用户名: 密码: 验证码:
施肥对茶树及茶园动物群落的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮和磷是控制陆地和水生态系统的物种组成、多样性、动态和功能的两个最重要的营养限制因素。目前,有关肥料对生态系统的营养效应已有很好的研究,但关于施肥对植食者的影响及其造成的群落和生态系统特性的变化,人们还知之甚少。为此,我们于2004-2005年在福建省武夷山系统研究了茶树营养管理措施(不同肥料、不同氮肥水平)对茶树生长和生理及茶园动物群落组成结构和多样性的影响;分析了茶树生产力和生化品质变化与茶园动物群落的组成结构和多样性变化以及有害动物发生的关系;阐明了施肥影响茶园动物群落多样性的机理,并为制订茶树有害生物与营养综合管理策略提供科学依据。
     1.不同肥料对茶树生长和生理的影响
     施NPK、N显著提高茶树生产力(新梢生物量)和产量,且以NPK配施为最佳;施用有机肥、PK虽提高茶树生产力和产量,但未达显著水平。
     肥料处理对茶树的全氮、氨基酸、咖啡碱、总糖和茶多酚的含量以及碳氮比和酚氨比产生显著影响,且在不同月份其影响不同;但对茶树总碳含量无显著影响。施NPK、N、PK和有机肥都显著提高茶树全氮、总氨基酸及各种氨基酸含量,且茶树全氮、总氨基酸及各种氨基酸含量都是NPK和N处理显著高于PK和有机肥处理。4种肥料施用都会显著降低茶树碳氮比,且以NPK和N处理降低最多。施NPK、N和PK都显著提高茶树咖啡碱含量,而有机肥对茶树咖啡碱含量无显著影响。施NPK、PK均显著提高茶树总糖含量,且NPK处理显著高于PK处理;而施有机肥、N对茶树总糖含量无显著影响。施NPK和N都会显著降低茶树茶多酚含量和酚氨比,而施有机肥和N则对茶树茶多酚含量和酚氨比无显著影响。
     2.不同施氮水平对茶树生长和生理的影响
     茶树生长表现出对氮的适度响应,其生产力(新梢生物量)及产量与施氮水平呈二次抛物线的回归关系,在施氮量为732.60 kg·ha~(-1)·y~(-1)和769.26kg·ha~(-1)·y~(-1)时分别达到最大生产力和产量。
     茶树全氮、咖啡碱、总氨基酸及各种氨基酸的含量与施氮水平通常呈二次抛物线或直线的回归关系,通常过高施氮并不会造成其含量的持续升高,而是达到饱和状态(saturation)或下降。茶树总氨基酸及各种氨基酸对施氮的响应,因时间不同而发生变化;其在很大程度上取决于茶树氮的状况。茶树茶多酚含量及碳氮比和酚氨比通常随施氮水平提高而减少。适度施氮促进茶树总糖含量的提高,高氮使其下降。
     茶树新梢和成熟梢的氨基酸和总糖的含量、新梢咖啡碱含量和成熟梢总碳含量与其全氮含量显著正相关,茶树新梢和成熟梢的碳氮比和酚氨比、新梢硝态氮含量和成熟梢的茶多酚含量与其全氮含量显著负相关,而成熟梢的咖啡碱含量与全氮含量呈二次曲线回归关系,但新梢总碳、茶多酚含量与全氮含量无显著相关。茶树新梢和成熟梢的全氮、氨基酸、咖啡碱和总糖的含量都与碳氮比显著负相关,茶树成熟梢的茶多酚含量以及新梢和成熟梢的酚氨比都与碳氮比显著正相关,但茶树新梢和成熟梢的总碳含量以及新梢茶多酚含量与碳氮比无关。表明全氮含量和碳氮比可以较好反映茶树的生化品质,但它们都不能反映新梢茶树总碳和茶多酚含量的变化。因此,在研究茶树的生化品质与植食者关系时,应将全氮含量、碳氮比和茶多酚含量都作为重要的生化指标。
     过度施氮造成茶树生产力下降的主要原因在不同的茶季有明显的不同。春梢:过度施氮使茶树氨基酸代谢下降,不利于蛋白质的合成与积累;夏梢:过度施氮使茶树总糖含量下降;秋梢:过度施氮使茶树氨基酸、咖啡碱代谢下降,不利于蛋白质的合成与积累;进而影响茶树的生长。而不是过去人们认为的:过高的氮或硝态氮含量对茶树的毒害作用,影响茶树生长。
     3.茶园动物群落的组成结构和多样性
     在武夷山茶园共采集到149,725个动物个体,分别隶属于3门、8纲、31目、252科、1188种。其中,植食者450种(占总物种数的37.88%)、捕食者323(占27.19%)、寄生者133种(占11.20%)、腐食者230种(占19.36%)、杂食者52种(占4.38%)。在动物群落中,同翅目、疥螨目、柄眼目、鞘翅目为生态优势类群,而柄眼目、直翅目和鳞翅目则为资源优势类群。98.99%的动物物种为稀有种或偶见种,而90.91%的物种为资源次要种。
     动物群落及植食者、捕食者、寄生者和腐食者的种—多度关系同时符合对数正态分布和对数序列分布,而杂食者的种—多度关系则符合对数序列分布。动物群落及各营养类群的多样性、丰盛度及均匀性都呈现明显的季节消长规律,但其变化趋势有所不同。动物群落及各营养类群的多样性指数与物种丰富度和均匀度一致,动物群落稳定性与群落多样性和均匀性极显著正相关。
     物种丰富度随着抽样样方面积增加呈幂函数增长,动物丰盛度(个体总数和总生物量)随抽样样方面积增加直线增长。中间小区的物种丰富度、个体数和生物量都与其相邻4个小区对应的物种丰富度、个体总数和生物量的平均值极显著直线正相关。动物群落、植食者、捕食者、腐食者和杂食者以及半翅目、同翅目、鞘翅目、鳞翅目、膜翅目、双翅目和蜘蛛目的物种丰富度随个体数增加呈幂函数增加,而寄生者和直翅目的物种丰富度随个体数增加而直线增加。表明动物群落物种丰富度和丰盛度受其抽样样方大小和空间格局的影响,动物群落、各营养类群和各目的物种丰富度还与丰盛度(个体数)有密切关系。
     综合考察物种的生态优势度和资源优势度,茶园重要有害动物有扁恰里螺Kalielladepressa(Moellendorff)、黄圆蚧Aonidiella citrine(Coquillet)、假眼小绿叶蝉Empoasca vitisGothe、茶蚜Toxoptera aurantii Boyer、黑翅粉虱Aleurocanthus spiniferus Quaintance、露尾甲Haptonchus luteolus Erichsom、柑桔粉虱Dialeurodes citri Ashm、螟蛾sp.1、油桐尺蠖Buzurasuppressaria Guenee、同型巴蜗牛Brddybaena similaris(Ferussac)和短脚异斑腿蝗Xenocatantops brachycerus(Willenmse);重要捕食性天敌有圆果大赤螨Anystis baccarumLinnaeus、日本管蛛Trachelas japonicus Boesenberg et Strand、草间小黑蛛Erigonidiumgraminicolum(sun de Vall)、吸螨sp.、白斑猎蛛Evarcha albaria(L.Koch)、日本条螽Ducetiajaponica Thunberg、环斑猛猎蝽Sphedanolestes impressicollis St(?)l、南方小花蝽Orius similisZheng、斜纹猫蛛Oxyopes sertatus L.Koch和三突花蛛Misumenops tricuspidatus(Fabricius);腐食者优势种有甲螨sp.和等节(?)sp.。但寄生性和杂食性类群没有明显的优势种。
     4.茶园动物物种多样性、丰盛度、个体大小(bodysize)的关系
     茶园动物物种多样性、丰盛度、个体大小的关系的研究结果表明,在茶园动物群落、各营养类群和物种最丰富的8个目(半翅目、同翅目、鞘翅目、鳞翅目、膜翅目、直翅目、双翅目和蜘蛛目)中,物种丰富度和丰盛度与个体大小的关系均呈现单峰分布模式,且都可以用抛物线方程来拟合。不论是动物群落、各营养类群、还是物种最丰富的8个目,都是个体中等的物种数最多。在动物群落、植食者、腐食者及同翅目昆虫中,个体较小的物种的个体数最多;而捕食者、寄生者、杂食者和其它7个目则是个体中等的个体数最多。物种个体大小是由其所处的目分类阶元、营养类群以及目分类阶元和营养类群的互相作用共同决定的,表明生物进化史和营养角色(trophic role)是限制物种个体大小的重要因素。动物个体大小等级(body size class)的物种丰富度(S_i)与其个体数(I_i)的关系模型为S_i=1.511 I_i~(0.436)。在捕食者、腐食者、寄生者和杂食者以及多数的目(同翅目除外)中,个体大小等级的物种丰富度与其对应的个体数也呈相似的幂函数关系;但在植食者和同翅目昆虫中,个体大小等级的物种丰富度与其对应的个体数则呈更复杂的幂函数关系。
     只有部分(26%)捕食者的体重比其猎物的体重大,大多数捕食者的丰盛度(个体数、生物量)比其猎物的丰盛度小。捕食者的体重、个体数和生物量都与其对应的猎物的体重、个体数和生物量极显著正相关。
     5.不同肥料对茶园动物群落的影响及其机理
     施有机肥、PK提高动物群落物种丰富度在各个目的分布均匀性,而施NPK和N则降低其均匀性。施4种肥料都会提高动物群落物种丰盛度分布均匀性,尤以PK和有机肥对其均匀性提高最多。但不同肥料对各营养类群物种丰富度在各个目的分布均匀性和物种丰盛度分布均匀性以及物种最丰富的8个目的物种丰富度在各个科的分布均匀性产生不同的影响。
     施N和NPK显著提高动物群落物种丰富度,施有机肥、N和PK显著提高动物群落多样性指数;但施PK和有机肥对其物种丰富度,施NPK对动物群落多样性指数均无显著影响。施有机肥显著提高了植食者有效多样性(e~(H')),却减少了腐食者物种丰富度;施N显著增加腐食者物种丰富度;4种肥料对各营养类群的其它多样性指标都无显著影响。施有机肥减少半翅目昆虫物种丰富度,施N和NPK提高同翅目昆虫有效多样性(e~(H'));4种肥料对物种最丰富的8个目的其它多样性指标都无显著影响。
     施有机肥和PK显著降低动物个体总数,施NPK显著提高动物总生物量,但施N和NPK对个体总数,施有机肥、PK和N对总生物量均无显著影响。施有机肥显著减少植食者、捕食者和腐食者的个体数以及腐食者生物量;施NPK显著增加植食者生物量,却减少捕食者和腐食者个体数;施PK显著减少腐食者个体数;4种肥料对各营养类群的其它丰盛度指标都无显著影响。施有机肥和PK会显著减少同翅目昆虫的个体数和生物量,施N显著增加了鳞翅目昆虫生物量;4种肥料对物种数最多的8个目的其它丰盛度指标都无显著影响。结果表明,施有机肥和PK有利于有害动物(特别是同翅目害虫)的控制,但由于植食者和腐食者数量的减少也使捕食者数量显著减少;适量施氮并不会带来有害动物数量剧增。不同肥料对18个重要物种(丰盛度最高的8种植食者、8种捕食者和2种腐食者)的个体数产生不同的影响。不同肥料对植食者假眼小绿叶蝉、茶蚜、柑桔粉虱、露尾甲和恰里螺,捕食者圆果大赤螨、日本管蛛和草间小黑蛛以及腐食者等节姚sp.个体数都有显著影响,对其它3种植食者黑翅粉虱、黄圆蚧和螟蛾科sp.1,5种捕食者吸螨sp.、斜纹猫蛛、八斑球腹蛛、微蛛sp.1和白斑猎蛛,以及腐食者甲螨sp.的个体数都无显著影响。
     施有机肥和PK显著提高动物群落均匀性,但施NPK和N则无显著影响。施有机肥显著提高植食性类群均匀性,施有机肥、PK和N都会提高鳞翅目昆虫的均匀性;施肥对其它营养类群和其它7个目的均匀性无显著影响。施有机肥和PK主要通过提高S/N(反应群落物种间数量上的制约潜能)来提高动物群落稳定性,而施NPK和N对动物群落稳定性无显著影响。
     施肥引起茶园动物群落物种丰富度变化是茶树生产力(新梢生物量)及总糖和茶多酚的含量的变化的综合作用的结果;而动物群落物种丰盛度变化是茶树生产力(新梢生物量)及氨基酸和总糖的含量的变化的综合作用的结果。各营养类群的物种丰富度和丰盛度以及18个重要物种的丰盛度对不同施肥有不同的响应机制,其通常也是茶树生产力和多个生化指标综合作用的结果。
     研究结果证明,施肥对茶园生态系统的整个食物链产生深刻的影响。
     6.不同施氮水平对茶园动物群落的影响及其机理
     施氮降低动物群落及捕食性和腐食性类群的物种丰富度在各个目的分布均匀性,却提高植食性类群的物种丰富度在各个目的分布均匀性;且不同施氮水平的影响程度有所差别。不同施氮水平对物种最丰富的8个目的物种丰富度在各个科的分布均匀性产生不同的影响。施氮使动物群落物种丰盛度分布均匀性略微降低。不同施氮水平对腐食性和杂食性类群的物种丰盛度分布均匀性影响最大,其次是寄生性和捕食性类群,对植食性类群的物种丰盛度分布均匀性影响最小。
     动物群落和腐食者的物种丰富度以及捕食者的物种丰富度和有效多样性(e~(H'))都与施氮水平呈二次抛物线回归关系;植食者物种丰富度和寄生者有效多样性(e~(H'))与施氮水平显著正相关,而植食者有效多样性(e~(H'))则呈负相关;但寄生者和杂食者的物种丰富度以及腐食者和杂食者的有效多样性(e~(H'))均与施氮水平无显著相关。动物群落有效多样性(e~(H'))与施氮水平呈三次方程曲线回归关系,呈现先下降(低、中施氮量)、后上升(高施氮量)、最后又下降(过高施氮量)的趋势。物种最多的8个目的物种丰富度和有效多样性(e~(H'))对不同施氮水平的响应也有很大不同。不同施氮水平只对半翅目、鳞翅目和蜘蛛目的物种丰富度以及半翅目和鞘翅目的有效多样性(e~(H'))有显著影响,且其影响比较复杂、而不同。
     动物个体总数以及植食者、捕食者和腐食者的丰盛度(个体数和生物量)均与施氮水平显著正相关,而动物总生物量和杂食者生物量与施氮水平呈二次抛物线回归关系,但寄生者丰盛度(个体数和生物量)和杂食者个体数与施氮水平无显著相关。不同施氮水平对8个主要目的丰盛度(个体数和生物量)的影响明显不同。不同施氮水平显著影响半翅目和同翅目的个体数和生物量、鳞翅目生物量以及鞘翅目、直翅目和蜘蛛目的个体数,但对鳞翅目个体数、膜翅目个体数和生物量以及鞘翅目、直翅目和蜘蛛目的生物量无显著影响。不同物种对施氮有不同的响应。黑翅粉虱、露尾甲和圆果大赤螨的个体数与施氮水平显著正相关;假眼小绿叶蝉、茶蚜、柑桔粉虱和日本管蛛的个体数与施氮水平呈二次抛物线的回归关系;恰里螺个体数与施氮水平呈三次方程S型曲线回归的关系,随施氮水平提高呈现先上升、后下降、最后又上升的趋势;但黄圆蚧、螟蛾科sp.1、吸螨sp.、草间小黑蛛、斜纹猫蛛、八斑球腹蛛、微蛛sp.1、白斑猎蛛、等节姚sp.和甲螨sp.的个体数与施氮水平无显著相关。
     动物群落均匀性与施氮水平呈三次方程曲线回归关系,随施氮水平提高呈现先下降(低、中施氮量)、后上升(高施氮量)、最后又下降(过高施氮量)的趋势。植食性类群均匀性随施氮水平提高而直线下降;捕食性类群均匀性与施氮水平呈二次抛物线回归关系,其均匀性随施氮水平提高微弱上升,在施氮水平过高时显著下降;寄生性类群均匀性随施氮水平提高而微弱提高;而腐食性和杂食性类群均匀性与施氮水平无显著相关。施氮对8个主要目的均匀性也产生不同的影响。不同施氮水平显著影响半翅目和同翅目昆虫的均匀性,但对鞘翅目、鳞翅目、膜翅目、直翅目、双翅目和蜘蛛目的均匀性无显著影响。
     动物群落稳定性评价指标S/N随施氮水平提高而显著降低;Sn/Sp和Sn/Sp′与施氮水平呈二次抛物线回归关系,Sn/Sp和Sn/Sp′随施氮水平提高显著上升,但在过高施氮水平时显著下降:Nn/Np和Nn/Np′与施氮水平呈三次方程曲线回归关系,随施氮水平提高呈现先显著下降、后上升、最后又下降的趋势。由此可见,不同施氮水平对动物群落稳定性的影响极其复杂,但过高施氮会造成动物群落稳定性下降。
     施氮造成茶园动物群落物种丰富度变化是茶树生产力(新梢生物量),全氮、氨基酸、咖啡碱、总糖和茶多酚的含量以及碳氮比和酚氨比的变化的综合作用的结果;施氮造成茶园动物群落物种多样性(e~(H'))变化是茶树生产力(新梢生物量),全氮、咖啡碱和茶多酚的含量以及碳氮比的变化的综合作用的结果。施氮造成茶园动物总个体数变化是茶树生产力(新梢生物量)及氨基酸和咖啡碱的含量变化综合作用的结果;施氮造成茶园动物总生物量变化是茶树生产力(新梢生物量)、全氮、氨基酸、咖啡碱和茶多酚的含量以及碳氮比的变化的综合作用的结果。茶园动物各营养类群的多样性和丰盛度以及18个重要物种的丰盛度对不同施氮水平也有不同的响应机制,其通常也是茶树生产力和多个生化指标综合作用的结果。
     研究结果证明,施氮对茶园生态系统的整个食物链产生深刻的影响。
     综上所述,同时考虑品种、营养、有害生物、天敌、产量和产品价值的相互作用,我们建立了武夷山茶叶收益(Y,RMB·ha~(-1)·y~(-1))与施氮量(x,kg·ha~(-1)·y~(-1))的关系模型Y=132,797+482.9079 x-0.3177 x~2,武夷山市肉桂茶园的最适宜施氮量为760.01 kg·ha~(-1)·y~(-1)。
Nitrogen(N) and phosphorus(P) are the two most important limiting nutrients controlling the species composition,diversity,dynamicss,and functioning of terrestrial and aquatic ecosystems. The direct effects of fertilization on nutrient availability in ecosystems have been well studied, however little is known about the indirect effects of fertilization on herbivores or detritivores and subsequent changes imposed on community and ecosystem properties.To better understand animal community's responses to fertilization and the underlying ecological mechanisms,we studied the effects of different fertilizers(organic fertilizer,PK,NPK and N) and nitrogen application rate(0,172.5,345.0,690.0,and 1035.0 kg N·ha-l·y-1) on tea plants and animal communities in tea plantations in Wuyishan,Fujian,China from August 2004 to December 2005. The relationships between the fertilizer-induced changes on productivity and chemical quality of tea plants and the composition,diversity and abundance of animal communities in the tea plantations were analyzed.The results are as follows:
     1.Effects of fertilizer application on tea productivity and physiology
     NPK and N application significantly increased productivity(i.e.,young shoot biomass) and yield of tea plants.The effects were greater with NPK than N application.The increase by PK or organic fertilizer application was insignificant.
     Applications of NPK,N,PK or organic fertilizer significantly increased tissue nitrogen,and total and individual amino acids,while they decreased the tissue C/N ratio.The effects were greater with NPK or N than PK or organic fertilizer.NPK,N or PK significantly increased caffeine concentration,but not organic fertilizer.Either NPK or PK significantly increased content of total sugars with NPK more so than PK,but not when N or organic fertilizer was applied.NPK or N significantly decreased tea polyphenol content and polyphenol/amino acid ratio,but not with PK or organic fertilizer.
