling pathways:role in amyloid beta-induced synaptic dysfunction[J]. Neuromolecular Med, 2004,6:53-64
    [36]Sisodia SS, Price DL. Role of theβ-amyloid protein in Alzheimer’s disease[J]. FASEB J, 1995,9: 366
    [37]Simmons LK, May PC, Tomaselli KJ, et al. Secondary structure of amyloid beta peptidecorrelates with neurotoxic activity in vitro[J]. Mol Pharmacol, 1994, 45:373-379
    [38]Xu J, Chen S, Ku G, Ahmed SH, Chen H, Hsu CY. Amyloid beta peptide-induced cerebral endothelial cell death involves mitochondrial dysfunction and caspase activation. J Cereb Blood Flow Metab[J], 2001, 21: 702-710.
    [39]McEwen BS, De Kloet ER, Rostene W. Adrenal steroid receptors and actions in the nervous system[J]. Physiol Rev, 1986, 66: 1121-1188.
    [40]Quervain DJF, Poirier R, Papassotiropoulos A, et al. Glucocorticoid-related genetic susceptibility for Alzheimer's disease[J]. Hum Mol Genet, 2004, 13: 47-52
    [41]Nadeau S, Rivest S. Glucocorticoids Play a Fundamental Role in Protecting the Brain during Innate Immune Response[J]. J Neurosci, 2003, 23: 5536-5544.
    [42]Wiegert O, Jo?ls M, Krugers H. Timing is essential for rapid effects of corticosterone on synaptic potentiation in the mouse hippocampus[J]. Learn Mem, 2006, 13: 110-113.
    [43]Arbel I, Kadar T, Levy A, et al. The effects of long-term corticosterone administration on hippocampal morphologic and cognitive performance of middle-aged rats[J]. Brain Res, 1994, 657: 227-235.
    [44]Sally AF, David L , Jason JS, Marni EH-W, John J, Yang FS, Saido T C, Gregory MC . Protease Inhibitor Coinfusion with Amyloid -Protein Results in Enhanced Deposition and Toxicity in Rat[J]. Brain J Neurosci, 1998, 18: 8311-35
    [45]Morris RG. Spatial localization does not require the presence of localcues[J]. Learn Motiv , 1981 ,12 : 239-60.
    [46]Gallagher N , Nicolleo MM. Animal model of normal aging : relationship between congnitive decline and marker in hippocampal crcuity[J]. Brain Research , 1993, 57: 155-62
    [47]Kerr JFR, Wyllie AH, Curric AR. Apoptosis:a basic biological phenomenon withwide-ranging implications in tissue kinetics[J] . Cancer, 1972, 26: 239-257
    [48]Li WP, Chan WY, Lai HW, et al.Terminal d UTP nickend labeling(TUNEL) positive cells in the different regions of the brain innor- malaging and Alzheimer patients [J] .Mol Neurosci,1997,8: 75-82
    [49]Macgibbon GA , Lawlor PA , Sirmanne ES , et al. Bax expression in mammalian neurons undergoing apoptosis ,and in Alzheimer’s disease hippocampus [J]. Brain Res , 1997 , 750 (3) :223-28
    [50]高曲文,陈俊抛,田时雨,等.β-淀粉样蛋白诱导脑内神经元凋亡及褪黑素的保护作用[J].中华神经科杂志,2000, 33: 7-9
    [51]Singh NP,McCoy MT,Tice RR,Schneider EI. A simple technique for quantitation of low 1evels of DNA damage in individual cells[J].Exp Cell Res,1988,175:l84-191
    [52]Ostling O,Johanson KJ.Microelectrophoretic study of radiation induced DNA damages in individual mammalian cells[J].BiochemBiophys Res Commun,1984,123:291298
    [53]Ifairbairn DW,Olive PI ,Onei11 KI .The comet assay:a comprehensive review[J].Mutat Res,1995,339:37-59
    [54]Steffen R,Christine LD, Ulrike Z ,et al. Alzheimer’s disease b-secretase BACE1 is not a neuron-specific enzyme[J]. Neurochem, 2005, 92: 226-234
    [55]Vargas J, Alarco′n JM, Rojas E. Displacement Currents Associated with the Inser- tion of Alzheimer Disease Amyloid b-Peptide into Planar Bilayer Membranes [J]. Biophysical, 2000, 79: 934-944
    [56]Bhargava A, Mathias RS, Pearce D, et al. Glucocorticoids Prolong Ca2+ Transients in Hippocampal-Derived H19-7 Neurons by Repressing the Plasma Membrane Ca2+-ATPase-1[J]. Mol Endocrinol, 2002, 16: 1629-1637.
