用户名: 密码: 验证码:
压电变压器接触散热装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电变压器利用压电材料的逆压电效应和正压电效应,通过机械振动实现了能量传递,具有功率密度高、结构简单、成本低等巨大的优势,可能成为电磁变压器的替代产品。理论上压电变压器的功率密度可高达400W/cm3以上,现在实际使用时低于30W/cm3,这种实际和理论的差距主要是介电、机械和压电损耗发热造成的。为了实现可靠工作和高功率密度能量传输,抑制压电变压器工作时候的温升就显得非常重要。以往压电变压器通常采用点固支方式、仅依靠空气对流较为单一的方法进行散热,普遍存在散热效率低、本体发热严重、稳定性差、功率密度低的缺点,大大制约了压电变压器的普及。本论文首次提出了面接触式压电变压器散热方式,有效地解决了相关问题,使压电变压器的可利用的功率密度得以大幅提高。此种散热方式对于压电材料的其它用途也有很大的应用空间。论文的主要工作和结论包括:
     对于常见的圆形压电变压器通过等效电路方法进行了理论分析,得到了基本特性参数;对于矩形压电变压器的扩展振动模式,通过三维有限元分析计算出了不同情况下的压电变压器的振型、位移分布、输入导纳、输出电压变比及应力分布。通过与实验结果进行比较,证实了仿真计算的可靠和准确性;说明了迟滞是压电材料损耗产生的重要原因,也是压电变压器发热的根本原因。给出了介电损失,压电损失和机械损失的计算方法。根据压电变压器的特点,针对有限元法,给出了压电变压器损耗计算的公式。
     对于几种典型的压电变压器,提出了相应的接触式散热结构。利用集中参数模型,理论上分析了散热装置对压电变压器的热导的影响;用三维有限元法得到了压电变压器的温度分布、热梯度、热应力。通过实验验证了温度分析的准确性。分析了理想情况和考虑接触热阻情况的热耦合元件对压电变压器工作的影响。研究了压电变压器的最高温升随散热器长度和宽度尺寸变化的关系。对比压电变压器的速度分布与温度分布,得到幅值大的部分温升较小
     首次制作了具有接触式散热结构的压电变压器并对其特性进行了详细的测试。研究了带有散热装置压电变压器的输入导纳、输出电压随负载的变化,功率传输密度、效率、温升、热导等,说明了接触式散热装置对振型的影响较小,大幅改善了热导从而有效地抑制了温升,并在效率大于90%,温升低于10℃的情况下,将相同尺寸压电变压器长期稳定工作的功率密度提高了2倍(从41W/cm3提高到135W/cm3),大大超过了现有记录。通过效率的变化得到了摩擦力对压电变压器的影响,认为其较小可以忽略不计。对接触面的磨损进行了研究并提出了改善磨损的方法。
     根据散热和磨损影响,提出了通过增加合适的高分子薄膜过渡层来进一步减小磨损及提高散热效果的方法,并对散热结构进行了简单的优化。研究了聚丙乙烯薄膜过渡层厚度对效率的影响。综合考虑温升和磨损两个因素,对使用58μm厚聚丙烯薄膜过渡层的压电变压器散热结构的性能进行了优化研究。对压电变压器的散热结合面磨损情况进行了长达110天的连续观察,发现在保持同样的效率和功率密度的情况下,使用聚丙烯薄膜过渡层后使磨损量减小了约99%。实验结果充分证明了高分子过渡层的实用性,具有很好的应用前景。
Piezoelectric transformers, which adjust the state of an electric power supply through piezoelectric direct and converse effects and vibration propagation, have potential to meet the requirements of next-generation transformers because of their desirable advantages of miniaturization, high power density, flexible transforming ratio, electromagnetic immunity, incombustibility, and good isolation. In theory, power density can achieve as high as400W/cm3. However, the actual maximum output power density is typically less than30W/cm3for current designs with piezoceramic materials. The main reason for such large decrease of performance is the inevitable increase of their working temperature generated from dielectric, piezoelectric, and mechanical losses. For efficient and reliable operation, it is very important to keep a proper working temperature for the piezoelectric transformers. The conventional piezoelectric transformers were fixed by node support way, which only depend on convection with air for cooling. Therefore, piezoelectric transformers owned shortcomings of low thermal efficiency, poor stability, low power density, which greatly restricted the popularity of the piezoelectric transformer. In the thesis, an innovative design for the piezoelectric transformers heat transfer system(HTS) to fill the blank of a piezoelectric transformer cooling device, which was analyzed in-depth theory and taken experimental studies. In addition, the cooling methods also have potential to other piezoelectric materials application. Main work and conclusions as follow:
     According to the piezoelectric effect and the linear piezoelectric equations of the piezoelectric physical basis, a circular piezoelectric transformer was analyzed through equivalent circuit theoretical analysis for basic parameters. For rectangular extension vibration mode of piezoelectric transformer, three-dimensional finite element analysis was used to calculate the ideal case, with damping and with damping&load situations separately. Displacement distribution, input admittance, output voltage ratio and stress distribution were got from ANSYS. The piezoelectric material loss is generated by the hysteresis. We had the reason analysis of hot produced and found its calculation method. At the same time, we have made experimental results compare to the simulation result for confirming the simulation reliability and accuracy; We concluded the calculation method of dielectric loss, piezoelectric loss and mechanical loss. According to the characteristics of piezoelectric transformers, we obtained loss calculation formula for analytical method and finite element method separately.