     2.Effects of N application on tea productivity and physiology
     Tea plants showed a moderate response to the N applications.The relationship between productivity or yield and the application rate was mostly quadric patterns,with the highest productivity and yield achieved at N application of 732.60 and 769.26 kg·ha~(-1)·y~(-1),respectively.
     The tissue N,caffeine,total and individual amino acid contents significantly correlated,either with a quadratic or linear relationship,to the application rate.Excessive N usually produced no further increase,if not a decrease.Response of total or individual amino acids to the application rate varied with time and largely depended on the tissue N concentration.Polyphenol content and polyphenol/amino acid ratio decreased significantly with increasing N application.Total sugars showed a significant,cubic correlation with the application.Moderate N application tended to increase,while a high level application reduced the sugar content.
     Amino acids and total sugars in young and mature shoots,as well as caffeine in young shoots and C in mature shoots,significantly and positively correlated to the tissue N concentration.C/N and polyphenol/amino acid ratios in young and mature shoots;and nitrate N in young shoots and polyphenols in mature shoots significantly and negatively correlated to tissue N.However, caffeine in mature shoots showed a significant,quadric relationship with tissue N.There was no correlation between C content or polyphenols and tissue N concentration.N,amino acids,caffeine and total sugar contents in young and mature shoots were significantly and negatively related to the C/N ratio.Tea polyphenols in mature shoots and polyphenol/amino acid ratio in young and mature shoots significantly and positively correlated with the C/N ratio,but C concentration in young and mature shoots and polyphenols in young shoots showed no correlation with the C/N ratio.The results indicated that tissue N and the C/N ratio could reflect the tea chemical quality to a certain extent,but not C or polyphenols in young shoots.Therefore,it would be necessary to consider tissue N,C/N ratio and polyphenols in studying N-induced changes relating to the plant quality(e.g.,chemical composition) and herbivores.
     The results suggested that the seasonal tea productivity reduction associated with excessive N application was the result of the decreased amino acid metabolism in spring shoots,total sugar metabolism in summer shoots and amino acid and caffeine metabolism in autumn shoots.
     3.Composition,structure and diversity of animal community in tea plantation
     In total,149,725 animals belonging to 3 phylums,8 classes,31 orders,252 families and 1,188 species were collected from the tea plantation.Among them,450 were herbivores(i.e.,37.88%of all species),323 predators(27.19%),133 parasitoids(11.20%),230 detritivores(19.36%) and 52 omnivores(4.38%).Homoptera,Sarcoptiformes,Stylommatophora and Coleoptera were ecological dominance groups,and Stylommatophora,Orthoptera and Lepidoptera were resource dominance groups in the community.The greatest majority(i.e.,98.99%) of the total animal species were occasional and rare species,and 90.91%unimportant resource species.
     The relationships between species and abundance for all animals,herbivores,predators, parasitoids and detritivores fitted both logarithmic normal distribution and logarithmic series distribution.On the other hand,for omnivores the relationship fitted only a logarithmic series distribution.Diversity,abundance and evenness of animal community and trophic groups showed evidence of a seasonal dynamics.Their diversity indexes significantly and positively correlated to the species richness and evenness.The animal community stability was significantly and positively related to diversity and evenness.
     Animal species richness increased in a power function with increasing sampling area,while animal abundance(i.e.,number of individuals and total biomass) showed a linear increase. Separately,animal species richness,number of individuals and total biomass positively correlated with mean animal species richness,individual number and total biomass in adjacent plots.The species richness of the animal community,herbivores,predators,detritivores or omnivores showed a significant power function correlation with the number of the individuals.So did the species richness of Hemiptera,Homoptera,Coleoptera,Lepidoptera,Hymenoptera,Diptera and Araneida.On the other hand,the species richness of parasitoids or Orthoptera increased significantly as the number of the individuals increased.The results suggested that the size of sampling area and spatial pattern could affect animal diversity and abundance,and that species richness of animal community,as well as trophic and order groups positively correlated with the number of individuals.
     Based on the ecological and resource dominance indexes,it was found that Kaliella depressa (Moellendorff),Aonidiella citrine(Coquillet),Empoasca vitis Gothe,Toxoptera aurantii Boyer, Aleurocanthus spiniferus Quaintance,Carpophilus obsoletus Erichson,Dialeurodes citri Ashm, Pyralididae sp.1,Buzura suppressaria Guenee,Brddybaena similaris(Ferussac) and Xenocatantops brachycerus(Willenmse) were important animal pests in tea plantations;Anystis baccarum Linnaeus,Trachelas japonicus Boesenberg et Strand,Erigonidium graminicolum(Sun de Vall),Bdellidae sp.,Evarcha albaria(L.Koch),Ducetiajaponica Thunberg,Anotogaster sp., Sphedanolestes impressicollis St(?)l,Orius similis Zheng,Oxyopes sertatus L.Koch and Misumenops tricuspidatus(Fabricius) were important natural enemies;and,Oribatida sp.1 and Isotomidae sp.1 were dominant species of detritivores.However,there was no dominant species of parasitoids and omnivores.
     4.Animal species diversity,abundance and body size relationships
     The empirical relationships among body size,species richness and number of individuals might give insight into the factors controlling species diversity and the relative abundances of species. Among total animals,trophic groups and the 8 most abundant taxonomic orders(i.e.,Hemiptera, Homoptera,Coleoptera,Lepidoptera,Hymenoptera,Orthoptera,Diptera and Araneida),species richness and numbers of individuals were related to body sizes as unimodal diversity patterns. However,the peak sizes,number of species and number of individuals differed among the groups. Species richness peaked with intermediate body sizes for all animals or individual groups.It was the same on the number of individuals for predators,parasitoids,omnivores and abundant taxonomic orders(except Homoptera).However,the number of individuals peaked with small body sizes for all animals,herbivores,detritivores and Homoptera.Body size of a species depended on the species' evolutionary history(taxonomic order),trophic role(contemporary trophic group) and interaction of the two factors.Species richness(S_i) within a size class related to the number of individuals(I_i) as S_i=1.511 I_i~(0.436).For the majority of the trophic groups(except herbivores) and taxonomic orders(except Homoptera),the correlations were of similar power functions.However,for herbivores or Homoptera the correlations belonged to more complicated power functions.
     Only a part of predators(i.e.,26%) was larger than their preys.Number of individuals or biomass) of most predators was less or smaller than their prey.Body mass,number of individuals or biomass of predators significantly and positively correlated to those of their preys.
     5.Effects of fertilizer application on animal communities and underlying ecological mechanisms
     Application of organic fertilizer or PK increased,but that of NPK or N decreased species distribution evenness among orders for animal communities.Organic fertilizer,PK,NPK or N increased species abundance evenness for animal communities,and the effect of organic fertilizer or PK was greater than that of the others.Different fertilizers differed on their effect on species distribution evenness among orders,the species abundance evenness for each trophic group,as well as the species distribution evenness among families for the 8 most abundant orders.
     N and NPK significantly increased animal species richness.Organic fertilizer,N and PK significantly increased animal diversity.However,organic fertilizer and PK showed no effect on animal species richness,nor did NPK on animal diversity.Organic fertilizer significantly increased effective diversity of herbivores,while it decreased species richness of detritivores.N application significantly increased species richness of detritivores.However,no fertilizers showed any effect on other diversity indices for trophic groups.Organic fertilizer significantly decreased species richness of Hemiptera insects.N and NPK applications significantly increased effective diversity of Homoptera insects.However,all 4 fertilizers showed no effect on other diversity indices within orders.
