用户名: 密码: 验证码:
近场纺丝制备聚合物微/纳米纤维及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米结构具有大的比表面积、特殊的光学、电学、磁学性能,已经成为当今世界材料科学研究的热点。其中聚合物纳米纤维材料由于其良好的柔韧性,引起了人们高度的研究兴趣。静电场纺丝是制备各种纳米纤维材料的一种常用方法,纤维的直径一般从几纳米到几微米。然而传统静电纺丝制备的纳米纤维大多呈无序状态,限制了其应用范围。因此本文提出了一种有序静电场纺丝技术-近场纺丝,制备了多种聚合物微/纳米纤维图案,并基于制备的聚合物纤维制作了多种微/纳器件,如聚偏二氟乙烯(PVDF)纤维压电执行器、聚苯胺(PANI)静电执行器和微/纳流体通道。其主要内容包括以下几个方面:
     1.提出了一种有序静电场纺丝技术-近场纺丝,并用来直接、连续、可控地沉积聚合物微/纳米纤维。近场纺丝中,将喷丝头与收集器间的距离减小到几毫米,从而得到稳定的聚合物射流,以实现有序的微/纳米纤维沉积。通过一个可编程的X-Y平台来控制收集器的运动轨迹和运动速度,制备了各种聚氧化乙烯(PEO)、PVDF和PANI微/纳米纤维图案。采用电子扫描显微镜(SEM)对制备的微/纳米纤维的形貌进行了分析表征,并讨论了电纺参数对纤维直径的影响。这种技术使得静电纺丝成为直接写微/纳米制造技术的一种潜在工具,从而应用于各种微/纳米器件的制造,如发电机、传感器、执行器、微/纳流体器件等。
     2.电纺聚合物微/纳米纤维在执行器方面的应用。(1)研究了直接写的两端固定、悬空的PVDF纤维的压电驱动性能。近电纺丝技术中的实时电极化过程赋予了PVDF纤维良好的压电性能。试验中,在应用的电场下PVDF纤维既产生压电响应,也产生静电响应,采用双层电极结构削弱了静电作用对测试结果的影响。近场纺丝制备的PVDF纤维压电系数d33的平均值为-57.6pm/V,约为文献中报道的PVDF薄膜的2倍。(2)基于电纺的PANI纳米纤维,制作了悬臂梁结构的静电执行器,并测试了PANI悬臂梁在静电力作用下的位移。当应用的电压为270V时,PANI悬臂梁自由端的位移为1.2μm。
     3.电纺聚合物纤维在微/纳流体通道制备技术方面的应用。采用近场纺丝沉积在硅基底上的PVDF和PEO微/纳米纤维图案作为模板,在PDMS上制备了微/纳流体通道。由于近场纺丝工艺具有高度的控制性,因此根据不同的应用需要,可以制备各种图案的流体通道。基于近场纺丝技术,制备了平行的流体通道阵列、交叉相连的通道网络、‘Cal’、‘A’和‘O’通道图案,并在SEM下观测了流体通道的截面,在荧光显微镜下测试了通道的连通性。
One-dimensional nanostructures, which have large specific surface area and special optical, electrical and magnetic properties, have been the hotspot of material research in the today’s world. Among them, the polymeric nanofibers have attracted tremendous research interests due to their good flexibility. Electrospinning is a common method to produce nanofibers of different kinds of materials ranging from a few micrometers down to a few nanometers. However, the nanofibers fabricated by conventional electrospinning are random, which has limited their application. Therefore, an orderly electrospinning technique, Near-field electrospinning (NFES), has been developed, and used to fabricate various polymeric micro/nanofiber patterns. Based on electrospun polymeric fibers, several micro/nanodevices have been created, such as Poly (vinylidene fluoride) (PVDF) piezoelectric actuator, polyaniline (PANI) electrostatic actuator and micro/nanofluidic channels. The main research contents were as follows.
     1. An orderly electrospinning technique, NFES, has been developed to deposit polymeric micro/nanofibers in a direct, continuous, and controllable manner. In NFES, the distance between spinneret and collector is decreased to a few millimeters to achieve stable polymer jet, thus enabling orderly deposition of micro/nanofibers. Using a programmable X-Y stage to control the trajectory and moving speed of the collector, we fabricated various poly (ethylene oxide) (PEO), PVDF and PANI micro/nanofiber patterns. Scanning Electron Microscope (SEM) has been used to investigate the morphology of fabricated micro/nanofibers, and the influence of electrospinning parameters on fiber diameter has been discussed. This technique makes electrospinning a potential tool in direct-write micro/nanofabrication for possible applications in micro/nanodevices, such as generator, sensor, actuator and micro/nanofluidic devices.
     2. The application of electrospun polymeric micro/nanofibers in actuators. (1) Piezoelectric actuation of doubly clamped, suspended PVDF fibers fabricated by a direct-write process has been demonstrated. NFES technique was utilized to fabricate PVDF fibers with good piezoelectric properties by means of the in situ electrical poling process. Experimentally, PVDF fibers have responded to both piezoelectric and electrostatic effects in applied electric field, and double-layer electrodes have been used to minimize the contribution of electrostatic effect to the measured results. The electrospun PVDF fibers have an average piezoelectric coefficient d33 of -57.6pm/V, which is nearly twice of the value reported in PVDF thin films. (2) The electrostatic actuator with cantilever structure was fabricated based on electrospun PANI nanofiber, and the displacement of PANI cantilever beam under electrostatic force was measured. When the voltage of 270V was applied, the free end of PANI cantilever beam had a displacement of 1.2μm.