    [57]HAI L, RAJINDER B, RATNESHWAR L . Amyloid ? protein forms ion channels: implications for Alzheimer’s disease pathophysiology[J] .The FASEB Journal.2001;15:2433-2444.
    [58]Rovira C, Arbez N, Mariani J. Abeta(25-35) and Abeta(1-40) act on different calcium channels in CA1 hippocampal neurons[J]. Biochem Biophys Res Commun, 2002, 296: 1317-1321
    [59] Stephenson D, Yin T, Smalstig EB, Hsu MA, Panetta J, et al. Transcription factor nuclear factor-kappa B is activated in neurons after focal cerebral ischemia. [J]. J Cereb Blood Flow Metab, 2000, 20:1011-1132
    [60]Middleton G, Davies AM, et al. Cytokine-induced Nuclear Factor Kappa B Activation Promotes the Survival of Developing Neurons[J]. J Cell Biol, 2000, 148: 325-332.
    [61]Lilienbaum A, Isra?l A. From Calcium to NF- B Signaling Pathways in Neurons[J]. Mol Cell Biol, 2003, 23: 2680-2698.
    [62]Argiroffo CB, Pagano A, Cristiana J, Métrailler I, Donati Y. Glucocorticoids aggravate hyperoxia-induced lung injury through decreased nuclear factor-κB activity[J]. Am J Physiol Lung Cell Mol Physiol, 2003, 284: L197-L204.
    [63]Enoch T, Norbury C. Cellular responses to DNA damage: cell cycle checkpoints, apoptosis and the roles of P53 and ATM[J].Trends Biochem Aci,1995, 20: 426-430
    [64]Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of P53 protein to mitochondria: a potential role in apoptotic signalling[J].J Biol Chem, 2000, 275:16202-16212
    [65]Fortin A,Cregan SP, MacLaurin JG, et al. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death[J]. The Journal of Cell Biology, 2001,155: 207-216.
    [66]Hsu MJ, Hsu CY, Chen BC. et al. Apoptosis Signal-Regulating Kinase 1 in Amyloid ? Peptide-Induced Cerebral Endothelial Cell Apoptosis[J]. The Journal of Neuroscience, 2007, 27:5719-5729.
    [67]Zhang Y, Hong YG, Bounhar Y, et al. p75 Neurotrophin Receptor Protects Primary Cultures of Human Neurons against Extracellular Amyloid-βPeptide Cytotoxicity[J]. The Journal of Neuroscience, 2003, 23:7385-7394
    [68]Bhochbin S ,Lawrece JJ. Processing of p53 mRNA druing induced differentiation of murine erythrolinkimia cells :is an alered splicing mechanism responsible for the posttranseriptional control of gene expression ? [J].Gene ,1998 ,72 :177-85
    [69]Sigurdsson EM, Lorens SA, Hejna MJ, et al. Local and distant histopathological effects of unilateral amyloid-beta25-35 injections into the amygdale of young F344 rats[J].Neurobiol Aging, 1996, 17:893~901
    [70]洪道俊,孙凤艳,朱粹青,等.杏仁核注射Aβ25-35后大鼠脑内细胞周期蛋白tau蛋白和Bax蛋白的异常表达[J].生理学报,2003, 55:142-146
    [71]Leger J, Kemp fM, LeeG, et al. Conversion of serine to aspartate imitates phosphorylation- induced changes in the structure and function of microtubule associated protein tau[J]. J BiolChem ,1997, 272: 8441-8446
    [72]Xie H, Litersky JM, Hartigan JA, et al. The interrelationship between selective tau phosphorylation and microtubule association[J].Brain Res, 1998, 798:173-183
    [73]Johnson GVW,Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction[J]. Journal of Cell Science, 2004, 117: 5721-5729 .