     Applications of organic fertilizer and PK significantly decreased the number of individuals for all animals.NPK significantly increased total animal biomass.But,the effects of N and NPK on number of all animals and those of organic fertilizer,and PK and N on total animal biomass were not significant.Organic fertilizer significantly decreased numbers of herbivores,predators and omnivores,as well as detritivore biomass.NPK significantly increased herbivore biomass,and decreased numbers of predators and detritivores.PK significantly decreased number of predators and detritivores.However,all 4 fertilizers showed no effect on other abundance indices for trophic groups.The results showed that organic fertilizer or PK benefited the control of animal pests(esp. Homoptera pests);number of predators decreased as the numbers of herbivores and detritivores decreased;and,moderate N fertilization did not significantly increase the number of animal pests. Responses of individual animals to fertilization varied according to the application.Fertilizer application had different and significant effects on 10 of the 18 abundant animals(i.e.,8 most abundant herbivores,8 most abundant predators and 2 most abundant detritivores).
     Organic fertilizer and PK significantly increased animal community evenness.But,the effects of NPK and N were not significant.Organic fertilizer application significantly increased herbivore evenness.Organic fertilizer,PK and N significantly increased the evenness of Lepidoptera insects. However,the effects of different fertilizers on other trophic groups and orders were not significant. Organic fertilizer and PK increased animal community stability through increasing S/N,but not NPK or N.
     Fertilizer-induced changes in animal species richness in tea plantations depended on the integrated actions of plant productivity,and the contents of total sugars and polyphenols of tea plants.But the changes in number of animals depended on the integrated actions of plant productivity,and the contents of amino acids and total sugars of tea plants.Responses of species richness and abundance of trophic groups,as well as the abundance of 18 abundant animals,to fertilization varied with fertilizer-induced changes in plant productivity and chemical quality tea plants,through different mechanisms,which also often depended on the integrated actions of the productivity and chemicals of tea plants.
     This study demonstrated that short-term fertilizer application affected the entire food chain in the tea plantation ecosystem.
     6.Effects of N application on animal communities and underlying ecological mechanisms
     N application reduced species distribution evenness among orders for animal communities, predators and detritivores,while increasing it for herbivores.Different N application rates had different effects on species evenness distribution among families for the 8 most abundant orders. N slightly reduced species abundance evenness for the animal community.It had the greatest effect on species abundance evenness for detritivores.The effects for parasitoid and predators were greater than herbivores.
     Species richness of all animals and detritivores,as well as predator species richness and effective diversity,significantly correlated in quadratic functons with N application rate.Effective animal diversity showed a cubic relationship with the application rate.However,there was variation in trophic responses to N,species richness of herbivores and effective diversity of parasitoids increased as N increased,while effective diversity of herbivores decreased.But,the species richness of parasitoids and omnivores,as well as effective diversity of detritivores and omnivores,showed no responses to the N application.For the 8 most abundant orders,only N had a complicated and different effect on the species richness of Hemiptera,Lepidoptera and Araneida groups,as well as the effective diversity of Hemiptera and Coleoptera groups.
     Number of all animals and the abundance(i.e.,number of individuals,biomass) of herbivores, predators and detritivores were significantly and positively related to the rate of N application. Biomass of all animals and omnivores significantly correlated with N application rate in quadratic equations.But,parasitoid abundance(i.e.,number of individuals,biomass) and number of omnivores showed no responses to the application.For the 8 most abundant orders,N had a complicated and different effect on the abundance(i.e.,number of individuals,biomass) of Hemiptera and Homoptera insects,as well as biomass of Lepidoptera insect and number of Coleoptera,Orthoptera and Araneida arthropods.Responses of individual animals to the fertilization varied with N gradient.N had different and significant effects on 8 of the 18 abundant animals.
     Animal community evenness showed a cubic correlation with N application.Herbivore evenness increased as N increased;predator evenness showed a quadratic relationship with the N application,excessive N reduced the evenness;parasitoid evenness slightly increased with N increasing;and,evenness of detritivores and omnivores were not affected.Responses of the 8 most abundant orders to N fertilization varied with N gradient.It only affected the evenness of Hemiptera and Homoptera insects.
     Animal community stability index,S/N,decreased as N was increased,Sn/Sp(ratio of natural enemy species richness to animal pest species richness) and Sn/Sp'(ratio of natural enemy species richness to prey species richness) showed quadratic relationships,and Nn/Np(ratio of natural enemy number to animal pest number) and Nn/Np'(ratio of natural enemy number to prey number) showed cubic relationships with the rate of N application.This suggested that the effect of N on animal community stability was very complicated,and that N overuse could reduce it.
     N-induced changes in animal species richness in tea plantations depended on the integrated actions of plant productivity,the contents of tissue N,amino acids,caffeine,total sugars and polyphenols,and C/N ratio and polyphenol/amino acid ratio of tea plants.But the changes in effective animal diversity depended on the integrated actions of plant productivity,the contents of tissue N,caffeine and polyphenols,and C/N ratio of tea plants.N-induced changes in the number of all animals depended on the integrated actions of plant productivity,and amino acids and caffeine concentrations.But the changes in total animal biomass depended on the integrated actions of plant productivity,the contents of tissue N,amino acids,caffeine and polyphenols,and C/N ratio of tea plants.Responses of trophic group diversity(i.e.,species richness and effective diversity),as well as the abundance of trophic groups and 18 abundant animals,to N application varied with N-induced changes in plant productivity and chemical quality through different mechanisms,which also often depended on the integrated actions of the productivity and chemicals of tea plants.
     This study demonstrated that short-term N application affected the entire food chain in the tea plantation ecosystem.
     Better understanding of the interactions of varieties,nutrients,pests,yield and production costs involving the tea plantation will allow an improved integration of the pest and nutrient management to maximize benefits for the farmers and producers.A mathematic model for calculating tea production profit and N application was established as follows: Y=132,797+482.9079x-0.3177x~2,where Y= profit in RMB·ha~(-1)·y~(-1),and x= N in kg·ha~(-1)·y~(-1).It suggests that the optimum rate of nitrogen application would be 760.01 kg·ha~(-1)·y~(-1) for Wuyishan Rougui oolong tea plantations.
引文
Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Bemston, G., Kamakea, M., McNulty, S.,Currie W., Rustad L. and Fernandez I. 1998. Nitrogen saturation in temperate forest ecosystems:hypotheses revisited. BioScience, 48: 921-934.
    Ali, A.G. and Ahmed, A.A.S. 1996. Effect of plant density and nitrogen fertilization on the infestation if wheat plants with cereal aphids. Assiut Journal of Agricultural Science, 27(2):119-124.
    Archer, T.L., Bynum, E.D., Onken, A.B. and Wendt, C.W. 1995. Influence of water and nitrogen fertilizer on biology of the Russian wheat aphid on wheat. Crop Protection, 14 (2): 165-169.
    Archer, T.I., Onken, A. B., Matheson, J. L., and Bynum, E. D. Jr. 1982. Nitrogen fertilizer influence on greenbug dynamicss and damage to sorghum. Journal of Economic Entomology, 75: 695-698.
    Argunova, V.A. and Pritula, Z.V. 1991. Yield and quality of the tea cultivar Kolkhida as affected by mineral fertilizers. Vestnik Sel'skokhozyaistvennoi Nauki Moskva, 11: 169-172.
    Armbruste, P., Hutchinson, R.A. and Cotgreave, P. 2002. Factors influencing community structure in a South. American tank bromeliad fauna. Oikos, 96: 225-234.
    Awmack, C.S. and Leather, S.R. 2002. Host plant quality and fecundity in herbivorous insects.Annual Review of Entomology, 47: 817-844.
    