     3. The application of electrospun polymeric micro/nanofiber in micro/nanofluidic channel fabrication. PVDF and PEO micro/nanofibers were patterned on a Si substrate using NFES technique to serve as a template to form micro/nanochannels in PDMS. Due to high control of our NFES process, diverse patterns could be realized corresponding to desired applications. Based on NFES technique, we created various micro/nanochannel patterns, such as parallel channel array, cross-linked microchannels,‘Cal’,‘A’and‘O’channel patterns. The cross section of fabricated channels was investigated under SEM and the accessibility of channels was tested under fluorescence microscope.
引文
[1] H. Fong, I. Chun, D. H. Reneker. Beaded Nanofibers Formed During Electrospinning. Polymer. 1999, 40(16): 4585-4592.
    [2] J. S. Andrew, J. J. Mack, D. R. Clarke. Electrospinning of Polyvinylidene Difluoride-Based Nanocomposite Fibers. J. Mater. Res. 2008, 23(1): 105-114.
    [3] J. M. Deitzel, J. Kleinmeyer, D. Harris, et al. The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles. Polymer. 2001, 42(1): 261-272.
    [4] M. M. Demir, I. Yilgor, E. Yilgor, et al. Electrospinning of Polyurethane Fibers. Polymer. 2002, 43(11): 3303-3309.
    [5] C. Chang, K. Limkrailassiri, L. Lin. Continuous Near-Field Electrospinning for Large Area Deposition of Orderly Nanofiber Pattern. Applied physics letters. 2008, 93: 123111.
    [6] J. Doshi, D. H. Reneker. Elctrospinning Process and Applications of Electrospun Fibers. J Electrostat. 1995, 35(4): 151-160.
    [7] X. Zong, K. Kim, D. Fang, et al. Structure and Process Relationship of Electrospun Bioabsorbable Nanofiber Membranes. Polymer. 2002, 43(16): 4403-4412.
    [8] P. Gibson, H. Schreuder-Gibson, D. Rivin. Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A. 2001, 187-188: 469-481.
    [9] K. E. Kadler, D. F. Holmes, J. A. Trotter, et al. Collagen Fibril Formation, Biochemical Journal, 1996, 1: 316. 1-11
    [10] H. Jia, G. Zhu, B. Vugrinovich, et al. Catalytic Behaviors of Enzymes Attached to Nanoparticles: the Effect of Particle Mobility. Biotechnology and Bioengineering. 2003, 84(4): 406–414.
    [11] M. M. Demir, M. A. Gulgun, Y. Z. Mencelogu. Palladium Nanoparticles by Electrospinning from Poly(acrylonitrile-co-acrylic acid)?PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity, Macromolecules, 2004, 37(5): 1787-1792
    [12] X. Wang, Y-G. Kim, C. Drew, et al. Electrostatic Assembly of Conjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors, Nano Letters, 2004, 4(2): 331-334
    [13] H. Liu, J. Kameoka, D. A. Czaplewski, et al. Polymeric Nanowire Chemical Sensor. Nano Letters. 2004, 4: 671-675.
    [14] S. W. Choi, S. M. Jo, W. S. Lee, et al. An Electrospun Poly(vinylidene fluoride) NanofibrousMembrane and Its Battery Applications. Advanced Materials. 2003, 15(23): 2027-2032.
    [15] C. Kim, K. S. Yang. Electrochemical Properties of Carbon Nanofiber Web as An Electrode for Supercapacitor Prepared by Electrospinning. Applied Physics Letters. 2003, 83: 1216-1218.
    [16] M. Y. Song, R. Y. Ahn, S. M. Jo, et al. TiO2 Single-Crystalline Nanorod Electrode for Quasi-Solid-State Dye-Sensitized Solar Cells. Applied Physics Letters. 2005, 87: 113113.
    [17] Y. Zhou, M. Freitag, J. Hone, et al. Fabrication and Electrical Characterization of Polyaniline-Based Nanofibers with Diameter Below 30nm. Applied Physics Letters. 2003, 83: 3800-3802.
    [18] D. Li, Y. Wang, Y. N. Xia. Fabrication of Titania Nanofibers by Electrospinning. Nano Letters. 2003, 3: 555–560.
    [19] A. Formhals. Method and apparatus for spinning, US patent, 1975504, 1934.
    [20] S. T. Tan, J. H. Wendorff, C. Pietzonka, et al. Biocompatible and Biodegradable Polymer Nanofibers Displaying Superparamagnetic Properties. ChemPhysChem. 2005, 6: 1461-1465.
    [21] E. R. Kenawy, Y. R. Abdel-Fattah. Antimicrobial Properties of Modified and Electrospun Poly(vinyl phenol). Macromolecular Bioscience. 2002, 2(6): 261-266.
    [22] M. Wang, H. J. Jin, D. L. Kaplan, et al. Mechanical Properties of Electrospun Silk Fibers. Macromolecules. 2004, 37(18): 6856–6864.