    [74]Suh YH,Checler F. Amyloid Precursor Protein, Presenilins, andα-Synuclein: Molecular Pathogenesis and Pharmacological Applications in Alzheimer's Disease[J].Pharmoco Review, 2002, 54: 469-525.
    [75]Nathalie P,Susana F S,Christine F, et al. Calcium-mediated Transient Phosphorylation of Tau and Amyloid Precursor Protein Followed by Intraneuronal Amyloid-βAccumulation[J]. J. Biol. Chem., 2006,281: 39907-39914.
    [76]Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census[J]. Arch Neurol , 2003, 60: 1119-1122
    [77]Van Dam D, D'Hooge R, Staufenbiel M, Van Ginneken C, Van Meir F, De Deyn PP. Age-dependent cognitive decline in the APP23 model precedes amyloid deposition[J]. Eur J Neurosci 2003, 17: 388-396
    [78]Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, et al. Early Aβaccumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain[J]. Neurology 2004,62: 925-931.
    [79]Lalonde R, Dumont M, Staufenbiel M, Sturchler-Pierrat C, Strazielle C. Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation[J]. Brain Res 2002,956: 36-44.
    [80]Kelly PH, Bondolfi L, Hunziker D, Schlecht HP, Carver K, Maguire E, et al. Progressive age-related impairment of cognitive behavior in APP23 transgenic mice[J]. Neurobiol Aging 2003,24: 365-378
    [81]Mann KM, Thorngate FE, Katoh-Fukui Y, Hamanaka H, Williams DL, Fujita S, et al. Independent effects APOE on cholesterol metabolism and brain Aβlevels in an Alzheimer disease mouse model[J]. Hum Mol Genet 2004,13: 1959-1968.
    [82] Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 2001:81, 741- 766
    [83]Blasko I, Grubeck-Loebenstein B . Role of the Immune System in the pathogenesis, prevention and treatment of Alzheimer’s Disease [J]. Drugs Aging, 2003, 20:101- 113
    [84]姚晨玲,黄培志,童朝阳,等.黄芪注射液对培养神经元损伤的保护作用[J].中国临床医学,2002, 9:164-168
    [85]李维祖,明亮,何婷,等.黄芪提取物对大鼠海马神经元迟发性死亡的影响[J].中国药理学通报. 2005, 21:584-587
    [86]尹艳艳,李卫平等。黄芪提取物对大鼠局灶性脑缺血再灌注损伤后炎症因子及细胞凋亡的作用[J]。中国药理学通报, 2005, 21:1486-1489
    [87]Robak J, Ryszard J. Flavoids are scavengers of su-peroxide anions[J]. BiochemPhar, 1988, 37: 837-849
    [88]邓柯玉,辛洪波,张宝恒.云南甘草总皂甙清除氧自由基和抗脂质过氧化作用[J].中国药理学通报,1993,9:350-354
    [89]Cyril CC, Feda AST, Danielle GS , et al.Metal Ions, pH, and Cholesterol Regulate the Interactions of Alzheimer’s Disease Amyloid-? Peptide with Membrane Lipid[J]. Biochem , 2003, 278: 2977-82
    [90]Gnjec A, Fonte JA, Atwood C,et al. Transition metal chelator therapy a potential treatment for Alzheimer’s disease? [J] . Front Biosci, 2002,7:d1016-1023
    [91]Fraser PE, Levesque L, McLachlan DR .Alzheimer A ?-amyloid forms an inhibitory neuronal substrate[J] .Neurochem,1994, 62:1227-1234
    [92]Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW. Aggregation-related toxicity of synthetic ?-amyloid protein in hippocampal cultures [J] .Eur Pharmacol-Mole Pharmacol Section, 1991, 207: 367-75
    [93]Games D, dames D, lessandrini R, et al. A lzheimer-typeneuropathology in transgenic mice overexpression V 717F B-amylo id precursor protein [J ]. Nature, 1995, 373: 523-27
    [94]Mossman T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays[J]. J Immunol Method, 1983, 65:55-64.