    Baskaran, P. 1985. Potash for crop resistance to insect pests. Journal Potassium Research. 1: 81-94.
    Bethke, J.A., Redak, R. and Schuch, U.K. 1998. Melon aphid performance on chryrysanthemum as mediated by cultivar and diferential groups of fertilization. Entomologia Experimentalis et Applicata, 88: 41-47.
    Bi, J.L. 2001. Effect of cotton nitrogen fertilization on Bemisia argentifolii population and honeydew production. Entomologia Experimentalis et Applicata, 99: 25-36.
    
    Biswas, A.K., Sarkar, A.R. and Biswas, A.K. 1973. Biological and chemical factors affecting the valuation of North East India plain tea. III. Statistical evaluation of the biochemical constituents and their effects on color, brightness and strength of black teas. Journal of the Science of Food and Agriculture, 24: 1457-1477.
    Bowdish, T.I. and Soling, P. 1998. The influence of salt and nitrogen on herbivore abundance: direct and indirect effects. Oecologia, 113: 400-405.
    Bowles, I.A., Rice, R.E., Mittermeir, R.A. and de Fonseca, G.A.B. 1998. Logging and tropical forest conservation. Science, 280: 1899-1900.
    Briegel, H. 1990. Fecundity, metabolism, and body size in Anopheles (Diptera:Culicidae), vectors of malaria. Journal of Medical Entomology, 27: 839-850.
    Burchuladze, I.T., Danava, V.P. and Datuadze, O.V. 1976. Chemical diagnosis, productivity and quality of tea in relation to soil properties and fertilization. Analiz Rastenii kak Metod Diagnostiki ikh Pitania i Effektivn. Makro- i Mikroudobrenii, pp. 221-230.
    Buss, E.A. 2002. Insect management. In Unruh (ed), 2002. University of Florida's Pest Control Guide for Turfgrass Manager National Pesticide Information Center, Florida, US. Pp. 9-15.
    Carbone, C, Mace, G.M., Roberts, S.C. and MacDonald, D.W. 1999. Energetic constraints on the diet of terrestrial carnivores. Nature, 402: 286-288.
    Cassman, K.G., Dobermann, A. and Walters, D. 2002. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio, 31: 132-140.
    Chapin, F.S. III. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics,11: 233-60.
    Chau, A., Heinz, K.M. and Davies, F.T. 2002. Preliminary study on the effect of nitrogen fertilization on cotton aphid. Aphis gossypii IOBC/wprs Bulletin, 25(1): 53-56.
    Cisneros, J.J. and Godfrey, L.D. 2001. Midseason pest status of the cotton aphid in California cotton:Is nitrogen a key factor?. Environmental Entomology, 30: 501-510.
    