    [23] H. Jiang, D. Fang, B. S. Hsiao, et al. Optimization and Characterization of Dextran Membranes Prepared by Electrospinning. Biomacromolecules. 2004, 5: 326–333.
    [24] T. Miyoshi, K. Toyohara, H. Minematsu. Preparation of Ultrafine Fibrous Zein Membranes via Electrospinning. Polymer International. 2005, 54: 1187-1190.
    [25] S. W. Lee, A. M. Belcher. Virus-Based Fabrication of Micro- and Nanofibers Using Electrospinning. Nano Letters. 2004, 4(3): 387-390.
    [26] S. Koombhongse, W. X. Liu, D. H. Reneker. Flat Polymer Ribbons and other Shapes by Electrospinning. Journal of Polymer Science: Part B Polymer Physics. 2001, 39: 2598-2606.
    [27] M. G. Mckee, G. L. Wilkes, R. H. Colby, et al. Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters. Macromolecules. 2004, 37: 1760-1767.
    [28] S. H. Kim, S-H. Kim, S. Nair, et al. Reactive Electrospinning of Cross-Linked Poly(2-hydroxyethyl methacrylate) Nanofibers and Elastic Properties of Individual Hydrogel Nanofibers in Aqueous Solutions. Macromolecules. 2005, 38: 3719-3723.
    [29] Y. J. Kim, W. C. Choi, S. I. Woo, et al. Evaluation of a palladinized Nafion? for directmethanol fuel cell application. Electrochimica Acta. 2004, 49(19): 3227-3234.
    [30] W-J. Li, C. T. Laurencin, E. J. Caterson, et al. Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering. Journal of Biomedical Materials Research. 2002, 60(4): 613-621.
    [31] L. S. Nair, S. Bhattacharyya, J. D. Bender, et al. Fabrication and Optimization of Methylphenoxy Substituted Polyphosphazene Nanofibers for Biomedical Applications. Biomacromolecules. 2004, 5: 2212-2220.
    [32] X. Yang, C. Shao, H. Guan, et al. Preparation and Characterization of ZnO Nanofibers by Using Electrospun PVA/Zinc Acetate Composite Fiber as Precursor. Inorganic Chemistry Communications. 2004, 7: 176-178.
    [33] N. Dharmaraj, H. C. Park, B. M. Lee, et al. Preparation and Morphology of Magnesium Titanate Nanofibres via Electrospinning. Inorganic Chemistry Communications. 2004, 7: 431-433.
    [34] D. Li, Y. N. Xia. Fabrication of Titania Nanofibers by Electrospinning. Nano Letters. 2003, 3(4): 555-560.
    [35] N. J. Pinto, P. Carrion, J. X. Quinones. Electroless Deposition of Nickel on Electrospun Fibers of 2-Acrylamido-2-Methyl-1-Propanesulfonic Acid Doped Polyaniline. Mater Sci Eng A. 2004, 366: 1-5.
    [36] C. Drew, X. Liu, D. Ziegler, et al. Metal Oxide-Coated Polymer Nanofibers. Nano Letters. 2003, 3(2): 143-147.
    [37] D. Li, J. T. Mccann, Y. N. Xia. Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces. Small. 2005, 1(1): 83-86.
    [38] D. J. Seo, W-L. Yoon, Y-G. Yoon, et al. Development of A Micro Fuel Processor for PEMFCs. Electrochimica Acta. 2004, 50: 719-723.
    [39] S. Megelski, J. S. Stephens, D. B. Chase, et al. Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules. 2002, 35: 8456-8466.
    [40] C. L. Casper, J. S. Stephens, N. G. Tassi, et al. Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules. 2004, 37(2): 573-578.
    [41] D. Li, A. Babel, S. A. Jenekhe, et al. Nanofibers of Conjugated Polymers Prepared by Electrospinning with a Two-Capillary Spinneret. Advanced Materials. 2004, 16 (22): 2062-2066.
    [42] H. Hou, J. Zeng, R. Arndt, et al. Poly(p-xylylene) Nanotubes by Coating and Removal of Ultrathin Polymer Template Fibers. Macromolecules. 2002, 35: 2429-2431.
    [43] R. A. Caruso, J. H. Schattka, A. Greiner. Titanium Dioxide Tubes from Sol–Gel Coating of Electrospun Polymer Fibers. Advanced Materials. 2001, 13(20): 1577-1579.
    [44] P. Katta, M. Alessandro, R. D. Ramsier, et al. Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano Letter. 2004, 4(11): 2215-2218.
    [45] S. A. Theron, A. L. Yarin, E. Zussman, et al. Multiple jets in electrospinning: experiment and modeling. Polymer. 2005, 46: 2889-2899.
    [46] D. H. Reneker, A. L. Yarin, S. Koombhongse. Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning. Journal of Applied Physics. 2000, 87: 4531-4547.
    [47] A. L. Yarin, S. Koombhongse, D. H. Reneker. Bending Instability in Electrospinning of Nanofibers. Journal of Applied Physics. 2001, 89: 3018-3026.
    [48] M. M. Hohman, M. Shin, G. C. Rutledge, et al. Electrospinning and Electrically Forced Jets. I. Stability Theory. Phys Fluids. 2001, 13: 2201-2220.
    [49] J. J. Feng. The Stretching of an Electrified Non-Newtonian Jet: A Model for Electrospinning. Phys Fluids. 2001, 14: 3912-3926.