    [95]Li R, Yang L, Shen Y, et al. Tumor Necrosis Factor Death Receptor Signaling Cascade Is Required for Amyloid-βProtein-Induced Neuron Death[J]. J Neurosci, 2004, 24: 1760-1771.
    [96]Mattson MP, Chan SL. Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits[J]. J Mol Neurosci, 2001,17: 205-224.
    [97]Kruman II, Mattson MP. Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis[J]. J Neurochem,1999, 72:529-540.
    [98]Ueda K, Shinohara S, Yagami T, Asakura K, Kawasaki K. Amyloid beta proteinpotentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals[J].J Neurochem, 1997; 68: 265-271
    [99]Hiruma H, Katakura T, Takahashi S, et al. Glutamate and Amyloid-Protein Rapidly Inhibit Fast Axonal Transport in Cultured Rat Hippocampal Neurons by Different Mechanisms[J]. The Journal of Neuroscience, 2003, 23: 8967-8977.
    [1]Hui JS, Wilson RS, Bennett DA, et al. Rate of cognitive decline and mortality in Alzheimer’s disease[J]. Neurology, 2003, 61: 1356-1361.
    [2]Joels M, Van RE. Mineralocorticoid and glucocorticoid receptor-mediated effects on serotonergic transmission in health and disease[J]. Ann N Y Acad Sci, 2004, 1032: 301-303.
    [3]Erdeljan P, Andrews MH, Macdonald JF, et al. Glucocorticoids and serotoini alter glucocorticoid receptor mRNA levels in fetal guinea-pig hippocampal neurons in vitro[J]. Reprod Fertil , 2005, 17: 743-749.
    [4] Lupien SJ, Lecours AR, Schwartz G, Sharma S, Meaney MJ, Nair NPV. Longitudinal study of basal cortisol levels in healthy elderly subjects: evidence for subgroups. Neurobiol Aging, 1995, 17:95–105
    [5]Ohl F, Michaelis T, Vollmann-Honsdorf GK, Kirschbaum C, Fuchs E. Effect of chronic psychosocial stress and long-term cortisol treatment on hippocampus-mediated memory and hippocampal volume: a pilot-study in tree shrews. Psychoneuroendocrinology[J], 2000, 25: 357-63.
    [6]Arbel I, Kadar T, Silbermann M, Levy A. The effects of long-term corticosterone administration on hippocampal morphology and cognitive performance of middle-aged rats[J]. Brain Res, 1994, 657: 227-35.
    [7]Lupien S J, Wilkinson CW, Brière S, et al. Acute Modulation of Aged Human Memory by Pharmacological Manipulation of Glucocorticoids[J]. J Clin Endocrinol Metab, 2002, 87: 3798 - 3807.
    [8]McEwen BS. Effects of adverse experiences for brain structure and function[J]. Biol Psychiatry, 2000, 48: 721-731.
    [9]Conrad CD. What Is the Functional Significance of Chronic Stress-Induced CA3 Dendritic Retraction Within the Hippocampus? [J].Behav Cogn Neurosci Rev, 2006, 5: 41 - 60.
    [10]McEwen BS, Magarinos AM, Reagan LP. Structural plasticity and tianeptine:cellular and molecular targets[J].Eur Psychiatry, 2002, 17 suppl 3: 318-330.
    [11]Bisagno V, Ferrini M, Rios H,et al. Chroinc corticosterone impairs inhibitory avoidance in rats:possible link with atrophy of hippocampal CA3 neurons[J].Pharmacol Biochem Behav, 2000, 66: 235-240.
    [12]Magarinos AM, Verdugo JM, McEwen BS. Chronic stress alters synaptic terminal structure in hippocampus[J].Proc Natl Acad Sci USA, 1997, 94: 14002-14008.