    Cloughley, J.B. 1983. Effects of harvesting policy and nitrogen application rates on the production of tea in Central Africa. II. Quality and total value of the crop. Experimental Agriculture, 19:47-54.
    Cohen, J.E, Jonsson, T., and. Carpenter, S.R. 2003. Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences,100(4): 1781-1786.
    Conway, G.R. 1997. The doubly green revolution: food for all in the 21~(st)century. Cornell University Press, NewYork.
    Coulibaly, R. 1990. Effect of nitrogen fertilizer on the damage of Eldana saccharina Walker to sugar cane. Sugar Cane (Supplement), 18-20.
    Cuevas-Reyes, P., Siebe, C, Martinez-Ramos, M. and Oyama, K. 2003. Species richness of gall-forming insects in a tropical rain forest: correlations with plant diversity and soil fertility. Biodiversity and Conservation, 12( 3): 411-422.
    
    Darwin, C. and Wallace, A.R. 1858. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Proceedings of the Linnean Society of London (Zoology), 3: 45-62.
    
    de Kraker, J., Rabbinge, R., van Huis, A., van Lenteren, J.C. and Heong, K.L. 2000. Impact of nitrogenous-fertilization on the population dynamicss and natural control of rice leaffolders (Lepidoptera: Pyralidae). International Journal of Pest Management, 46: 225-235.
    Denno, R.F., Douglass, L.W. and Jacobs, D. 1986. Effect of crowing and host plant nutrition on a wing-dimorphic planthoppers. Ecology, 67(1): 116-123.
    Duffield, S. J., Bryson, R. J., Young, J. E., Sylvester, B., Bradley, R. and Scott, R. K. 1997. The influence of nitrogen fertiliser on the population development of the cereal aphids Sitobion avenue and Metopolophium dirhodum on field grown winter wheat. Annals of Applied Biology,130: 13-26.
    Dunn, D.W., Crean, C.S., Wilson, C.L. and Gilburn, A.S. 1999. Male choice, willingness to mate and body size in seaweed flies (Diptera:Coelopidae). Animal Behaviour, 57: 847-853.
    Elton, C. 1927. Animal Ecology. Sidgwick and Jackson, London.
    
    FAO. 2008. FAOSTAT. http://faostat.fao.org/site/408/DesktopDefault.aspx?PageID=408
    Fenn, M.E., Poth, M.A., Aber, J.D., Baron, J.S., Bormann, B.T., Johnson, D.W., Lemly, A.D.,McNulty S.G., Ryan D.E. and Stottlemyer R. 1998. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8: 706-733.
    Fischer, K. and Fiedler, K. 2000. Response of the copper butterfly Lycaena titiyus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia,124:235-241.
    Forkner, R.E. and Hunter, M.D. 2000. What goes up must come down? Nutrient addition and predation pressure on oak herbivores. Ecology, 81:1588-1600.
    Fox, L.R., Letourneau D.K., Eisenbach J., Eisenbach J. and Van Nouhuys S. 1990. Parasitism rate and sex ratios of a parasitoid wasp: effects of herbivore and plant quality. Oecologia, 83: 41-419.
    Galloway, J.N., Levy, H.I. and Kasibhatla, P.S. 1994. Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen. Ambio, 23: 120-123.
    Godziashvili, B.A. and Peterburgsky, A.V. 1985. Potassium and magnesium nutrition of tea on the red soils of Georgia. Potash Review, Subject 27, 114th Suite, No. 8, pp. 6
    Haddad, N.M., Haarstad, J. and Tilman, D. 2000. The effects of long-term nitrogen loading on grassland insect communities. Oecologia, 124: 73-84.
    Haddad, N.M., Tilman, D., Haarstad, J., Ritchie, M. and Knops, J.M.H. 2001. Contrasting Effects of Plant Richness and Composition on Insect Communities: A Field Experiment. The american naturalist, 158(1): 17-31.
    Hairston, N.G., Smith, F.E. and Slobodkin, L.B. 1960. Community structure, population control, and competition. The American Naturalist, 94: 421-425.
    Hartley, S.E. and Jones, T.H. 2003. Plant diversity and insect herbivores: effects of environmental change in contrasting model systems. Oikos, 101:6-17.
    
    Hazarika, M., Chakravarty, S.K. and Mahanta, P.K. 1984. Studies on thearubigin pigments in black tea manufacturing systems. Journal of the Science of Food and Agriculture, 35: 1208-1218.
    
    Heil, G.W. and Diemont, W.H. 1983. Raised nutrient levels change heathland into grassland. Vegetatio, 53: 113-120.
    
    Heong, K.I., Aquino, G.B. and Barrion, A.T. 1991. Arthropod community structures of rice eco systems in the P hilippines. Bulletin of Entomological Research, 81: 407-416.
    
    Hilton, P.J., Palmer-Jones, R. and Ellis, R.T. 1973. Effects of season and nitrogen fertiliser upon the flavanol composition and tea making quality of fresh shoots of tea (Camellia sinensis L.) in central Africa. Journal of the Science of Food and Agriculture, 24: 819-826.
    
    Hoshina,T. 1985. Studies on absorption and utilization of fertilizer nitrogen in tea plants. Bulletin of the National Research Institute(Tea), 20: 1-89.
    
    Huang, S. 1989. Meteorology of tea plant in China. A review. Agricultural and Forest Meteorology,47: 19-30.
    
    Hurd, L.E. and Wolf, L.L. 1974. Stability in relation to nutrient enrichment in arthropod consumers of old-field successional ecosystems. Ecological Monographs, 44: 465-482.
    
    Hurd, L.E., Mellinger, M.V., Wolf, L.L. and McNaughton, S.J. 1971. Stability and diversity at three trophic levels in terrestrial successional ecosystems. Science, 173: 1134-1136.
    
    Iheagwam, E.U. 1981. The relationship between weight of insect, age, hardness and nitrogen content of cabbage leaves and fecundity of the cabbage whitefly, Aleyroides brassicae Walker (Homoptera: Aleyroididae). Zeitschrift fur Angewandte Entomologie, 91: 349-354.
    
    International Tea Committee. 2003. Annual Bulletin of Statistics.
    
    Ishigaki, K. 1974. Comparison between ammonium-nitrogen and nitrate-nitrogen on the effect of tea plant growth. Japan Agricultural Research Quarterly, 8: 101-105.
    
    Ishigaki, K. 1978. Mineral nutrition of tea plants. Bulletin of the National Research Institute (Tea),14: 1-152.
    Jahn, G.C., Rubia-Sanchez, E. and Cox, P.G.. 2001. The quest for connections: developing a research agenda for integrated pest and nutrient management. International Rice Research Institute.Dicussion Paper. No.42. Los Banos, Philippines.
    
    Jahn, G.C., Sanchez, E.R. and Cox, P.G. 2000. The question for connections: developing a research 69 agenda for integrated pest and nutrient management. Seen in: Peng S, Hardy B, editors.2001.Rice Research for Food Seen, and Poverty Alleviation. Proceedings of IRRC, 31 March-3 April 2000, Los Banos, Philippines. pp. 413-430.
    
    Jaust, A.M. and Albajes, R. 2000. Effect of nitrogen fertilization level applied to tomato on the greenhouse whitefly. Crop Protection, 19: 255-261.
    Joern, A. and Behmer, S.T. 1998 a. Impact of diet quality on demographic attributes in adult grasshopper and the nitrogen limitation hypothesis. Ecological Entomology, 23: 174-184.
    Joern, A. and Behmer, S.T. 1998 b. Importance of dietary nitrogen and carbohydrates to survival,growth, and reproduction in adults of the grasshopper Ageneotettix deorum. Oecologia, 112:201-208.
    Jones, M.E. and Paine, T.D. 2002. Changes in insect herbivore communities along an ozone and nitrogen deposition gradient in the San Bernardino Mountains. Ecological Society of America Annual Meeting Abstracts, 87: 345.
    Jones, M.E., Paine, T.D., Fenn, M.E. and Poth, M.A. 2004. Influence of ozone and nitrogen deposition on bark beetle activity under drought conditions. Forest Ecology and Management,200: 67-76.
    Jonsson, T., Cohen, J.E. and Carpenter, S.R. 2005. Food Webs, Body size, and species abundance in ecological community description. Advances in Ecological Research, 36: 1-84.
    
    Keinanen, M., Julkunen-Tiitto, R., Mutikainen, P., Walls, M., Ovaska, J.and Vapaavuori, E. 1999.Trade-offs in phenolic metabolism of silver birch: effects of fertilization, defoliation, and genotype. Ecology, 80: 1970-1986.
    Kirchner, T.B. 1977. The effects of resource enrichment on the diversity of plants and arthropods in a short grass prairie. Ecology, 58: 1334-1344.
    
    Koricheva, J., Larsson, S., Haukioja, E. and Keinanen, M. 1998. Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis.Oikos,83:212-226.
    Krauss, A. 2002. Potassium, an integral part for sustained soil fertility and efficient crop production.Poland, 2~(nd) International AUP IPBA IPI Workshop on: Current problems of balanced fertilization for efficient sugar beet cultivation.2002, June.
    
    Krishnapillai, S. and Ediriweera, V.L. 1986. Influence of levels of nitrogen and potassium fertilizers on chlorophyll content in mature clonal tea leaves. Sri Lanka Journal of Tea Science, 55: 71-76.
    Kyto, M., Niemela, P. and Larsson, S. 1996. Insects on trees: population and individual response to fertilization. Oikos, 75: 148-159.
    Li, J. 2005. The effect of plant mineral nutrition on yield and quality of green tea (Camellia sinensis L.) under field conditions. Ph.D. dissertation. Christian Albrechts University of Kiel, Germany.
    Malenga, N.E.A. and Wilkie, A.S. 1995. Effect of dolomitic lime and potassium chloride on tea yield and soil amelioration in a low pH soil. Quarterly Newsletter Tea Research Foundation of Central Africa, 117:28-32.
    Marschner, H., Kirkby, E.A. and Cakmak. 1996. Effect of mineral nutritional status on shoot-root portioning of photoasimilates and cycling of mineral nutrients. Journal of Experimental Botany,47: 1255-1263.
    Marwaha, B.C., Mehta, K.G. and Sharma, R.L. 1977. Studies on the effect of application of NPK on the yield of tea in grey brown podzolic soils in Palampur. Fertilizer Technology, 14(3): 239-243.
    Matson, P., Lohse, K.A. and Hall, S.J. 2002. The Globalization of Nitrogen Deposition:Consequences for Terrestrial Ecosystems. Ambio, 31(2): 113-119.
    Matson, W.J. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11: 119-161.
    May, R.M. 1975. Patterns of species abundance and diversity. In: Ecology of species and communities (Ed. by M. Cody and J.M. Diamond), Harvard University Press, Cambridge, MA, USA. pp. 81-120.
    May, R. M. 1978. The dynamicss and diversity of insect faunas. - In: Mound, L. A. and Waloff, N.(eds), Diversity of insect faunas. Blackwell Scientific. pp. 188-204.
    May, R. M. 1986. The search for patterns in the balance of nature: advances and retreats. Ecology,67:1115-1126.
    McClure, M.S. 1980. Fiorina externa. Foliar nitrogen: a basis for host suitability for elongate hemlock scale Fiorina externa. Ecology, 61: 72-79.
    