    [50] S. Y. Chew, J. Wen, E. K. F. Yim, et al. Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules. 2005, 6(4): 2017-2024.
    [51] S. F. Fennessey, R. J. Farris. Fabrication of Aligned and Molecularly Oriented Electrospun Polyacrylonitrile Nanofibers and the Mechanical Behavior of Their Twisted Yarns. Polymer. 2004, 45(12): 4217-4225.
    [52] K.W. Kim, K.H. Lee, M.S. Khil, et al. The Effect of Molecular Weight and the Linear Velocity of Drum Surface on the Properties of Electrospun Poly(ethylene terephthalate) Nonwovens. Fibers and Polymers. 2004, 5(2): 122-127.
    [53] J. A. Matthews, G. E. Wnek, D. G. Simpson, et al. Electrospinning of Collagen Nanofibers. Biomacromolecules. 2002, 3(2): 232-238.
    [54] R. Inai, M. Kotaki, S. Ramakrishna. Structure and Properties of Electrospun PLLA Single Nanofibres. Nanotechnology. 2005, 16(2): 208-213.
    [55] A. Theron, E. Zussman, A.L. Yarin. Electrostatic Field-Assisted Alignment of Electrospun Nanofibers. Nanotechnology. 2001, 12(3): 384-390.
    [56] C.Y. Xu, R. Inai, M. Kotaki, et al. Aligned Biodegradable Nanofibrous Structure: A PotentialScaffold for Blood Vessel Engineering. Biomaterials. 2004, 25(5): 877-886.
    [57] N. Bhattaraia, D. Edmondsona, O. Veiseha, et al. Electrospun Chitosan-Based Nanofibers and Their Cellular Compatibility. Biomaterials. 2005, 26(31): 6176-6184.
    [58] H. Pan, L. Li, L. Hu, et al. Continuous Aligned Polymer Fibers Produced by a Modified Electrospinning Method. Polymer. 2005, 47(14): 4901-4904.
    [59] W. E. Teo, M. Kotaki, X. M. Mo, et al. Porous Tubular Structures with Controlled Fibre Orientation Using a modified Electrospinning Method. Nanotechnology. 2005, 16(6): 918-924.
    [60] W. E. Teo, S. Ramakrishna. Electrospun Fibre Bundle Made of Aligned Nanofibres over Two Fixed Points. Nanotechnology. 2005, 16(9): 1878-1884.
    [61] E. D. Boland, G. E. Wnek, D. G. Simpson, et al. Tailoring Tissue Engineering Scaffolds Using Electrostatic Processing Techniques: A Study of Poly(glycolic acid) Electrospinning. Journal of macromolecular science. 2001, 38(12): 1231-1243.
    [62] L. Buttafoco, N.G. Kolkman, P. Engbers-Buijtenhuijs, et al. Electrospinning of Collagen and Elastin for Tissue Engineering Applications. Biomaterials. 2006, 27(5): 724-734.
    [63] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, et al. Controlled Deposition of Electrospun Poly(ethylene oxide) Fibers. Polymer. 2001, 42(19): 8163-8170.
    [64] G. H. Kim. Electrospinning Process Using Field-Controllable Electrodes. Journal of Polymer Science: Part B: Polymer Physics. 2006, 44(10): 1426-1433.
    [65] J. Stankus, J. Guan, W. Wagner. Fabrication of Biodegradable Elastomeric Scaffolds with Sub-Micron Morphologies. Journal of Biomedical Materials Research Part A. 2004, 70A(4): 603-614.
    [66] D. Li, Y. Wang, Y. Xia. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Letters. 2003, 3(8): 1167-1171.
    [67] D. Li, Y. Xia. Electrospinning of Nanofibers: Reinventing the Wheel?”Advanced Materials. 2004, 16(14): 1151-1170.
    [68] J. Kameoka, R. Orth, Y. Yang, D. Czaplewski, et al. A Scanning Tip Electrospinning Source for Deposition of Oriented Nanofibres. Nanotechnology. 2003, 14(10): 1124-1129.
    [69] D. Li, G. Ouyang, J. T. McCann, et al. Collecting Electrospun Nanofibers with Patterned Electrodes. Nano Letters. 2005, 5(5): 913-916.
    [70] D. Li, Y. Wang, Y. Xia. Electrospinning of Polymer and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Letters. 2003, 3(8): 1167-1171.
    [71] A. Theron, E. Zussman, A. L. Yarin. Electrostatic Field-Assisted Alignment of ElectrospunNanofibres. Nanotechnology. 2001, 12: 384-390.
    [72] P. Katta, M. Alessandro, R. D. Ramsier, et al. Continous Electrospinning of Aligned Polymer Nanofobers onto a Wire Drum Collector. Nano Letters. 2004, 4(11): 2215-2218.
    [73] B. Sundaray, V. Subramanian, T. S. Natarajan, et al. Electrospinning of Continous Aligned Polymer Fibers. Applied Physics Letters. 2004, 84(7): 1222-1224.
    [74] J. M. Deitzel, J. Kleinmeyer, J. K. Hirvonen, et al. Controlled Deposition of Electrospun Poly (ethylene oxide) Fibers. Polymer. 2001, 42: 8163-8170.