    [13]Sousa N, Lukoyanov NV, Madeira MD, et al. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement[J].Neuroscience, 2000, 97:253-266.
    [14]Gross CG. Neurogenesis in the adult brain: death of a dogma[J]. Nat Rev Neurosci, 2000, 1: 67-73.
    [15]Gould E ,Tanapat P. Stress and hippocampal neurogenesis[J]. Biol Psychiatry, 1999, 46: 1472-1479.
    [16]Paul JL, Müller MB, Holsboer F, et al. Hippocampal Apoptosis in Major Depression Is a Minor Event and Absent from Subareas at Risk for Glucocorticoid Overexposure[J]. Am J Pathol, 2001, 158: 453-458.
    [17]Taupin P, Gage FH. Adult neurogenesis and neural stem cells of the central nervous system in mammals [J]. J Neurosci Res , 2002, 69:745-749.
    [18]Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress[J]. Proc Natl Acad Sci USA ,1998, 95:3168-3171.
    [19]Gould E, Gross CG. Neurogenesis in adult mammals: some progress andproblems[J]. J Neurosci , 2002, 22: 619–623.
    [20]Br?nnvall K, Bogdanovic N, Korhonen L, Lindholm D. 19-Nortestosterone influences neural stem cell proliferation and neurogenesis in the rat brain[J]. Eur J Neurosci , 2005,2: 871-878.
    [21]Tanapat P, Hastings NB, Gould E. Ovarian steroids influence cell proliferation in the dentate gyrus of the adult female rat in a dose- and time-dependent manner [J]. J Comp Neurol ,2005, 481: 252-265.
    [22]Sundberg M, Savola S, Hienola A, Korhonen L, Lindholm D. Glucocorticoid Hormones Decrease Proliferation of Embryonic Neural Stem Cells through Ubiquitin-Mediated Degradation of Cyclin D1[J]. J Neurosci, 2006, 26: 5402 - 5410.
    [23]Crochemore C, Michaelidis TM, Fischer D, Loeffler JP, Almeida OX. Enhancement of p53 activity and inhibition of neural cell proliferation by glucocorticoid receptor activation[J]. FASEB J 2002;16:761-770.
    [24]Abraham I, Juhasz G, Kekesi KA,et al. Corticosterone peak is responsible for stress-induced elevation of glutamate in the hippocampus[J]. Stress, 1998, 2:171-181.
    [25]Moghaddam B, Bolinao ML, Stein-Behrens B,et al. Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate[J]. Brain Res, 1994, 655: 251-254.
    [26]Danilczuk Z, Ossowska G,Lupina T, et al.Effect of NMDA receptor antagonists on behavioral impairment induced by chronic treatment with dexamethasone[J].Pharmacol Rep, 2005, 57: 47-54.
    [27]Isokawa M. N-Methyl-D-aspartic acid-induced and ca-dependent neuronal swelling and its retardation by brain-derived neurotrophic factor in the epileptic hippocampus[J]. Neuroscience, 2005, 131:801-812
    [28]Samdani AF, Newcamp C, Resink A, et al. Differential susceptibility toneurotoxicity mediated by neurotrophins and neuronal nitric oxide synthase[J]. J Neurosci, 1997, 17: 4633~4641.
    [29]Schinder AF, Olson EC, Spitzer NC, et al. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity[J]. J Neurosci, 1996, 16: 6125-6133.
    [30]Zamzami N, Hirsch T, Dallaporta B, et al. Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis[J]. J Bioenerg Biomembr, 1997; 29:185-193.
    [31]Ramalho RM, Ribeiro PS, Sola S, Castro RE, Steer CJ, Rodrigues CM. Inhibition of the E2F-1/p53/Bax pathway by tauroursodeoxycholic acid in amyloid beta-peptide-induced apoptosis of PC12 cells[J].Journal of Neurochemistry, 2004, 90: 567-575.
    [32]Mohajeri MH, Saini K, Schultz JG , Wollmer MA, et al. Passive Immunization against -Amyloid Peptide Protects Central Nervous System (CNS) Neurons from Increased Vulnerability Associated with an Alzheimer's Disease-causing Mutation[J]. J Biol Chem, 2002, 277: 33012 - 33017.