    McDowell, I., Taylor, S. and Gay, C. 1995. The phenolic pigment composition of black liquors. Part 1: predicting quality. Journal of the Science of Food and Agriculture, 69: 467-474.
    Metcalfe, J.R., 1970. Studies on the efect of the nutrient status of sugarcane on the fecundity of Saccharosydne saccharivora. Bulletin of Entomological Research, 60: 30 9-325.
    Minkenberg, O.P. and Fredrix, M.J. 1989. Preference and performance of a herbivorous fly,liriomyza trifilii, on tomato plants differing in leaf nitrogen. Annals of the Entomological Society of America, 21(3): 270-278.
    Minkenberg, O.P. and Ottenheim, J.J. 1990. Effect of leaf nitrogen content of tomato plants on preference and performance of a leafmining fly. Oecologia, 83: 291-298.
    Moffat, A.S. 1998. Global nitrogen overload problem grows critical. Science, 279: 988-989.
    Mohotti, A.J. and Lawlor, D.W. 2002. Diurnal variation of photosynthesis and photoinhibition in tea:effects of irradiance and nitrogen supply during growth in the field. Journal of Experimental Botany, 53: 313-322.
    Moon, D.C. and Stilling, P. 2000. Relative importance of abiotically induced changes in host plant quality on a salt marsh planthopper and its parasitoid. Ecological Entomlogy, 25: 325-331.
    
    Morita, A., Ohta, M. and Yoneyama, T. 1998. Uptake, transport and assimilation of ~(15)N-nitrate and ~(15)N-ammonium in tea (Camellia sinensis L.) plants. Soil Science & Plant Nutrition, 44: 647-654.
    Mukhopadhyay, A.P.W., Sherpa, B. and Pradhan. 2003. Diversity of ground arthropod community at organic and chemically intensive tea plantation of Darjeeling terai. Journal of Environmental Biology, 24(4): 471-476.
    
    Nasholm, T. and Ericsson, A. 1990. Seasonal changes in amino acids, protein and total nitrogen in needles of fertilized Scots pine trees. Tree Physiology, 6: 267-281.
    Nevo, E. and Coll, M. 2001. Effect of nitrogen fertilization on Aphis gossypii variation in size color,and reproduction. Journal of Economic Entomology, 94: 27-32.
    Ockinger, E., Hammarstedt, O., Nilsson, S.G. and Smith, H.G. 2006. The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels. Biological Conservation,128: 564-573.
    
    Okano, K., Chutani, K.and Matsuo, K. 1997. Suitable level of nitrogen fertilizer for tea (Camellia sinensis L.) plants in relation to growth, photosynthesis, nitrogen uptake and accumulation of free amino acids. Japanese Journal of Crop Science, 66: 279-287.
    
    Owuor, P.O. 2001. Effects of fertilizers on tea yields and quality: a review with special reference to Africa and Sri Lanka. International Journal of Tea Science , 1:1-11.
    
    Owuor, P.O. and Odhiambo, H.O. 1994. Response of some black tea quality parameters to nitrogen fertiliser rates and plucking frequencies. Journal of the Science of Food and Agriculture, 66:555-556.
    
    Owuor, P.O., Ng'etich, W.K. and Obanda, M. 2000. Quality response of clonal black tea to nitrogen fertiliser, plucking interval and plucking standard. Journal of the Science of Food and Agriculture, 80: 439-446.
    
    Owuor, P.O., Othieno, CO., Horita, H., Tsushida, T. and Murai, T. 1987. Effects of nitrogenous fertilizers on the chemical composition of black tea. Agricultural and Biological Chemistry, 51:2665-2670.
    
    Owuor, P.O., Othieno, CO., Robinson, J.M. and Baker, D.M. 1991. Response of tea quality parameters to time of year and nitrogen fertilizer. Journal of the Science of Food and Agriculture,55: 1-11.
    Panda, N. and Khush, G.S. 1995. Host Plant Resistance to Insects. CAB International, UK. pp.67-103.
    Pimental, D. 1989. Low-input sustainable agriculture using ecological management practices,Agriculture, Ecosystems & Environment, 27: 3-24.
    Pitcairn, C.E.R., Leith, I.D., Sheppard, L.J., Sutton, M.A., Fowler, D., Munro, R.C. Tang, S. and Wilson, D. 1998. The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environmental Pollution, 102(Sl):41-48.
    Preap, V., Zalucki, M.P., Nesbit, H.J. and Jahn, G.C. 2001. Efect of fertilizer, pesticide treatment,and plant variety on the realized fecundity and survival rates of brown planthopper, Nilaparvata lugens, generating outbreaks in Cambodia. Journal of Asia-Pacific Entomolog, 4(1): 75 -84.
    Prestidge, R.A. 1982. The influence of nitrogenous fertilizer on the grassland auchenorrhyncha.Journal of Applied Ecology, 19: 735-749.
    Prins, H-de. and Vuyst, P-de. 1974. Studies on the mineral fertilizing of tea grown on acid organics oils in Rwanda. Blletin Agricole du Rwanda, 7(2): 97-103.
    Quemener, J. 1986. Important factors in potassium balance sheets, Nutrient balances and the need for potassium. Proceedings of the 13~(th) International Potash Instatute Congress, Reims, France.
    
    Rainey, S.M., Nadelhoffer, K.J., Silver, W.L. and Downs, M.R. 1999. Effects of chronic nitrogen additions on undcrstory species in a red pine plantation. Ecological Applications, 9: 949-957.
    Ricklefs, R.E. and Schlute, D. 1993. Species Diversity in Ecological Communities. University of Chicago Press, Chicago.
    Ricklefs, R.E. and Miller, G.L. 2000. Ecology. Freeman, New York.
    
    Roberts, E.A.H. 1958 a. The phenolic substances of manufactured tea. II. Their origin as enzymic oxidation products in fermentation. Journal of the Science of Food and Agriculture, 9: 212-216.
    
    Roberts, E.A.H. 1958 b. The chemistry of tea manufacture. Journal of the Science of Food and Agriculture, 9:381-390.
    
    Roberts, E.A.H. 1962. Economic importance of flavonoid substances: tea fermentation. In:Geissman, T.A. (Ed). The Chemistry of Flavonoid Compounds. Pergamon press, Oxford. pp.409-512.
    Ruan, J. Y. 2005. Quality-related constituents in tea (Camellia sinensis (L.) O. Kuntze) as affected by the form and concentration of nitrogen and the supply of chloride. Ph.D. dissertation.Christian Albrechts University of Kiel, Germany.
    
    Ruan, J., Wu, X., Ye, Y. and Hardter, R. 1998. Effect of potassium, magnesium and sulphur applied in different forms of fertilizers on free amino acid content in leaves of tea (Camellia Sinensis L.).Journal of the Science of Food and Agriculture, 76: 389 - 396.
    
    Scriber, J.M. 1981. The nutritional ecology of immature insects. Annual Review of Entomology, 26: 183-211.
    Scriber, J.M. 1984. Nitrogen nutrition for plants and insect invasion. In Hauch (ed) Nitrogen in crop production. pp. 441-460.
    Sedlacek, J.D., Barrett, G.W. and Shaw, D.R.. 1988. Effects of nutrient enrichment on the Auchenorrhyncha (Homoptera) in contrasting grassland communities. Journal of Applied Ecology, 25: 537-550.
    Selvendran, RR, Selvendran, S. 1973. Chemical changes in young tea plant (camellia sinensis L.)tissues following application of fertilizer nitrogen. Annals of Botany, 37: 453-461.
    Settle, WH, Ariawan, H., E.T., Astuti,W., Cahyana, Hakim, A.L., Hindayana, D and Lestari, AS.1996. Managing tropical rice pests through conservation of generalist natural enemies and alterative prey. Ecology, 77: 1975-1988.
    Sharma, D.K. and Sharma, K.L. 1998. Effect of nitrogen and potash application on yield and quality of China hybrid tea (Camellia sinensis) grown in Kangra valley of Himachal pradesh. India Journal of Agricultural Science, 68(6): 307-309.
    Siemann, E. 1998. Experimental tests of the effects of plant productivity and plant diversity on grassland arthropod diversity. Ecology, 79: 2057-2070.
    Siemann, E., Tilman, D. and Haarstad, J. 1996. Insect species diversity, abundance and body size relationships. Nature, 380: 704-706.
    Siemann, E., Tilman, D. and Haarstad, J. 1999. Abundance, diversity and body size: patterns from a grassland arthropod community. Journal of Animal Ecology, 68: 824-835.
    Simpson, I.C., Roger, P.A.,.Oficial R.and Grant, I.F. 1994. Efects of nitrogen fertileizer and pesticide management on floodwater ecology in wetland rice field II: Dynamicss of microcrustaceans and dipteran larvae. Biology and Fertility of Soils, 117: 138-146.
    Smil, V. 1999. Nitrogen in crop production: an account of global flows. Global Biogeochem Cycles,13: 647-662.
    Smil, V. 2000. Phosphorus in the environment: natural flows and human interferences. Annual Review of Energy and the Environment, 25, 53-88.
    Smith, V.H., Tilman, G.D. and Nekola, J.C. 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine and terrestrial ecosystems. Environmental Pollution, 100 (1-3): 179-196.
    Stevens, C.J., Dise, N.B.,Mountford, J.O. and Gowing, D.J. 2004. Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876-1879.
    Strauss, S.Y. 1987. Direct and indirect effects of host-plant fertilization on an insect community.Ecology, 68: 1670-1678.
    Throop, H.L. and Lerdau, M.T. 2004. Effects of Nitrogen Deposition on Insect Herbivory:Implications for Community and Ecosystem Processes. Ecosystems, 7: 109-133.
    Throop, H.L., Holland, E.A., Parton, W.J., Ojima, D.S. and Keough, C.A. 2004. Effects of nitrogen deposition and insect herbivory on patterns of ecosystem-level carbon and nitrogen dynamicss:results from the CENTURY model. Global Change Biology, 10(7): 1092-1105.
    Tilman, D. 1980. Resources: a graphical-mechanistic approach to competition and predation.American Naturalist, 116: 362-393.
    Tilman, D. 1999. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proceedings of the National Academy of Sciences, 96: 5995-6000.
    Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. and Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature, 418: 671-677.
    Tilman, D., Kilham, S.S. and Kilham, P. 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics, 13:349-372.
    Jansson, R.K. and Smilowitz, Z. 1985. Influence of nitrogen on population parameters of potato insects: Abundance, development, and damage of the Coporado Potato Beetle, Leptinotarsa decemtineata. Environmental Entomology, 14: 500-506.
    
    van Lelyveld, L.J. and Smith, B.L. 1989. The association between residue chlorophyll and grassy taste in black tea. South African journal of Plant Soil, 6: 280-281.
    
    van Lelyveld, L.J., Smith, B.L., Fraser, C. and Visser, G. 1990. Variation in quality of certain tea clnes with respect to chlorophyll, theaflavin content and total color value. South African journal of Plant Soil, 7: 226-229.
    