    [75] A. Bornat. Production of Electrostatically Spun products. US Patent, 4689186, 1987.
    [76] Z-M. Huang, Y-Z. Zhang, M. Kotaki, et al. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites . Composites Science and Technology. 2003, 63: 2223-2253.
    [77] J. P. Berry. Electrostatically Produced Structures and Methods of Manufacturing. U. S. patent, 4965110, 1990.
    [78] P. D. Dalton, D. Klee, M. Moller. Electrospinning with Dual Collection Rings. Polymer. 2005, 46: 611-614.
    [79] E. Smit, U. Buttner, R. D. Sanderson. Continous Yarns from Electrospun Fibers. Polymer. 2005, 46: 2419-2423.
    [80] W. E. Teo, R. Gopal, R. Ramaseshan, et al. A Dynamic Liquid Support System for Continuous Electrospun Yarn Fabrication. Polymer. 2007, 48: 3400-3405.
    [81]吴大诚,杜仲良,高绪珊.纳米纤维.北京:化学工业出版社, 2003, 98-103.
    [82] J. Doshi. Nanofiber-Based Nonwoven Composites: Properties and Applications. Nonwovens World. 2001, Augusti-september: 64-68.
    [83]史文红,赵成如,金刚.经典纺丝技术在生物医用材料领域中的应用.中国医疗器械信息. 2006, 12(5): 17-22.
    [84]尹桂波.纳米纤维支架在组织工程中的应用进展.南通纺织职业技术学院学报(综合版). 2007, 7 (2): 15-18.
    [85] F. Audrey.尹桂波编译,贾永堂校.电子纺丝法制备功能性纳米纤维.国外丝绸. 2003, 18(6): 31-33.
    [86] D. H. Reneker, I. Chun. Nanometre Diameter Fibres of Polymer, Produced by Electrospinning. Nanotechnology. 1996, 7(3): 216-223.
    [87] J. S. Andrew, J. J. Mack, D. R. Clarke. Electrospinning of Polyvinylidene Difluoride-Based Nanocomposite Fibers. Journal of Materials Research. 2007, 23(1): 105-114.
    [88] J. S. Andrew, D. R. Clarke. Effect of Electrospinning on the Ferroelectric Phase Content of Polyvinylidene Difluoride Fibers. Langmuir. 2008, 24(3): 670-672.
    [89] K. Gao, X. Hu, C. Dai, et al. Crystal Structures of Electrospun PVDF Membranes and Its Separator Application for Rechargeable Lithium Metal Cells. Materials Science and Engineering: B. 2006, 131(1-3): 100-105.
    [90] M. Nasir, H. Matsumoto, T. Danno, et al. Control of Diameter, Morphology, and Structure of PVDF Nanofiber Fabricated by Electrospray Deposition. Journal of Polymer Science: Part B: Polymer Physics. 2006, 44(5): 779-786.
    [91] M. Nasir, H. Matsumoto, M. Minagawa, et al. Formation ofβ-phase Crystalline Structure of PVDF Nanofiber by Electrospray Deposition: Additive Effect of Ionic Fluorinated Surfactant. Polymer Journal. 2007, 39(7): 670-674.
    [92] X. Ren, Y. Dzenis. Novel Continuous Poly(vinylidene fluoride) Nanofibers. Materials Research Society Symposium Proceedings. 2006, 920: 0920-S03-03.
    [93] W. A. Yee, M. Kotaki, Y. Liu, et al. Morphology, Polymorphism Behavior and Molecular Orientation of Electrospun Poly(vinylidene fluoride) Fibers. Polymer. 2006, 48(2): 512-521.
    [94] L. Yu, P. Cebe. Crystal Polymorphism in Electrospun Composite Nanofibers of Poly(vinylidene fluoride) with Nanoclay. Polymer. 2009, 50(9): 2133-2141.
    [95] Z. Zhao, J. Li, X. Yuan, et al. Preparation and Properties of Electrospun Poly(vinylidene fluoride) Membranes. Journal of Applied Polymer Science. 2004, 97(2): 466-474.
    [96] J. Zheng, A. He, J. Li, et al. Polymorphism Control of Poly(vinylidene fluoride) through Electrospinning. Macromolecular Rapid Communications. 2007, 28(22): 2159-2162.
    [97] X. Ren, Y. Dzenis. Novel Continuous Poly (vinylidene fluoride) Nanofibers. Mater. Res. Soc. Symp. Proc. 2006, 920: 55-61.
    [98] D. H. Reneker, I. Chun. Nanometre Diameter Fibres of Polymer Produced by Electrospinning. Nanotechnology. 1996, 7: 216~223.
    [99] M. Wei, J. Lee, B. Kang,et al. Preparation of Core-Sheath Nanofibers from Conducting Polymer Blends. Macromolecular rapid communications. 2005, 26: 1127~1132.
    [100] W. Tomaszewski, M. Szadkowski. Investigation of Electrospinning with the Use of a Multi-Jet Electrospinning Head. Fibers & Textiles in Eastern Europe. 2005, 13: 22-26.
    [101] G. H. Kim, Y. S. Cho, W. D. Kim. Stability Analysis for Multi-Jets Electrospinning Process Modified with a Cylindrical Electrode. European Polymer Journal. 2006, 42(9): 2031-2038.