     For piezoelectric transformer in a resonant state, the design of heat transfer structure is the most critical core components. We designed the different heat transfer structure for different vibration mode piezoelectric transformer type. In order to more clearly understand the role of the heat transfer system, the lumped parameter model is used to analyze heat influence into piezoelectric transformer theoretically. Three-dimensional finite element method offered a detailed analysis of the temperature distribution of a single piezoelectric transformer temperature, thermal gradient, thermal stress. We measured temperature distribution by experimental to verify accuracy of the analysis of the temperature; We analyzed and compared the ideal situation and with the thermal contact resistance of heat coupling component on the piezoelectric transformer.
     In order to verify the actual effect of the heat transfer system, the surface contacted heat transfer system was designed to test the characteristics of piezoelectric transformer. The contour vibration's thermal structure of the rectangular piezoelectric transformer was selected as prototype. The experimental test circuit was set up. Comparison and discussion between the prototype with and without the heat transfer system are implemented by comparing the input admittance curve, no-load and matching the impedance of the output voltage ratio, input and output power density, efficiency, temperature, and thermal conductivity. The experiment showed5.5times improvement of heat dissipation ability of the PT with HTS, the output power density increases more than2times (from41W/cm3to135W/cm3), with a temperature rise less than10℃and efficiency greater than90%. The results verified that the heat transfer system suppressed the temperature rise excellently and improved power density extraordinary. We also tested a separate contact thermal resistance of the piezoelectric transformer and heat couple component. Under several working hours, the wear of the electrode surface was recorded, then we found the usual decrease wear method in mechanical system, which can be used for future optimization.
     In order to reduce the wear influence and improve characteristic of piezoelectric transformer, a layer of polypropylene membrane was glued on thermal coupling component and a simple optimization of thermal structure was taken. The experimental tested the impact on the efficiency of the thickness of the membrane. The thickness of polypropylene film layer was chosen as58μm. Up to110days of cumulative work, the testing result had shown the optimized wear ratio had decreased to approximately1%, with the efficiency and output power stability. The result certificated the optimize structure was suitable for practical applications.
引文
[1]陶宝祺,刘果等,智能材料结构的研究进展,南京航空航天大学学报.27:14-26,1995.
    [2]谢建宏,张为公,梁火开,智能材料结构的研究现状及未来发展,材料导报.20:6-9,2006.
    [3]谢建宏,张为公,智能材料结构的研究与发展,传感技术学报.17:164-167,2004.
    [4]王海燕,孙侠生,智能材料结构的应用及其发展前景,结构强度研究:54-58,2004.
    [5]M. D. Mermelstein, A magnetoelastic metallic glass low-frequency magnetometer, Magnetics, IEEE Transactions on.28:36-56,1992.