    Venkatesan, S. and Ganapathy, M.N.K. 2004. Impact of nitrogen and potassium fertiliser application on quality of CTC teas. Food chemistry, 84: 325-328.
    
    Venkatesan, S., Murugesan, S., Ganapathy, M.N.K. and Verma, D.P. 2004. Long-term impact of nitrogen and potassium fertilizers on yield, soil nutrients and biochemical parameters of tea. Journal of the Science of Food and Agriculture, 84: 1939-1944.
    Vitousek, P.M. and Howarth, R.W. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry, 13: 87-115.
    Vitousek, P. M.; Aber, J. D.; Howarth, R. W.; Likens, G. E.; Matson, P. A.; Schindler, D. W.;Schlesinger, W. H.; Tilman, D. G. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7:737-750.
    Wafing, G.L. and Cobb, N.S. 1992. The impact of plant stress on herbivore population dynamicss.Insect-plant interaction, 4: 167-226.
    Walde, S.J. 1995. How quality of host plant affects a predator-prey interaction in biological control.Ecology, 76(4): 1206-1219.
    
    Warren, C.R. and Adams, M.A. 2000. Capillary electrophoresis for the determination of major amino acids and sugars in foliage: application to the nitrogen nutrition of sclerophyllous species.Journal of Experimental Botany,51: 1147-1157.
    Waynoka J.K., Lothian CO., Macho, E. and Chariot, D. 1996. Effects of types an d rates of nitrogen fertilizer on soil .2. Extractable phosphorus, and potassium contents under seedling tea field in Mandy Hills, Kenya. Tea, 17(1):12-19.
    Wedin, D.A. and Tilman, D. 1996. Influence of Nitrogen Loading and Species Composition on the Carbon Balance of Grasslands. Science, 274: 1720-1723.
    Wettasinghe, D.T. and Watson, M. 1980. Effect of nitrogen, phosphorus, potassium and magnesium fertilizers on the leaf nutrient composition of low-grown tea in SriLanka. Tea Quarterly, 49(1):44-52.
    White, T.C.R. 1993. The inadequate environment: nitrogen and the abundance of animals. New York: Springer-Verlag, pp. 425.
    Whitten, W.J. 1993. Pest management in 2000: What we might learn from the twentieth century. In:Kadirand S.A., Barlow H.S. eds. Pest management and the environment in 2000. International Wallingford, London. pp. 9-44.
    