    [102] B. Ding, E. Kimura, T. Sato, et al. Fabrication of Blend Biodegradable NanofibrousNonwoven Mats via Multi-Jet Electrospining. Polymer. 2004, 45(6): 1895-1902.
    [103] A. L. Yarin, E. Zussman. Upward Needleless Electrospinning of Multiple Nanofibers. Ploymer. 2004, 45: 2977-2980.
    [104] O. O. Dosunmu, G. G. Chase, W. Kataphinan, et al. Electrospinning of Polymer Nanofibers from Multiple Jets on a Porous Tubular Surface. Nanotechnology. 2006, 17: 1123-1127
    [105] Y. Liu, J-H. He. Bubble Electrospinning for Mass Production of Nanofibers. International Journal of Nonlinear Sciences and Numerical Simulation. 2007, 8: 393-396.
    [106] J-H. He, Y. Liu, L. Xu, et al. BioMimic Fabrication of Electrospun Nanofibers with High-Throughput. Chaos, Solitons & Fractals. 2008, 37(3): 643-651.
    [107] R. H. Baughman, C. Cui, A. A. Zakhidov, et al. Carbon Nanotube Actuators. Science. 1999, 284: 1340-1344.
    [108] Y. Hu, Y. Gao, S. Singamaneni, et al. Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Atanding ZnO Microbelt. Nano Letters. 2009, 9(7): 2661-2665.
    [109]谌贵辉,张万里,彭斌,等.微执行器驱动机理研究.微电机. 2005, 38(1): 61-63.
    [110]陈自新,李长生,任荣君.用于精密微驱动的微执行器研究.农机化研究. 2006(3): 73-75.
    [111] E. Quandt. Giant Magnetostrictive Thin Film Materials and Applications. Journal of Alloys and compounds. 1997, 258(8): 126-132.
    [112] A. D. Johnson, E. J. Shahoian. Recent Progress in Thin Film Shape Memory Microactuators. IEEE Proc. Of MEMS (MEM1995), 1995: 216-220.
    [113] C. Niezrecki, D. Brei, S. Balakrishnan, et al. Piezoelectric Actuation: State of the Art. The Shock and Vibration Digest. 2001, 33: 269-280.
    [114] O. Zuger, H. P. Ott, U. Dorig. Variable-Temperature Ultrahigh Vacuum Scanning Tunneling Microscope: Mechanical and Electronic Instrumentation. Review of Scientific Instruments.1992, 63(12): 5634-5643.
    [115] M. A. Ealey. Guest Editorial: Active Optical Components. Optical Engineering.1990, 29(11): 1373-1382.
    [116] J. L. Fanson, E. H. Anderson, D. Rapp. Active Structures for Use in Precision Control of Large Optical Systems. Optical Engineering.1990, Vol. 29(11): 1320-1327.
    [117] S. Woody, S. Smith. Design and Performance of a Dual Drive System for Tip-Tilt Angular Control of a 300 mm Diameter Mirror. Mechatronics. 2006, 16: 389–397.
    [118] E. S. Fredric, E. C. Teague. Piezodriven 50-μm Range Stage with Subnanometer Resolution. Review of Scientific Instruments. 1978, 49(12): 1735-1740.
    [119] N. W. Hagood, W. H. Chung, A. V. Flotow. Modeling of Piezoelectric Actuator Dynamics for Active Structural Control. Journal of Intelligent Material Systems and Structures. 1990, 1(3): 327-354.
    [120] C. Niezrecki, H. H. Cudney. Feasibility to Control Launch Vehicle Internal Acoustics Using Piezoelectric Actuators. Journal of Intelligent Material Systems and Structures. 2001, 12: 647-660.
    [121] D. Stansfield. Underwater Electroacoustic Transducers. Bath University Press and Institute of Acoustics. Bath, UK, 1991.
    [122] P. Woias. Micropumps-past, progress and future prospects. Sensors and Actuators B. 2005(105): 28-38.
    [123] F. E. Scire,E. C. Teague. Piezodriven 50-?m Range Stage with Subnanometer Resolution. Review of Seientifie Instruments. 1978, 49(12): 1735-1740.
    [124] J. W. Ryu,S. Q. Lee,D. G. Gweon,et al. Inverse Kinematic Modeling of a Coupled Flexure Hinge Mechanism. Mechatronies. 1999, 9(6): 657-674.
    [125] R. F. Fung,Y. L. Hsu,M. S. Huang. System Identification of a Dual-Stage XY Precision Positioning Table. Precision Engineering. 2009, 33(l): 71-80.
    [126]杨静,高建忠,赵玉龙,等.一种MEMS热微执行器的设计与制作.微纳电子技术, 2005, (4): 175-179.
    [127]李艳,杨卫,吴越.发火控制电路中微执行器.功能材料与器件学报. 2008, 14(2): 399-403.
    [128] P. M. Hogan, A. R. Tajbakhsh, E. M. Terentjew. UV Manipulation of Order and Macroscopic Shape in Nematic Elastomers. Physical Review E. 2002, 65(4): 041720.
    [129] M-H. Li, P. Keler, B. Li, et al. Light-Driven Side-on Nematic Elastomer Actuators. Advanced Materials. 2003, 15(7-8): 569-572.