    [6]M. D. Mermelstein, C. Askins, and A. Dandridge, Stress-relieved magnetoelastic amorphous metal DC magnetometer, Electronics Letters.23:280-281,1987.
    [7]J. L. Prieto, C. Aroca, P. Sanchez, et al., Current effects in magnetostrictive piezoelectric sensors, Journal of Magnetism and Magnetic Materials.174:289-294,1997.
    [8]余历阳,王德苗,and董树荣,压电变压器的研究进展,功能材料与器件学报.9:355-361,2003.
    [9]黄以华,周康源,陈昕,et al.,压电陶瓷变压器的发展一一同顾与展望,声学技术,2002.
    [10]孙慷,张福学,压电学,国防工业出版社,1984.
    [11]K. Kanayama, "Thermal analysis of a piezoelectric transformer," in Ultrasonics Symposium, 1998. Proceedings.,1998 IEEE,1998, pp.901-904 vol.1.
    [12]C. A. Rosen, Electromechanical transducer:us2830274,1954.
    [13]P. A. Van Berkum, J. C. Sinclair, and K. Raney, High Voltage Ceramic Transformers, Broadcast and Television Receivers, IRE Transactions on. BTR-8:22-35,1962.
    [14]L. Hwang, J. Yoo, E. Jang, et al., Fabrication and characteristics of PDA LCD backlight driving circuits using piezoelectric transformer, Sensors and Actuators A:Physical.115:73-78, 2004.
    [15]S. Kawashima, O. Ohnishi, H. Hakamata, et al., "Third order longitudinal mode piezoelectric ceramic transformer and its application to high-voltage power inverter," in Ultrasonics Symposium,1994. Proceedings,1994 IEEE,1994, pp.525-530 vol.1.
    [16]B. Koc, Y. K. Gao, and K. Uchino, Design of a circular piezoelectric transformer with crescent-shaped input electrodes, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers.42:509-514,2003.
    [17]B. Koc, S. Alkoy, and K. Uchino, "A circular piezoelectric transformer with crescent shape input electrodes," Tahoe, Nv,1999, pp.931-934.
    [18]M. Katsuno and Y. Fuda, "Piezoelectric transformer using inter-digital internal electrodes," in Ultrasonics Symposium,1998. Proceedings.,1998 IEEE,1998, pp.897-900 vol.1.
    [19]褚祥诚,邬军飞,徐之涵,多层压电陶瓷变压器的振动与疲劳,稀有金属材料与工程.38:226-229,2009.
    [20]M. Yamamoto, Y. Sasaki, T. Inoue, et al., "Piezoelectric transformer for 30 W output AC-DC converters," in Applications of Ferroclectrics,2002.ISAF 2002. Proceedings of the 13th IEEE International Symposium on,2002, pp.347-350.
    [21]M. Yamamoto, Y. Sasaki, A. Ochi, et al., Step-down piezoelectric transformer for AC-DC converters, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers.40:3637-3642,2001.
    [22]A. M. Sanchez, M. Sanz, R. Prieto, et al., Design of piezoelectric transformers for power converters by means of analytical and numerical methods, Ieee Transactions on Industrial Electronics.55:79-88,2008.
    [23]I. Kartashev, T. Vontz, and H. Florian, Regimes of piezoelectric transformer operation (vol 17, pg 2150,2006), Measurement Science & Technology.20,2009.
    [24]D. Vasic, E. Sarraute, F. Costa, et al., Piezoelectric micro-transformer based on PZT unimorph membrane, Journal of Micromechanics and Microengineering.14:S90-S96,2004.
    [25]D. Vasic, E. Sarraute, F. Costa, et al., Piezoelectric micro-transformer based on SOI structure, Sensors and Actuators A:Physical.117:317-324,2005.
    [26]F. Wang, J. Wu, Y. Jia, et al., Rosen-type Pb (Mgl3 Nb23) 03-PbTi 03 single crystal piezoelectric transformer, Review of Scientific Instruments.78,2007.
    [27]F. F. Wang, W. Z. Shi, and H. S. Luo, Step-down piezoelectric transformer fabricated with (]-x)Pb(Mg]/3Nb2/3)O-3-xPbTiO(3) single crystal, Review of Scientific Instruments.81,2010.