    [33]Kim NG, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM. Glucocorticoids Increase Amyloid- and Tau Pathology in a Mouse Model of Alzheimer’s Disease[J]. J Neurosci, 2006, 26: 9047-9056.
    [34]Yao YY, Liu DM, Xu DF, Li WP. Memory and learning impairment induced by dexamethasone in senescent but not young mice[J]. Eur J Pharmacol, 2007, 574(1): 20-28.
    [35]Fukumoto H, Rosene DL, Moss MB, et al. ?-Secretase Activity Increases with Aging in Human, Monkey, and Mouse Brain[J]. Am J Pathol, 2004, 164: 719-725.
    [36]Landfield PW, Waymire JC, Lynch G. Hippocampal aging and adrenocorticoids: quantitative correlations[J]. Science, 1978, 202: 1098 - 1102.
    [37]McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function[J].Eur J Pharmacol, 2004, 490:13-24.
    [38]Vannucci SJ, Maher F,Simpson LA. Glucose transporter proteins in brain:delivery of glucose to neurons and glia[J]. Glia, 1997, 21:12-21.
    [39]Horner HC, Packan DR , Sapolsky RM. Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology[J], 1990, 52: 57-64.
    [40]Virgin CJ, Ha TP, Packan DR, et al. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity[J]. J Neurochem, 1991, 57:1422-1428.
    [41]Sapolsky RM. Glucocorticoid Toxicity in the Hippcocampus: Reversal by Supplementation with Brain Fuels[J].J Neurosci, 1986, 6:2240-2244.
    [42]Lawrence MS, Sapolsky RM. Glucocorticoids accelerate ATP loss following metabolic insults in cultured hippocampal neurons[J].Brain Res, 1994, 646: 303-6.
    [43]Sapolsky RM, Steinberg GK. Gene therapy using viral vectors for acute neurologic insults[J]. Neurology, 1999, 53:1922-1931.
    [44]MacLullich AM, Deary IJ, Starr JM, et al. Plasma cortisol levels,brain volumes and cognition in healthy elderly men[J]. Psychoneuroendocrinology, 2005, 30: 505-15.
    [45]Aditi B, Robert S. Mathias et al. Glucocorticoids Prolong Ca2+ Transients in Hippocampal-Derived H19-7 Neurons by Repressing the Plasma Membrane Ca2+-ATPase-1. Mol Endocrinol[J], 2002, 16: 1629-1637.
    [46]Nair SM, Werkamn TR, Craig J, et al. Corticosteroid regulation of ion channel conductances and mRNA levels in individual hippocampal CA1 neurons[J].J Neurosci, 1998, 18:2685-2696.
    [47]Zhou JZ, Zheng JQ, ZhangYX, et al. Corticosterone impairs cultured hippocampal neurons and facilitates Ca2+ influx through voltage-dependent Ca2+ channel[J]. Acta Pharmacol Sin, 2000, 21: 156-160.
    [48]郑建全,杨爱珍,周建政,等.皮质酮对大鼠海马神经元电压门控钙通道及其突触活动的影响[J].中国药理学与毒理学杂志, 2002, 1:182-187.
    [49]Olivenza R, Moro MA, Lizasoain I, et al. Chronic stress induces the expression ofinducible nitric oxide synthase in rat brain cortex[J].J Neurochem, 2000;74 :785-791
    [50]Domenice MR, Casolini P,Catalani A, et al. Reduced hippocampal in vitro CA1 long-term potentiation in rat offsprings with increased circulating corticosterone during neonatal life.Neurosci Lett[J], 1996, 218: 72-74.
    [51]Zhou JZ, Zhang YX, Liu CG, et al. Inhibitory effect of corticosterone on the formation of long-term potentiation in rat hiooocampal dentate[J]. Chin J Pharmacol Toxicol, 1999, 13:241-244.
    [52]Rey M , Carlier E, Talmi M, et al. Corticosterone effects on long-term potentiation in mouse hippocampal slice[J]. Neuroendocrinol, 1994, 60: 36-41.