    [130] Y. Yu, M. Nakano, T. Ikeda. Directed Bending of a Polymer Film by Light. Nature. 2003, 425: 145.
    [131]刘恒,朱玉田,刘钊,等.光致弯曲薄膜微执行器的研究.压电与声光. 2010, 32(3): 417-419.
    [132] T. Hattori, M. Kanaoka, H. Ohigashi. Improved Piezoelectricity in Thick Lamellar Beta-Form Crystals of Poly(vinylidene fluoride) Crystallized under High Pressure. Journal of Applied Physics. 1996, 79(4): 2016-2022.
    [133] Y. Ye, Y. Jiang, Z. Wu, et al. Phase Transitions of Poly (vinylidene fluoride) under ElectricFields. Integrated Ferroelectrics. 2006, 80(1): 245-251.
    [134] P. Sajkiewicz, A.Wasiak, Z. Golclowski. Phase Transitions during Stretching of Poly(vinylidene fluoride). European Polymer Journal. 1999, 35(3): 423-429.
    [135] A. Salimi, A. A. Yousefi. FTIR Studies ofβ-Phase Formation in PVDF Stretched Films. Polymer Testing. 2003, 22(6): 699-704.
    [136] M. Neidh?fer, F. Beaume, L. Ibos, et al. Structural Evolution of PVDF during Storage or Annealing. Polymer. 2004, 45(5): 1679-1688.
    [137] R. Gregorio, N. Chaves Pereira de Souza Nociti. Effect of PMMA Addition on the Solution Crystallization of the Alpha and Beta Phases of Poly(vinylidene fluoride). Journal of Physics D: Applied Physics. 1995, 28(2): 432-436.
    [138] A. Vinogradov, F. Holloway. Electro-Mechanical Properties of the Piezoelectric Polymer PVDF. Ferroelrctrics. 1999, 226: 169–181.
    [139] Y. Higashihata, J. Sako, T. Yagi. Piezoelectricity of Vinylidene Fluoridetrifluoroethylene Copolymers. Ferroelrctrics. 1981, 32: 85–92.
    [140] I. Chopra. Review of State of Art of Smart Structures and Integrated Systems. AIAA J. 2002, 40: 2145–2187.
    [141] T. R. Dargaville, M. Celina, P.M. Chaplya. Evaluation of piezoelectric PVDF polymers for use in space environments. Part I. Temperature limitations. J. Polym. Sci. B: Polym. Phys. 2005, 43: 1310-1320.
    [142] Y. Ye, Y. Jiang, Z. Wu, et al. Phase transitions of poly(vinylidene fluoride) under electric fields, Integr. Ferroelectr. 2006, 80: 245-251.
    [143] X. He, K. Yao. Crystallization mechanism and piezoelectric properties of solution-derived ferroelectric poly(vinylidene fluoride) thin films. Appl. Phys. Lett. 2006, 89: 112909.
    [144] M. C. Celina, T. R. Dargaville, P. M. Chaplya, et al. Piezoelectric PVDF materials performance and operation limits in space environments. Mater. Res. Soc. Symp. Proc. 2005, 851: 449-460.
    [145] P. Güthner, T. Ritter, K. Dransfeld. Temperature dependence of the piezoelectric constant of thin PVDF and P(VDF-TrFE) films. Ferroelectrics. 1992, 127: 7-11.
    [146] C. Chang, V.H. Tran, J. Wang. Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nanoletters. 2010, 10: 726–731.
    [147] N. Bassiri-Gharb, I. Fujii, E. Hong, et al. Domain Wall Contributions to the Properties of Piezoelectric Thin Films. J. Electroceram. 2009, 19: 49–67.
    [148] B. Qi, W. Lu, B. R. Mattes. Strain and Energy Efficiency of Polyaniline Fiber Electrochemical Actuator in Aqueous Electrolytes. J. Phys. Chem. B. 2004, 108: 6222-6227.
    [149] W. Lu, E. Smela, P. Adama, et al. Development of Solid-in-Hollow Electrochemical Linear Actuators Using highly Conductive Polyaniline. Chem. Mater. 2004, 16: 1615-1621.
    [150] K. B. Jirage, J. C. Hulteen, C. R. Martin, Nanotubule-Based Molecular Filtration Membranes. Science. 1997, 278(24): 655–658.
    [151] S. B. Lee, D. T. Mitchell, L. Trofin, et al. Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations. Science. 2002, 296(5576): 2198–2200.
    [152] S. M. Stavis, J. B. Edel, K. T. Samiee, et al. Single Molecule Studies of Quantum Dot Conjugates in a Submicrometer Fluidic Channel. Lab Chip. 2005, 5: 337–343.
    [153] G. Drazer, J. Koplik, A. Acrivos. Absorption Phenomena in the Transport of a Colloidal Particle Through a Nanochannel Containing a Partially Wetting Fluid. Phys. Rev. Lett. 2002, 89: 244501.
    [154] J. Han, H. G. Craighead. Separation of Long DNA Molecules in a Microfabricated Entropic Trap Array. Science. 2000, 288: 1026–1029.
    [155] 6. C. H. Reccius, J. T. Mannion, J. D. Cross, et al. Compression and Free Expansion of Single DNA Molecules in Nanochannels. Phys. Rev. Lett. 2005, 95: 268101.