    [28]M. Guo, D. M. Lin, K. H. Lam, et al., A lead-free piezoelectric transformer in radial vibration modes, Review of Scientific Instruments.78:035102-035102-5,2007.
    [29]M. Guo, X. P. Jiang, K. H. Lam, et al., Lead-free multilayer piezoelectric transformer, Review of Scientific Instruments.78:016105-016105-4,2007.
    [30]D. M. Lin, M. S. Guo, K. H. Lam, et al., Lead-free piezoelectric ceramic (K0.5Na0.5) NbO3 with MnO2 and K5.4Cul.3Ta10O29 doping for piezoelectric transformer application, Smart Materials & Structures.17,2008.
    [31]H. W. Chung, S. H. Lim, G. H. Kim, et al., Fabrication and characterization of piezoelectric Pb(Zr,Ti)O3-Pb(Mn,W,Sb,Nb)O3 step-down piezoelectric transformer, Sensors and Actuators A: Physical.128:350-354,2006.
    [32]M. S. Guo, K. H. Lam, S. Wang, et al., A study on the disk-shaped piezoelectric transformer with multiple outputs, Review of Scientific Instruments.78,2007.
    [33]S. T. Ho, Modeling of disk-type piezoelectric transformer, Iciea 2007:2nd leee Conference on Industrial Electronics and Applications, Vols 1-4, Proceedings:1863-1868 2918,2007.
    [34]C. H. Huang, Y. C. Lin, and C. C. Ma, Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates, leee Transactions on Ultrasonics Ferroelectrics and Frequency Control.51:12-24,2004.
    [35]P. Laoratanakul and K. Uchino, "Designing a radial mode laminated piezoelectric transformer for high power applications," Montreal, CANADA,2004, pp.229-232.
    [36]Y. P. Liu, D. Vasic, F. Costa, et al., Design of fixed frequency controlled radial-mode stacked disk-type piezoelectric transformers for DC/DC converter applications, Smart Materials& Structures.18,2009.
    [37]S. T. Ho, Modeling of a disk-type piezoelectric transformer, leee Transactions on Ultrasonics Ferroelectrics and Frequency Control.54:2110-2119,2007.
    [38]J. L. Du, J. H. Hu, and K. J. Tseng, High-power, multioutput piezoelectric transformers operating at the thickness-shear vibration mode, leee Transactions on Ultrasonics Ferroelectrics and Frequency Control.51:502-509,2004.
    [39]K. J. Tseng, J. Du, and J. Hu, Piezoelectric transformer with high power density and multiple outputs, Electronics Letters.40:786-788,2004.
    [40]J. L. Du, J. H. Hu, and K. J. Tseng, A plate-shaped high power-density piezoelectric transformer with dual outputs, in Ceramics International 30, ed:1797-1801.2004
    [41]A. M. Flynn and S. R. Sanders, Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers, leee Transactions on Power Electronics.17:8-14, 2002.
    [42]J. H. Hu, Analyses of the temperature field in a bar-shaped piezoelectric transformer operating in longitudinal vibration mode,Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control.50:594-600,2003.
    [43]H. Junhui, "Temperature field of the piezoelectric transformer operating in longitudinal vibration mode," in Ultrasonics Symposium,2002. Proceedings.2002 IEEE,2002, pp.1003-1006 vol.1.
    [44]H. W. Joo, C. H. Lee, J. S. Rho, et al., Analysis of temperature rise for piezoelectric transformer using finite-element method, leee Transactions on Ultrasonics Ferroelectrics and Frequency Control.53:1449-1457,2006.
    [45]P. Joung-Hu, C. Bo-Hyung, C. Sung-Jin, et al., Analysis of the Thermal Balance Characteristics for Multiple-Connected Piezoelectric Transformers,Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on.56:1617-1626,2009.
    [46]I. K. Vo Viet Thang, Soonjong Jeong, Minsoo Kim and Jaesung Song, Modeling and Investigation of Multilayer Piezoelectric Transformer with a Central Flole for Heat Dissipation.6, 2011.