    Willson, K.C. 1975. Studies on the mineral nutrition of tea II -Nitrogen. Plant Soil, 42: 501-516.
    Wilson, E.O. 1988. Biodiversity. National Academy Press, Washington, DC.
    Wirsig, A. 1999. Food web and community structure of arthropods in organic and conventional tea gardens of Darjeeling, North-East India. Diplomarbeit, University Hohenheim. Cf.http://www.uni-hohenheim.de/friederi/trop/publications/foodweb_tea.pdf.
    Yokota, H., Morita, A. and Ghanati, F. 2005. Growth characteristics of tea plants and tea fields in Japan. Soil Science and Plant Nutrition, 51: 625-627.
    Yuan,L.,Wang,S.S.and Wang,Z.H.2000.Tea-grown soils and tea quality in Sichuan and Chong qing,China.Pedosphere,10(1):45-52.
    Zoysa,A.K.N.,Loganathan,P.and Hedley,M.J.1998.Effect of forms of nitrogen supply on mobilisation of phosphorus from a phosphate rock and acidification in the rhizosphere of tea.Australian Journal of Soil Research,36:373-388.
    鲍碧娟.1995.钾素的营养作用和提高钾肥肥效的途径.磷肥与复肥,30(1):71-73.
    常德鉴,王存午.2002.施肥措施对棉株抗蚜和耐蚜力的影响.淮北煤师院学报,23(2):60-62.
    陈达中.1973.茶树氮磷钾肥试验.茶叶科技通讯,(2):9-13.
    陈培清,吴利荣,吴家尧.1983.茶园施钾试验.广东茶叶科技,(2):21-23.
    陈亦根,熊锦君,黄明度,古德就.2004.茶园节肢动物类群多样性和稳定性研究.应用生态学报,15(5):875-878.
    陈宗懋,俞永明.1988.中国农业百科全书(茶业卷).北京:中国农业出版社.
    陈宗懋.2002.世界有茶机生产中的一些靳思路.中国茶叶,24(4):7-9.
    陈祖规,朱自振.1981.中国茶叶历史资料选辑.农业出版社.
    程必林,1987.茶园施用绿化钾的试验总结.安徽茶叶科技,(1):1-6.
    程明珂.1994.茶树益肥配施Zn,K元素对茶树新梢生长效应的研究.蚕桑茶叶通讯,(1):14-16.
    程遐年,吴进才,马飞.2003.褐飞虱研究与防治.北京:中国农业出版社.
    戴轩.1999.灭幼服Ⅰ号对茶园昆虫群落多样性影响的初步研究.贵州农业科学,27(4):52-53.
    邓欣,谭济才.2002.生态控制茶园内害虫、天敌种类及数量的季节变化规律.生态学报,22(7):1166-1172.
    丁岩钦.1993.论害虫种群的生态控制.生态学报,13(2):99-105.
    丁岩钦.1994.昆虫数学生态学.北京:科学出版社.426-475.
    GB8312-2002《茶 咖啡碱测定》.
    GB8313-87《茶 茶多酚测定》.
    GB8314-87《茶 游离氨基酸总量测定》.
    Guan N.C..陈桂云.1991.钾肥和士温对茶树根线虫的发生及致病性的影响.热带作物科技,(5):77-80.
    戈峰,刘向辉,李泓达,门兴元,苏建伟.2003.氮肥对棉田主要害虫种群密度及棉花产量的影响.应用生态学报,14(10):1735-1738.
    戈峰,刘向辉,李泓达,门兴元,苏建伟.2003.氮肥对棉田主要害虫种群密度及棉花产量的影响.应用生态学报,14(10):1735-1738
    耿建梅,黄建国,王守生.2001.矿质营养对茶叶产量和品质的效应.西南农业大学学报,23(1):51-52.57.
    韩宝瑜,崔林、董文霞.2005.有机、无公害和普通茶同管理方式对节肢动物群落和主要害虫的影响.生态学报,25(5):1438-1443.
    韩宝瑜.崔林.1999.8个茶树品种上节肢动物群落结构多样性及差异.华东昆虫学报,8(1):70-75.
    韩宝瑜,江昌俊,李卓民.2001.间作密植和单行茶园节肢动物群落组成差异.生态学报,21(4):646-652.
    韩宝瑜.2000.茶园昆虫群落稳定性机制.茶叶科学,20(1):1-4.
    韩文炎,李强.2002.茶园施肥现状与无公害茶园高效施肥技术.中国茶叶,24(6):29-31.
    胡建章,陆秋华,杨金生,杨丽萍,高念英.1986.肥水管理对稻田主要害虫种群及产量的影响. 昆虫学报,29(1):49-54.
    黄保宏,邹运鼎,毕守东,李恒奎,朱巧丽.2005.梅园昆虫群落特征、动态及优势种生态位.应用生态学报,16(2):307-31.
    黄晓澜,丁瑞兴.1989.茶园生态系统昆虫类群的初步调查.安徽农业科学,4:24-27.
    黄意欢,肖力争.1992.茶树营养生理学与土壤管理.长沙:湖南科学技术出版社,132-138.
    黄意欢.1997.茶学实验技术.北京:中国农业出版社.
    黄志农,何英豪,皮丕登,唐汇国,刘朝友.2000.水稻高产栽培中肥料运筹对害虫种群的生态学效应.昆虫知识,37(3):129-133.
    夸田胜弘(吴洵译).1981.茶树的生育与钾营养.福建茶叶,2:39-43.
    李国满.1990.茶叶品质与土壤条件的关系.茶叶通讯,4:16.
    李家光.1986.适制乌龙茶的茶树品种、生态环境与成茶品质.福建茶叶,(3):7-9.
    李静,夏建国.2005.氮磷钾与茶叶品质关系的研究综述.中国农学通报,21(1):62-65,75
    厉龙明,谢学民.1990.钾肥对茶树光合产物运转、分配与累积的影响.浙江农业学报,2(1):35-40.
    林心炯,郭专,周庆惠,张文锦.1991.施肥对乌龙茶产量品质的影响.茶叶科学,11(2):109-116.
    刘春茂,吴荣宗.1992.光照强度和氮肥对水稻品种抗褐飞虱的影响.华南农业大学学报,13(2):27-33.
    刘佳妹,彭景楩,赵敬钊.1993.江西省宁红茶区害虫群落结构及种群数量消长初步研究.湖北大学学报(自然科学版),15(2):200-205.
    刘顺,王益之.1989.施氮肥对棉铃虫影响的初步研究.河北农业大学学报,12(1):81-87.
    刘孝纯,白秀英.1989.氮肥水平对棉朱砂叶蜗生物学的影响.植物保护,15(6):2-5.
    刘雨芳.2000.稻田生态系统节肢动物群落结构研究.广州:中山大学博士研究生论文,
    吕仲贤.2003.氮肥对稻飞虱的生态适应性及其与水稻和天敌关系的影响.浙江大学博士论文.
    罗淑华,1994.茶叶品质与施肥.福建茶叶,2:24-27.
    马巨法,胡国文,程家安.1996.寄主氮源胁迫下刺吸式昆虫的表现及其适应性对策.生态学杂志,15(6):51-59.
    马克平,刘玉明.1994.生物群落多样性的测度方法:Ⅰα多样性的测度方法.生物多样性1994,2(4):231-23.
    马茂桐,张自力.1992.红壤茶园施用钾镁硫肥对茶叶产量和品质的影响,蚕桑茶叶通讯,4:5-7.
    门兴元,戈峰,尹新明,刘东坡.2004.施肥与摘蕾对棉蚜、棉叶蝉种群数量及棉花产量的影响.应用生态学报,15(8):1440-1442.
    南京农业大学主编.2000.农业化学分析(第二版),北京:中国农业出版社.
    潘根生.1995.茶叶大全.北京:中国农业出版社.
    庞雄飞,尤民生.1996.昆虫群落生态学.北京:中国农业出版社
    彭萍,蒋光藻,侯渝嘉,徐泽,胡翔.2004.不同类型生态茶园昆虫群落多样性.西南农业学报,17(2):197-199.
    Pielou E C(卢泽愚泽).1988.数学生态学(第2版).北京:科学出版社,.309-326.
    秦厚国,叶止襄,黄荣华.1991.施肥对白背飞虱旧问种群和水稻产量的影响研究.江西农业大学报,13(2):125-128.
    Ranganathan Y.and Natesan S.彭伟正摘译.1987.茶树对施钾肥的反应.福建茶叶,(4):44-48.
    阮建云,吴洵,Hardter R.1997.钾和镁对乌龙茶产量和品质的影响.茶叶科学,17(1):9-13.
    阮建云,吴洵.1995.土壤水分和供钾水平对茶树生长和吸收的影响.生命科学研究与应用.502-509
    阮建云,吴洵.1997.土壤水分和施钾对茶树生长及产量的影响.土壤通报,28(5):232-234.
    阮建云,吴洵.2003.钾、镁营养供应对茶叶品质和产量的影响.茶叶科学,23(增):21-22.
    阮建云,伍炳华.2000.氯化钾在茶园中的增产提质效果.土壤肥料,(4):20-22.
    施嘉潘.1992.茶树栽培生理学.北京:中国农业出版社,203-204
    施倩,陈林,张正竹,李平,宛晓春.2006.茶叶中L-茶氨酸HPLC-PDAD分析方法的建立.安徽农业大学学报,33(3):347-350.
    史军超.2001.世界茶文化源头之辩.云南民族学院学报(哲学社会科学版),18(6):37-40.
    谭济才,邓欣,袁哲明.1998.不同类型茶园昆虫、蜘蛛群落结构分折.生态学报,18(3):289-294.
    谭济才,邓欣.张觉晚.2001.湖南省茶园害虫群落演替趋势与防治对策.湖南农业大学学报(自然科学版),27(5):370-373.
    汤金仪,胡伯海,王建强.1996.我国水稻迁飞性害虫猖撅成因及其治理对策建议.生态学报,16(2):168-173.
    童启庆.茶树栽培学.2000.北京:中国农业出版社,230.
    汪用文,陈宗懋.1999.21世纪我国茶业科技展望.茶叶,23(1):11-14.
    王常红,汪东风.1995.技术对茶树春梢生长及某些生理特性的影响.作物学报,21(6):752-755.
    王春义,增凯,金杰,珺瑜,李树红.2005.新疆棉田施氮肥对棉蚜及其它主要害虫种群数量的影响.中国棉花,32(7):15-17.
    王国华,梁远发;田永辉;王家伦;周国兰;2004.化学农药对茶园节肢动物多样性的影响.茶叶科学,24(2):99-104
    王文建.2000.茶树喷施高钾有机复合肥试验初报.福建茶叶,(2):21-23.
    王晓萍,阮建云,韩文炎,吴炳华,吴洵,姚国坤.1995.茶树钾营养特性的研究.作物学报,21(3):324-329.
    王晓萍.1992.土壤水分对茶树根系吸收机能的影响.中国茶叶,(4):10-11.
    王学奎.2000.植物生理生化实验原理与技术.北京:高等教育出版社,122-124,202-208.
    王勇.张汉鹄,邹运鼎.1991.茶园蜘蛛、昆虫群落动态的研究.生态学报,11(2):135-138.
    王正银主编.1998.作物施肥学.重庆:西南师范大学出版社.187
    王宗英,路有成,陈发扬.1991.皖南低丘茶园土壤动物群落结构研究.地理学报,46(2):213-223.
    吴洵,阮建云.1995 a.钾镁对茶树的生理效应.中国茶叶,17(4):18-19.
    吴洵,阮建云.1995 b.钾、镁肥提高茶叶氨基酸含量的效果.茶叶,21(4):22-25.
    吴洵,姚国坤,王晓萍.1989.低丘红壤茶园氮磷钾平衡施肥的探讨.蚕桑茶叶通讯,(4):1-9,13.
    吴洵.1998.茶园施钾肥的理论与实践.茶叶通讯,(2):18-21.
    吴洵.1999.茶树的钾营养与病虫害.福建茶叶,(4):4.
    伍炳华,韩文炎.1991.茶树对氮、磷、钾营养的品种间差异Ⅱ:茶树不同品种对磷和钾吸收的动力学.茶叶科学,11(2):117-120.
    夏建国,李静,巩发永,吴德勇.2005.不同氮肥种类和用量对川西蒙山茶品质的影响.水土保 持学报,19(3):130-133.
    小西茂毅(吴洵译).1983.茶树的氮代谢.湖南茶叶通讯,(2):58-62.
    肖伟祥.1982.茶氨酸与茶红素的组成研究.贵州茶叶,(1):32-34
    谢振伦,戴素贤,曹潘荣,赖时华,曾福卿,刘胜利.1994.雷州半岛无公害茶园昆虫群落的演替.茶叶科学,14(2):141-147.
    谢振伦.1993.广州地区茶园昆虫群落结构年中变化的研究.华南农业大学学报,14(3):22-31.
    徐建祥,天进才,程家安.1997.几种农用化学品对三带嚎库蚊幼虫及拟水狼蛛的影响.江苏农科院学报,18(3):51-54.
    徐金汉,关瑞峰,李春光,黄鹏,关雄.2005.不同茶园昆虫群落结构及动态.华东昆虫学报,14(4):315-319.
    徐赛禄.2001.浅谈茶树营养特征与施肥调控技术.茶叶科学技术,(3):7-9.
    杨大荣,陈朝进.1999.滇西和滇西茶叶害虫群落结构与生态分布.西南农业学报,12(2):90-96.
    杨贤强,沈毓渭.1992.茶树的碳氮代谢与施肥.中国农业科学,25(1):37-43.
    杨效东,佘宇平,陶滔,朱启忠,扈克明.1999.云南思茅山区茶园土壤节肢动物群落结构与生境之关系.山地学报,17(2):46-51.
    杨耀松.1996.茶树氮素营养研究.茶叶通讯,(1):16-18.
    尤民生,王海川,杨广.1999.农业害虫的持续控制.福建农业大学学报,28(4):434-440.
    张飞萍,陈清林,吴庆锥,侯有明,尤民生.2005.毛竹林节肢动物群落的组成与结构.生态学报,25(9):2272-2283.
    张桂芬,鲁传涛,申效诚,王文夕.1995.栽插密度和施氮量对水稻主要病虫害的综合生态效应.植物保护学报,22(1):38-44.
    张觉晚,孙少华.2003.茶园害虫天敌群落结构多样性的研究.茶叶,29(4):206-207.
    张天福.1994.茶树品种与制茶工艺对乌龙茶品质风格的影响.福建茶叶,(3):5-7.
    张文锦,陈常颂,杨如兴.2001.铁观音肥料主效因子的研究.福建茶叶,(3):7-9.
    张文锦,郭专.1993.乌龙茶鲜叶酚氨比与品质的关系及其调控.茶叶科学简报,(4):13-16.
    张文锦.1992.鲜叶氮磷钾含量与乌龙茶品质关系的研究.福建茶叶,(3):16-19.
    张文彤,闫洁.2004.SPSS统计分析基础教程.北京:高等教育出版社.
    张晓青.2007.关于解决我国茶叶出口贸易问题的产业化思考.农业考古,(6):329-331.
    张亚莲,罗淑华.1998.湖南茶园四种主要土壤类型氮磷钾施用比例研究.茶叶通讯,(3):3-8.
    张宗炳.1988.农药对农业生态系统的影响.生态学杂志,7(3):25-29.
    浙江农业大学主编.1987.作物营养与施肥.北京:中国农业出版社.pp.102-155.
    中国农业部.2008.全国农业统计提要.2000-2006.http://www.agri.gov.crdsjzl/nongyety.htm
    中国农业科学院茶叶研究所.1982.茶树栽培技术.上海:上海科学技术出版社.PP.169-170.中国农业科学院茶叶研究所.1984.中国茶树栽培学.上海:上海科学技术出版社.pp.338-339,356.
    庄晚芳.1984.茶树生理.北京:中国农业出版社.pp.156-158.
    邹元辉.1994.历时百多年的‘世界茶的起源地之争.农业考古,(4):164-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700