    [53]马强,王福庄,赵彤,等.皮质酮对大鼠海马脑片CA1区长时程增强效应的影响.中国应用生理学杂志[J], 2003, 19: 96-97.
    [54]Pavlides C, Ogawa S, McEwen BS. Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices[J]. Brain Res, 1996, 738:229-235.
    [55]Smith M, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophin and neurotrophin-3 mRNAs in the hippocampus[J]. J Neurosci, 1995, 15: 1768-1777.
    [56]Schaaf MJ, De Kloet FR, Vreungdenhil E. Corticosterone effects on BDNF expression in the hippocampus. Implications for memory formation[J].Stress, 2000,3:201-208.
    [57]Hansson AC, Sommer W, Rimondini R, et al. c-fos Reduces Corticosterone-Mediated Effects on Neurotrophic Factor Expression in the Rat Hippocampal CA1 Region[J].J Neurosci, 2003, 23:6013-6022.
    [58]朱宇章,彭淼,丁宝坤等.慢性应激对大鼠外显行为及海马亚区脑源性神经营养因子表达差异性的影响[J].中国行为科学杂志, 2004, 13: 481-483.
    [59]Brandoli C, Sanna A, De Bernardi MA, et al. Brain-Derived Neurotrophic Factor and Basic Fibroblast Growth Factor Downregulate NMDA Receptor Function inCerebellar Granule Cells[J]. J Neurosci, 1998,18: 7953-7961.
    [60]Goldberg JL , Barres BA. The relationship between neuronal survival and regeneration[J]. Annu Rev Neurosci, 2000, 23: 579-612.
    [61]Michalski B, Fahnestock M. Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer’s disease. Brain Res Mol Brain Res[J], 2003, 111: 148-154.
    [62]Asha LB, Tannis LL, MacPherson S, Barker PA. Constitutive Nuclear Factor-B Activity Is Required for Central Neuron Survival[J] .The Journal of Neuroscience 2002, 22:8466-8475.
    [63]Alain L, Alain I. CELL GROWTH AND DEVELOPMENT:From Calcium to NF-B Signaling Pathways in Neurons[J]. Mol Cell Biol, 2003, 23: 2680– 2698.
    [64]Carsten C, Siewe J, Mattson MP, Krieglstein J. Reciprocal Inhibition of p53 and Nuclear Factor-B Transcriptional Activities Determines Cell Survival or Death in Neurons[J].The Journal of Neuroscience, 2003, 23:8586-8595
    [65]Middleton G, Davies AM, et al. Cytokine-induced Nuclear Factor Kappa B Activation Promotes the Survival of Developing Neurons[J]. J Cell Biol, 2000, 148: 325-332.
    [66]Lilienbaum A, Isra?l A. From Calcium to NF- B Signaling Pathways in Neurons[J]. Mol Cell Biol, 2003, 23: 2680-2698.
    [67]Frank L, Sagara Y, Holsboer F, Christian Behl . High Constitutive NF-κB Activity Mediates Resistance to Oxidative Stress in Neuronal Cells[J] .The Journal of Neuroscience, 1998, 18:3224-3232.
    [68]Constance BA, Pagano A, Juge C, et al. Glucocorticoids aggravate hyperoxia-induced lung injury through decreased nuclear factor-B activity[J]. Am J Physiol Lung Cell Mol Physiol, 2003, 284: L197-L204.
    [69] Dominique J.-F. de Quervain, Raphael P, Magdalini T, Andreas P. Glucocorticoid-related genetic susceptibility for Alzheimer's disease[J]. HumanMolecular Genetics, 2004, 13: 47-52
    [70]Wiegert O, Jo?ls M, Krugers H, Timing is essential for rapid effects of corticosterone on synaptic potentiation in the mouse hippocampus[J]. LEARNING & MEMORY, 2006,13: 110-113.
    [71]Roozendaal B, Okuda S , Van der Zee EA, McGaugh JL. Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala[J], PNAS , 2006 , 103 : 6741-6746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700