    [47]刘鸿文,材料力学(第四版),北京:高等教育出版社,2004.
    [48]张福学主编,现代压电学.下册,北京:科学出版社,2001.
    [49]H. Xue, J. S. Yang, and Y. T. Hu, Analysis of Rosen piezoelectric transformers with a varying cross-section, Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control.55: 1632-1639,2008.
    [50]J. Baker, S. Roundy, and P. Wright, "Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks," 2005, pp.959-970.
    [51]S. Mehraeen, S. Jagannathan, and K. A. Corzine, Energy Harvesting From Vibration With Alternate Scavenging Circuitry and Tapered Cantilever Beam, Industrial Electronics, IEEE Transactions on.57:820-830,2010.
    [52]张福学主编,现代压电学.上册,北京:科学出版社,2001
    [53]张福学主编,现代压电学.中册,北京:科学出版社,2001
    [54]Y. Tong and B. H. Li, An accurate continuous calibration system for high voltage current transformer, Review of Scientific Instruments.82,2011.
    [55]S. T. Ho, Modeling and analysis on ring-type piezoelectric transformers, leee Transactions on Ultrasonics Ferroelectrics and Frequency Control.54:2376-2384,2007.
    [56]H. L. Li, J. H. Hu, and H. L. W. Chan, "Finite element analysis on piezoelectric ring transformer," Munich, Germany,2002, pp.1177-1180.
    [57]T. Tsuchiya, Y. Kagawa, N. Wakatsuki, et al., Finite element simulation of piezoelectric transformers, Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control.48:872-878, 2001.
    [58]H. L. Li, J. H. Hu, and H. L. W. Chan, Finite, element analysis on piezoelectric ring transformer, leee Transactions on Ultrasonics Ferroelectrics and Frequency Control.51: 1247-1254,2004.
    [59]R. Lerch, Simulation of piezoelectric devices by two-and three-dimensional finite elements, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on.37:233-247,1990.
    [60]H. W. Joo, C. H. Lee, and H. K. Jung, "Three-dimensional finite element analysis for piezoelectric transformer," in Applied Electromagnetics, vol.10, G. Ni, et al., Eds., ed,2001, pp. 115-118.
    [61]S. Choi, T. Kim, S. M. Lee, et al., Modeling and characterization of radial-mode disk-type piezoelectric transformer for AC/DC adapter,2005 IEEE 36th Power Electronic Specialists Conference (PESC), Vols 1-3:624-629 2948,2005.
    [62]H. W. Joo, C. H. Lee, and H. K. Jung, "Analysis of piezoelectric transformer by using finite element method and equivalent-circuit considering load variation," in 2001 leee Ultrasonics Symposium Proceedings, Vols 1 and 2, D. E. Yuhas and S. C. Schneider, Eds., ed,2001, pp. 459-462.
    [63]C. H. Lee, H. W. Joo, J. S. Rho, et al., "Inversion of piezoelectric material coefficients by using finite element method with asymptotic waveform evaluation," in 2002 leee Ultrasonics Symposium Proceedings, Vols 1 and 2, D. E. Yuhas and S. C. Schneider, Eds., ed,2002, pp. 661-664.
    [64]J. S. Rho, H. W. Joo, C. H. Lee, et al., "Analysis of ultrasonic linear motor by using finite element method and equivalent circuit," in 2002 leee Ultrasonics Symposium Proceedings, Vols 1 and 2, D. E. Yuhas and S. C. Schneider, Eds., ed,2002, pp.649-652.
    [65]Y. J. Yang, C. C. Chen, Y. M. Chen, et al., Modeling of piezoelectric transformers using finite-element technique, Journal of the Chinese Institute of Engineers.31:925-932,2008.
    [66]E. Ando and Y. Kagawa, Finite-element simulation of transient heat response in ultrasonic transducers, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on.39: 432-440,1992.
    [67]A. V. Mezheritsky, Elastic, dielectric, and piezoelectric losses in piezoceramics:how it works all together, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on.51: 695-707,2004.