    [156] J. O. Tegenfeldt, C. Prinz, H. Cao, et al. The Dynamics of Genomic-Length DNA Molecules in 100-nm Channels. PNAS. 2004, 101(30): 10979–10983.
    [157] L. J. Guo, X. Cheng, C-F. Chou. Fabrication of Size-Controllable Nanofluidic Channels by Nanoimprinting and Its Application for DNA Stretching. Nano Lett. 2004, 4: 69–73.
    [158] M. Foquet, J. Korlach, W. Zipfe, W. W. Webb, et al. DNA Fragment Sizing by Single Molecule Detection in Submicrometer-Sized Closed Fluidic Channels. Anal. Chem. 2002, 74: 1415–1422.
    [159] L. C. Campbell, M. J. Wilkinson, A. Manz, et al. Electrophoretic Manipulation of Single DNA Molecules in Nanofabricated Capillaries. Lab Chip. 2004, 4: 225–229.
    [160] W. Reisner, K. J. Morton, R. Riehn, et al. Statics and Dynamics of Single DNA Molecules Confined in Nanochannels. Phys. Rev. Lett. 2005, 94: 196101.
    [161] J. P. Fu, R. B. Schoch, A. L. Stevens, et al. A Patterned Anisotropic Nanofluidic Sieving Structure for Continuous-Flow Separation of DNA and Proteins. Nature Nanotech. 2007, 2: 121–128.
    [162] H. G. Craighead. Future Lab-on-a-chip Technologies for Interrogating Individual Molecules.Nature. 2006, 442: 387–393.
    [163] R. Riehn, R. H. Austin, J. C. Sturm. A Nanofluidic Railroad Switch for DNA. Nano Lett. 2006, 6: 1973–1976.
    [164] R. Riehn, M. Lu, Y-M. Wang, et al. Restriction Mapping in Nanofluidic Devices. PNAS. 2005, 102: 10012–10016.
    [165] Y.-C. Wang, A. L. Stevens, J. Han. Million-Fold Preconcentration of Proteins and Peptides by Nanofluidic Filter. Anal. Chem. 2005, 77: 4293–4299.
    [166] P. Sivanesan, K. Okamoto, D. English, et al. Polymer Nanochannels Fabricated by Thermomechanical Deformation for Single-Molecule Analysis. Anal. Chem. 2005, 77: 2252–2258.
    [167] J. H. Lee, S. Chung, S. J. Kim, et al. Poly(dimethylsiloxane)-Based Protein Preconcentration Using a Nanogap Generated by Junction Gap Breakdown. Anal Chem. 2007, 79: 6868–6873.
    [168] S. Park, Y. S. Huh, H. G. Craighead, et al. A Method for Nanofluidic Device Prototyping Using Elastomeric Collapse. PNAS. 2009, 106(37): 15549-15554.
    [169] J. Fu, R. B. Schoch, A. L. Stevens, et al. A Patterned Anisotropic Nanofluidic Sieving Structure for Continuous-Flow Separation of DNA and Proteins. Nature Nanotech. 2007, 2:121–128.
    [170] H-P. Chou, C. Spence, A. Scherer, et al. A Microfabricated Device for Sizing and Sorting DNA Molecules. PNAS. 1999, 96: 11–13.
    [171] M. Wang, N. Jing, C. B. Su, et al. Electrospinning of Silica Nanochannels for Single Molecule Detection. Applied Physics Letters. 2006, 88: 033106.
    [172] C. H. Reccius, S. M. Stavis, J. T. Mannion, et al. Conformation, Length, and Speed Measurements of Electrodynamically Stretched DNA in Nanochannels. Biophys J. 2008, 95: 273–286.
    [173] J. T. Mannion, C. H. Reccius, J. D. Cross, et al. Conformational Analysis of Single DNA Molecules Undergoing Entropically Induced Motion in Nanochannels. Biophys J. 2006, 90: 4538–4545.
    [174] H. Cao, Z. N. Yu, J. Wang, et al. Fabrication of 10 nm Enclosed Nanofluidic Channels. Appl Phys Lett. 2002, 81: 174–176.
    [175] M. J. O’Brien, P. Bisong, L. K. Ista, et al. Fabrication of an Integrated Nanofluidic Chip Using Interferometric Lithography. J Vac Sci Technol B. 2003, 21: 2941–2945.
    [176] L. Pellegrino, Y. Yanagisawa, M. Ishikawa, et al. (Fe, Mn)3O4 Nanochannels Fabricated byAFM Local-Oxidation Nanolithography Using Mo/poly(methyl methacrylate) Nanomasks. Adv Mater. 2006, 18: 3099–3104.
    [177] Q. Xia, K. J. Morton, R. H. Austin, et al. Sub-10nm Self-Enclosed Self-Limited Nanofluidic Channel Arrays. Nano Lett. 2008, 8: 3830–3833.
    [178] D. Huh, K. L. Mills, X. Zhu, et al. Tuuneable Elastomeric Nanochannels for Nanofluidic Manipulation. Nature materials. 2007, 6: 424-428.
    [179] L. M. Bellan, E. A. Strychalski, H. G. Craighead. Nanochannels fabricated in polydimethylsiloxane using sacrificial electrospun polyethylene oxide nanofibers. J. Vac. Sci. Technol. B, 2008, 26(5): 1728-1731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700