    [68]K. Uchino and S. Hirose, Loss mechanisms in piezoelectrics:Flow to measure different losses separately, leee Transactions on Ultrasonics Ferroelectrics and Frequency Control.48: 307-321,2001.
    [69]J. O. Gentner, P. Gerthsen, N. A. Schmidt, et al., Dielectric losses in ferroelectric ceramics produced by domain-wall motion, Journal of Applied Physics.49:4485-4489,1978.
    [70]G. E. Martin, "Dielectric, Elastic and Piezoelectric Losses in Piezoelectric Materials," in 1974 Ultrasonics Symposium,1974, pp.613-617.
    [71]S. B. Lang, H. L. W. Chan, K. Uchino, et al., "Loss mechanisms and high power piezoelectrics ", ed:Springer US,2007, pp.217-228.
    [72]K. Uchino, J. H. Zheng, Y. H. Chen, et al., "Loss mechanisms in piezoelectrics and resonance/antiresonance," in Electronic Ceramic Materials and Devices.vol.106, K. M. Nair and A. S. Bhalla, Eds., ed,2000, pp.79-100.
    [73]S. Hirose, New Method for Measuring Mechanical Vibration Loss and Dielectric Loss, Japanese Journal of Applied Physics.33:2945-2948,1994.
    [74]G. Robert, D. Damjanovic, and N. Setter, Piezoelectric hysteresis analysis and loss separation, Journal of Applied Physics.90:4668,2001.
    [75]N. Abboud, J. Mould, G. Wojcik, et al., "Thermal generation, diffusion and dissipation in 1-3 piezocomposite sonar transducers:finite element analysis and experimental measurements," in Ultrasonics Symposium,1997. Proceedings.,1997 IEEE,1997, pp.895-900 vol.2.
    [76]S. Wu, H. Chen, J. H. Gu, et al., A thermal insulation method for a piezoelectric transducer, Chinese Science Bulletin.52:2305-2309,2007.
    [77]张天孙,传热学,中国电力出版社,2006.
    [78]杨世铭,传热学高等教育出版社,2006.
    [79]I. Kartashev and T. Vontz, Regimes of piezoelectric transformer operation II, Measurement Science & Technology.20,2009.
    [80]P. Yong Wook, Electrical Properties of a Piezoelectric Transformer for an AC-DC Converter, Journal of the Korean Physical Society.57:1131,2010.
    [81]T. Inoue, S. Hamamura, M. Yamamoto, et al., AC-DC Converter Based on Parallel Drive of Two Piezoelectric Transformers, Japanese Journal of Applied Physics.47:4011-4014,2008.
    [82]P. Laoratanakul, A. V. Carazo, P. Bouchilloux, et al., Unipoled Disk-type Piezoelectric Transformers, Japanese Journal of Applied Physics.41:1446-1450,2002.
    [83]王健石主编,电子散热器技术手册,北京:中国电力出版社,2011.
    [84]N. N. Abboud, G. L. Wojcik, D. K. Vaughan, et al., "Finite Element Modeling for Ultrasonic Transducers (Preprint)," United States,1998, p.25p,
    [85]N. Wakatsuki, Y. Kagawa, K. Suzuki, et al., Temperature-frequency characteristics simulation of piezoelectric resonators and their equivalent circuits based on three-dimensional finite element modelling, International Journal of Numerical Modelling:Electronic Networks, Devices and Fields.16:479-492,2003.
    [86]王泽鹏,胡仁喜,张秀辉等编著,ANSYS 12.0热力学有限元分析从入门到精通,北京:机械工业出版社,2010.
    [87]张朝晖,ANSYS 12.0热分析工程应用实战手册,北京:中国铁道出版社,2010.
    [88]Lindon C. Thomas, heat transfer, Englewood Cliffs, N.J.:Prentice Hall 1992.
    [89]W.-B. Lor and H.-S. Chu, Effect of interface thermal resistance on heat transfer in a composite medium using the thermal wave model, International Journal of Heat and Mass Transfer.43:653-663,2000.
    [90]F. H. Milanez, M. M. Yovanovich, and J. R. Culham, Effect of surface asperity truncation on thermal contact conductance, leee Transactions on Components and Packaging Technologies.26: 48-54,2003.
    [91]L. Ju, F. Han, L. Xiaobing, et al., "A simple setup to test thermal contact resistance between interfaces of two contacted solid materials," in Electronic Packaging Technology & High Density Packaging (ICEPT-HDP),2010 Uth International Conference on,2010, pp.116-120.
    [92]沃特豪斯(R.B.Waterhouse)著,微动磨损与微动疲劳,:成都:西南交通大学出版社,1999.
    [93]周伸荣,朱旻吴,复合微动磨损,上海交通大学出版社,2004.
    [94]姜晓霞,李诗卓,李曙,金属的腐蚀磨损化学工业出版社,2003.
    [95]K. L. W. a. T. R. THOMAS, Contact of rough surfaces a review of experiment, Wear.58: 331-340,1979.
    [96]S. r. A. Priit Po-dra, finite element analysis wear simulation of a conical spinning contact considering surface, Wear.224:13-21,1999.
    [97]S. r. A. Priit Po-dra, Simulating sliding wear with finite element method.pdf, Tribology International 32:71-81,1999.
    [98]T. Ishii, S. Ueha, K. Nakamura, et al., WEAR PROPERTIES AND LIFE PREDICTION OF FRICTIONAL MATERIALS FOR ULTRASONIC MOTORS, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers.34:2765-2770,1995.
    [99]N. H. Kim, D. Won, D. Burris, et al., Finite element analysis and experiments of metal/metal wear in oscillatory contacts, Wear.258:1787-1793,2005.
    [100]S. L. Rice and F. A. Moslehy, Modeling friction and wear phenomena, Wear.206:136-146, 1997.
    [101]A. Soderberg and S. Andersson, Simulation of wear and contact pressure distribution at the pad-to-rotor interface in a disc brake using general purpose finite element analysis software, Wear. 267:2243-2251,2009.
    [102]T.-S. Yang, Prediction of surface topography in lubricated sheet metal forming, International Journal of Machine Tools and Manufacture.48:768-777,2008.
    [103]M. Renouf, F. Massi, N. Fillot, et al., Numerical tribology of a dry contact, Tribology International.44:834-844,2011.
    [104]G. Carbone and F. Bottiglione, Contact mechanics of rough surfaces:a comparison between theories, Meccanica.46:557-565,2011.
    [105]B. Lorenz, G. Carbone, and C. Schulze, Average separation between a rough surface and a rubber block:Comparison between theories and experiments, Wear.268:984-990,2010.
    [106]S. J. Kim, C. Y. Yun, and B. J. Paek, "Optimal Design of a piezoelectric passive damper for vibrating plates," Newport Beach, Ca,2000, pp.512-519.
    [107]Z. T. Yang, J. S. Yang, and Y. T. Hu, Optimal electrode shape and size of doubly rotated quartz plate thickness mode piezoelectric resonators, Applied Physics Letters.92,2008.
    [108]J.-M. Seo, H.-W. Joo, and H.-K. Jung, Optimal design of piezoelectric transformer for high efficiency and high power density, Sensors and Actuators A:Physical.121:520-526,2005.
    [109]张静政,塑料焊接技术问答,机械工业出版社,1987.
    [110]H. Tsujino, M. Hongoh, R. Tanaka, et al., Ultrasonic plastic welding using fundamental and higher resonance frequencies, Ultrasonics.40:375-378,2002.
    [111]J. Vogel, D. Grewell, M. R. Kessler, et al., Ultrasonic and Impulse Welding of Polylactic Acid Films, Polymer Engineering and Science.51:1059-1067,2011.
    [112]S. Murao, M. Sato, T. Hosokawa, et al., Temperature Increase at the Interface between Ultrasonically Joined Poly(ethylene terephthalete) Films, Applied Physics Express.4,2011.
    [113]G. H. Zhang and J. H. Qiu, Interdiffusion Analysis Based on Novel Ultrasonic Welding Method With Inserting Interposed Sheet, Polymer Engineering and Science.51:103-108,2011.
    [114]http://www.powerultrasonics.com/content/polymer-materials-ultrasonic-plastic-welding

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700